สารบัญ

หน้	1
บทคัดย่อภาษาไทย	[
บทคัดย่อภาษาอังกฤษI	I
กิตติกรรมประกาศII	I
สารบัญIV	7
สารบัญตารางVI	I
สารบัญรูปเห	-
รายการสัญลักษณ์XV	r
บทที่ 1 บทนำ	1
1.1 ความเป็นมาของงานวิจัย	l
1.2 อินเดียมออกไซด์ (In ₂ O ₃))
1.2.1 ข้อคืของหัวตรวจวัคก๊าซแบบฟิล์มบางอินเคียมออกไซค์	<u>)</u>
1.2.2 ข้อเสียของหัวตรวจวัดก๊าซแบบฟิล์มบางอินเดียมออกไซด์	3
1.3 นิยามของเซนเซอร์	3
1.4 วัตถุประสงค์และขอบเขตของงานวิจัย4	ļ
1.5 วิธีการดำเนินการวิจัย	ŀ
1.6 การประยุกต์ใช้งาน	ŀ
บทที่ 2 ทฤษฎีและหลักการร	,
2.1 การตรวจจับทางเคมีของสารกึ่งตัวนำร	j
2.1.1 วัสคุตรวจจับทางเคมี	;
2.1.2 รูปแบบของการดูดกลืนก๊าซ	,
2.2 ปฏิกิริยาของการดูคซับก๊าซที่ผิวของสารกึ่งตัวนำ	
2.2.1 สถานะพื้นผิว (surface state)	7
2.2.2 การดูคกลื่นออกซิเจน13	3
2.2.3 ปฏิกิริยาของก๊าซติคไฟกับการดูคกลื่นออกซิเจน1	5
2.2.4 การรีดักชันของโลหะออกไซด์1	7
2.3 กลไกในการตรวจจับก๊าซของอินเดียมออกไซด์17	7

สารบัญ (ต่อ)

หน้า
2.3.1 การตรวจจับก๊าซของอินเดียมออกไซด์
2.3.2 ผลจากขอบเกรน (grain boundary effect)19
2.3.3 ปฏิกิริยาเคมีระหว่างอินเดียมออกไซด์กับก๊าซโอโซน
2.4 การเติมสารคะตะไลต์21
บทที่ 3 การวิเคราะห์คุณสมบัติของฟิล์มบางอินเดียมออกไซด์
3.1 โครงสร้างของอินเดียมออกไซด์22
3.2 การศึกษาโครงสร้างผลึกจากการเลี้ยวเบนของรังสีเอ็กซ์
3.3 การวิเคราะห์พื้นผิวด้วยเครื่อง Scanning Electron Microscope (SEM)
3.4 การวิเคราะห์ด้วยเครื่อง Energy Dispersive X-ray Analysis (EDX)
3.5 การวิเคราะห์คุณสมบัติฟิล์มบางด้วยเครื่อง Ellipsometer
3.6 การวัดปรากฏการณ์ฮอลล์ Hall Effect34
บทที่ 4 การสร้างฟิล์มบางอินเคียมออกไซด์
4.1 การปลูกฟิล์มบางด้วยระบบสปัตเตอร์ริง
4.1.1 ทฤษฎีการปลูกฟิล์มบางด้วยระบบสปัตเตอร์ริง
4.1.2 อันตรกิริยาระหว่างไอออนและผิวเป้าสารเคลือบ
4.1.3 ค่ายีลด์ของกรสปัตเตอร์ริง (sputtering yield: S)41
4.2 การไอออไนซ์บองก้ำซ (gas ionize)42
4.2.1 การเกิดพลาสมา (plasma)42
4.2.2 กระบวนการชนในบริเวณที่ก๊าซเกิดการแตกตัว
4.3 โครงสร้างระบบการสปัตเตอร์ริง47
4.4 อัตราการเกลือบฟิล์มของระบบสปัตเตอร์ริง48
4.5 โครงสร้างระคับไมครอนของฟิล์มบาง48
4.6 การสปัตเตอร์เป้าสารเคลือบประเภทสารประกอบ
4.7 การก่อตัวเป็นฟิล์มจากการสปัตเตอร์ริงของสารประกอบ
4.8 ระบบดีซี สปัตเตอร์ริง51

สารบัญ (ต่อ)

สารบัญ (ต่อ)

หน้า
6.1.1 การหาค่าความหนาของฟิล์มแพลทินัม
6.1.2 ความสัมพันธ์ระหว่างกำลังงานกับอุณหภูมิที่ได้ของไมโครฮีทเตอร์85
6.2 การปลูกฟิล์มบางอินเคียมออกไซด์โดยระบบ อาร์เอฟ สปัตเตอร์ริง
6.2.1 การศึกษาความสัมพันธ์ระหว่างอัตราการเคลือบฟิล์ม
กับอัตราส่วนก๊าซผสม Ar กับ O ₂ 86
6.2.2 การวิเคราะห์ฟิล์มบางอินเดียมออกไซด์ที่ปลูกในบรรยากาศ
ก๊าซผสม Ar: O ₂ 87
6.2.3 การศึกษาผลตอบสนองของชั้นฟิล์มบางอินเดียมออกไซค์
ที่มีต่อก๊าซโอโซน90
6.3 การศึกษาผลของอุณหภูมิในการแอนนี้ลฟิล์มบางอินเดียมออกไซด์
ที่ปลูกในบรรยากาศก๊าซอาร์กอนบริสุทธิ์93
6.3.1 ผลต่อการเลี้ยวเบนของรังสีเอ็กซ์
6.3.2 ผลต่อเม็ดเกรน95
6.3.3 การศึกษาคุณสมบัติทางไฟฟ้าของฟิล์มบางอินเดียมออกไซด์
6.3.4 ผลต่อการตอบสนองต่อก๊าซโอโซน100
6.4 การศึกษาผลของอุณหภูมิขณะตรวจจับก๊าซโอโซนของหัวตรวจวัดก๊าซ102
6.5 การตอบสนองที่มีต่อก๊าซของหัวตรวจวัดก๊าซ106
6.5.1 การศึกษาความไวในการตรวจจับก๊าซชนิดต่างๆ
6.5.2 การศึกษาผลการเติมสารคะตะ ไลต์ Al, Pd, Pt, และ Fe
ที่มีต่อการตรวจจับก๊าซ109
6.5.3 การตอบสนองของหัวตรวจวัคก๊าซต่อก๊าซโอโซนที่ความเข้มข้นต่างๆ115
บทที่ 7 สรุปและวิจารณ์ผลการทคลอง118
เอกสารอ้างอิ่ง121
ประวัติผู้เขียน

สารบัญตาราง

ตารา	เงที่ หน้า
5.1	ขั้นตอนการโฟโตลิโธกราฟีน้ำยาไวแสงชนิดบวก
5.2	ขั้นตอนการกัคชั้นฟิล์มซิลิคอนไดออกไซด์67
5.3	ขั้นตอนการกัดแผ่นผลึกซิลิคอน
5.4	เงื่อนไขการสปัตเตอร์ริง Ti และ Pt ด้วยเครื่องดีซี สปัตเตอร์ริง
5.5	เงื่อนใขการซินเตอร์ริง
5.6	ขั้นตอนการกัคชั้นฟิล์มแพลทินัม (Pt)70
5.7	ขั้นตอนการกัคชั้นฟิล์มไททาเนียม (Ti)70
5.8	เงื่อนไขการสร้างชั้น SiO_2 ด้วยเทคนิคอาร์เอฟ สปัตเตอร์ริง71
5.9	เงื่อนไขการสปัตเตอร์ริง In ₂ O3 ด้วยเทกนิกอาร์เอฟ สปัตเตอร์ริง
5.10	ขั้นตอนการกัดชั้นฟิล์มบางอินเดียมออกไซด์ (In ₂ O ₃)73
5.11	เงื่อนไขการแอนนีล73
5.12	ขั้นตอนการกัดชั้นฟิล์มซิลิคอนไดออกไซด์เพื่อทำการเปิดขั้ว74
6.1	การเปรียบเทียบค่าตัวแปรทางไฟฟ้าที่คำนวณจากการวัดปรากฏการณ์ฮอลล์
	ของฟิล์มบางอินเคียมออกไซค์ที่ผ่านการแอนนี้ลที่อุณหภูมิต่าง ๆ

สารบัญรูป

รูปขึ	กี้ หน้า
1.1	การจัดกลุ่มอุปกรณ์ทรานสดิวเซอร์
2.1	แบบจำลอง Lennard-Jones การดูดกลื่นทางฟิสิกส์ และการดูดกลื่นทางเคมี โดยที่
	$\Delta\mathrm{H}_{_{\mathrm{phys}}}$ คือพลังงานการยึดเหนี่ยวของระบบ, $\Delta\mathrm{H}_{_{\mathrm{chem}}}$ คือพลังงานการยึดเหนี่ยวของระบบ,
	และ $\Delta { m E}_{_{ m A}}$ คือพลังงานการกระศุ้นการดูดกลื่นทางเกมี6
2.2	ปริมาณการดูดกลืนก๊าซที่อุณหภูมิค่าต่างๆ7
2.3	แบบจำลองการเกิดประจุที่ผิวของสารกึ่งตัวนำ อะตอมผู้ให้ (D) และ อะตอมผู้รับ (A)
	สถานะผิวจะแสดงที่ความหนาแน่นของระดับพลังงาน N(E) โดยที่ (ก) กรณีที่ไม่มีการ
	แลกเปลี่ยนประจุระหว่างสารกึ่งตัวนำและสถานะที่ผิว, (ข) กรณีที่อิเล็กตรอนจากผิวสาร
	กึ่งตัวนำเกลื่อนที่ไปยังสถานะผิวจนถึงสมคุล9
2.4	แบบจำลองแถบพลังงาน surface double layer
	(ก) ชั้นสะสม เมื่อที่ผิวมีสภาพทางไฟฟ้าเป็นบวก อิเล็กตรอนจะถูกฉีดเข้าไปในแถบความ
	นำโดยปล่อยให้บริเวณผิวมีประจุบวก และที่เนื้อสารกึ่งตัวนำจะมีประจุลบ, (ข) ชั้นปลอด
	ประจุพาหะเมื่ออิเล็กตรอนที่แถบความนำถูกยึดไว้ที่ผิวถูกชดเชยด้วยประจุบวกบริเวณผิว
	ของสารกึ่งตัวนำ, (ค) ชั้นกลับเกิดขึ้นเมื่ออิเล็กตรอนถูกยึดไว้ในปริมาณมากๆ แสดงว่ามีการ
	ดึงอิเล็กตรอนจากทั้งแถบความนำและแถบวาเลนซ์12
2.5	แถบพลังงานของชั้นปลอดประจุของสารกึ่งตัวนำชนิดเอ็น (ก) รูปแบบประจุของอินเดียม
	ออกไซด์, (ข) แถบพลังงานบริเวณผิวของอินเดียมออกไซด์
2.6	แบบจำลองการดูดกลื่นออกซิเงนที่ผิวของสารกึ่งตัวนำ (ก) แบบจำลองทางฟิสิกส์, (ข)
	แบบจำลองแถบพลังงาน19
2.7	กำแพงศักย์ตามทางเดินกระแสในอินเดียมออกไซด์ (ผลึกมีขนาดน้อยกว่าสองเท่าของ
	Debye length)
2.8	การตรวจจับก๊าซโอโซนของฟิล์มบางอินเดียมออกไซด์
2.9	ปรากฏการณ์ที่ผิวสัมผัสเมื่อเติมสารคะตะไลต์21
3.1	โครงสร้างผลึกของอินเดียมออกไซด์
3.2	การตกกระทบและการสะท้อนของรังสีเอ็กซ์ตามกฎของแบรกก์
3.3	เครื่อง X-ray Diffractometer (XRD) (ศูนย์บริการเครื่องมือทางวิทยาศาสตร์)24
3.4	ตัวตรวจวัดของ X-ray Diffractometer

รูปที่		หน้า
3.5	ค่าคงที่แลตทิชของสารกึ่งตัวนำชนิดต่างๆ	27
3.6	ส่วนประกอบภายในเครื่อง Scanning Electron Microscope (SEM)	29
3.7	เครื่อง Scanning Electron Microscope (SEM) (ศูนย์เทคโนโลยีไมโครอิเล็กทรอนิกส์)	29
3.8	ส่วนประกอบภายในของเครื่อง Energy Dispersive X-ray Analysis (EDX)	31
3.9	เครื่อง Energy Dispersive X-ray Analysis (EDX) (ศูนย์เทคโนโลยีไมโครอิเล็กทรอนิกส์).	31
3.10	ลักษณะการตรวจจับพลังงานของอิเล็กตรอนชุดที่สอง	32
3.11	ส่วนประกอบภายในของเครื่อง Ellipsometer	33
3.12	เครื่อง Ellipsometer (ศูนย์วิจัยอิเล็กทรอนิกส์)	34
3.13	สารตัวอย่างแผ่นแบบรูปทรงใดๆ	35
3.14	ลักษณะของชิ้นงานและวงจรที่ใช้หาค่าสภาพความต้านทาน	35
3.15	้ลักษณะของชิ้นงานและวงจรที่ใช้หาค่าความหนาแน่นประจุพาหะและค่าความคล่องตัว	36
3.16	เครื่องกำเนิดสนามแม่เหล็กไฟฟ้า (ศูนย์วิจัยอิเล็กทรอนิกส์)	37
4.1	เทคโนโลยีการสร้างฟิล์มบาง	38
4.2	กลไกการเคลือบฟิล์มด้วยระบบสปัตเตอร์ริง	39
4.3	เปรียบเทียบลักษณะการชนของลูกบิลเลียคกับการสปัตเตอร์ริง	40
4.4	การถ่ายทอดโมเมนตัมในกระบวนการสปัตเตอร์ริง	41
4.5	ความสัมพันธ์ระหว่างอัตราสปัตเตอร์ริง (ค่ายึลค์) กับพลังงานไอออนบวก	42
4.6	การคิสชาร์จของก๊าซในคีซีไคโอค (DC diode)	43
4.7	คุณลักษณะการโกล์วดิสชาร์จของก๊าซ	46
4.8	ลักษณะทั่วไปของระบบสปัตเตอร์ริง	47
4.9	แบบจำลองโครงสร้าง (zone model) แสดงความสัมพันธ์ระหว่างโครงสร้างฟิล์มบาง	
	จากการสปัตเตอร์ริงลงบนวัสคุฐานรอง และความดันก๊าซอาร์กอน	49
4.10	ความสัมพันธ์ระหว่างสัดส่วนของไอออนโมเลกุลกู่ (MO ⁺ /M ⁺ +MO ⁺) กับพลังงาน	
	ยึดเหนี่ยวระหว่างพันธะของโลหะออกไซด์	50
4.11	ระบบดีซี สปัตเตอร์ริง	52
4.12	ความสัมพันธ์ระหว่างความหนาฟิล์ม Al, Fe, Pd, Pt, และ Ti กับเวลาการสปัตเตอร์ริง	52
4.13	ระบบอาร์เอฟ สปัตเตอร์ริง	53

รูปที่	หน้า			
4.14	4.14 ภาพถ่ายเครื่องสปัตเตอร์ริงแบบ อาร์เอฟ สปัตเตอร์ริง (ศูนย์วิจัยอิเล็กทรอนิกส์)54			
4.15	4.15 ความสัมพันธ์ระหว่างความหนาฟิล์ม In ₂ O ₃ กับเวลาการสปัตเตอร์ริง			
5.1	ลักษณะการกัดแบบแอนไอโซทรอปิค57			
5.2	ลักษณะลวคลายของ (ก) Back to Front Aligner และ (ข) ใคอะแฟรม58			
5.3	ลักษณะลวคลายของไมโครฮิทเตอร์และ RTD59			
5.4	ลักษณะถวดลายของขั้ววัดคุณสมบัติทางไฟฟ้า60			
5.5	ลักษณะลวคลายของพื้นที่ฟิล์มบางอินเคียมออกไซด์60			
5.6	ลักษณะภาพถ่ายโปรแกรม LEDIT61			
5.7	ลักษณะกระจกต้นแบบ มาส์กที่ 1			
5.8	ลักษณะกระจกต้นแบบ มาส์กที่ 262			
5.9	ลักษณะกระจกต้นแบบ มาส์กที่ 362			
5.10	ลักษณะกระจกต้นแบบ มาส์กที่ 463			
5.11	ลักษณะกระจกต้นแบบ มาส์กที่ 563			
5.12	ลักษณะกระจกต้นแบบ มาส์กที่ 663			
5.13	ภาพถ่ายของ (ก) เครื่อง ultra sonic และ (บ) manual wet bench			
5.14	5.14 ภาพถ่ายของเตาออกซิเคชัน65			
5.15	ลักษณะการสร้างจุด Alignment และ ใดอะแฟรม66			
5.16	ภาพถ่ายของ (ก) เครื่อง Spinner และ (ข) เครื่อง Mask Aligner67			
5.17	5.17 ภาพถ่ายชุดอุปกรณ์ที่ใช้ในการกัดสารละลาย EPD			
5.18	ภาพถ่ายเครื่องดีซี สปัตเตอร์ริง			
5.19	ภาพถ่ายเตาซินเตอร์ริง			
5.20	ภาพถ่ายเครื่องอาร์เอฟ สปัตเตอร์ริง72			
5.21	ลักษณะ โครงสร้างหัวตรวจวัดก๊าซ โอโซนแบบฟิล์มบางอินเดียมออกไซด์			
5.22	5.22 ภาพถ่ายหัวตรวจวัดก๊าซ โอโซนแบบฟิล์มบางอินเดียมออกไซด์ที่สร้างเสร็จ			
5.23 ภาพถ่ายวงจรหัวตรวจวัดก๊าซ				
6.1 ความสัมพันธ์ระหว่างความหนาของฟิล์มแพลทินัมและไททาเนียมกับเวลา				
	การสปัตเตอร์ริง			

รูปที่	หน้า	
5.2 ภาพถ่ายตัดขวางฟิล์มบางแพลทินัมและไททาเนียม	84	
5.3 ภาพถ่ายของ (ก) ใมโครฮีทเตอร์ และ (ข) ใดอะแฟรม	85	
6.4 ความสัมพันธ์ระหว่างกำลังงานกับอุณหภูมิที่ได้ของไมโครฮิทเตอร์ขนาด 100 ไมครอน	ļ	
ใมโครฮีทเตอร์ที่สร้างบน (🗖) ฐานรองซิลิคอนไคอะแฟรม และ (🍷) ฐานรองซิลิคอน85		
6.5 ความสัมพันธ์ระหว่างความหนาของฟิล์มบาง In ₂ O3 กับเวลาการสปัตเตอร์ริง	86	
5.6 รูปแบบการเลี้ยวเบนของรังสีเอ็กซ์จากฟิล์มบางอินเดียมออกไซด์ที่ปลูกแบบ		
ควบคุมอัตราส่วนก๊าซผสม Ar: O ₂ (ก) 50: 50, (ข) 85: 15, และ (ค) 100: 0	88	
5.7 รูปถ่ายผิวหน้าฟิล์มบางอินเดียมออกไซด์ที่ผ่านการปลูกฟิล์มในบรรยากาศก๊าซผสม		
Ar: O ₂ (50: 50) และ ไม่ผ่านการแอนนี้ล	89	
5.8 รูปถ่ายผิวหน้าฟิล์มบางอินเดียมออกไซด์ที่ผ่านการปลูกฟิล์มในบรรยากาศก๊าซผสม		
Ar: O ₂ (85: 15) และ ไม่ผ่านการแอนนี้ล	89	
5.9 รูปถ่ายผิวหน้าฟิล์มบางอินเดียมออกไซด์ที่ผ่านการปลูกฟิล์มในบรรยากาศก๊าซผสม		
Ar: O ₂ (100: 0) และ ไม่ผ่านการแอนนี้ล	90	
6.10 ภาพตัดขวางของฟิล์มบางอินเดียมออกไซด์ที่ผ่านการปลูกฟิล์มในบรรยากาศ		
ก๊าซอาร์กอนบริสุทธิ์และไม่ผ่านการแอนนีล	90	
5.11 แผนผังระบบวัดผลตอบสนองของฟิล์มบางอินเดียมออกไซด์ที่มีต่อก๊าซโอโซน	91	
6.12 ความสัมพันธ์ระหว่างความไวในการตรวจจับก๊าซโอโซนกับความหนาของฟิล์มบาง		
In ₂ O ₃ ที่สปัตเตอร์ริงในบรรยากาศก๊าซผสม Ar: O ₂ (100: 0, 85:15, และ 50:50)	92	
6.13 รูปแบบการเลี้ยวเบนของรังสีเอ็กซ์จากฟิล์มบางอินเคียมออกไซค์ที่ผ่านการปลูกฟิล์ม		
ในบรรยากาศก๊าซอาร์กอนบริสุทธิ์ และแอนนีลที่อุณหภูมิ 400 ถึง 700 องศาเซลเซียส	94	
5.14 รูปถ่ายผิวหน้าของฟิล์มบางอินเคียมออกไซค์ที่ไม่ผ่านการแอนนีล	95	
6.15 รูปถ่ายผิวหน้าของฟิล์มบางอินเคียมออกไซค์ แอนนิลที่อุณหภูมิ 400 องศาเซลเซียส	96	
5.16 รูปถ่ายผิวหน้าของฟิล์มบางอินเคียมออกไซค์ แอนนิลที่อุณหภูมิ 500 องศาเซลเซียส	96	
6.17 รูปถ่ายผิวหน้าของฟิล์มบางอินเคียมออกไซค์ แอนนิลที่อุณหภูมิ 600 องศาเซลเซียส	96	
5.18 รูปถ่ายผิวหน้าของฟิล์มบางอินเคียมออกไซค์ แอนนิลที่อุณหภูมิ 700 องศาเซลเซียส	97	
6.19 ลักษณะชิ้นงานและวงจรที่ใช้หาค่าสภาพความด้านทานของฟิล์มบางอินเดียมออกไซด์.	98	
6.20 ลักษณะชิ้นงานและวงจรที่ใช้หาค่าความหนาแน่นประจุพาหะและค่าความคล่องตัว		
ของฟิล์มบางอินเดียมออกไซด์	98	

รูปที่ หน้า
6.21 กราฟความสัมพันธ์ระหว่างสภาพความต้านทานไฟฟ้า (ρ), ความหนาแน่น
ประจุพาหะ (nH) ของฟิล์มบางอินเคียมออกไซด์ที่ผ่านการแอนนีลที่อุณหภูมิ
ต่างๆ100
6.22 กราฟความสัมพันธ์ระหว่างความไวการตรวจจับก๊าซโอโซนกับเวลาในการ
ตอบสนองต่อก๊าซโอโซนของฟิล์มบางอินเดียมออกไซด์ที่ผ่านการแอนนีล
ด้วยอุณหภูมิค่าต่างๆ101
6.23 โครงสร้างของหัวตรวจวัคก๊าซโอโซนที่ใช้ทำการทคลอง102
6.24 แผนผังการติดตั้งเครื่องมือที่ใช้ในการวัดการตอบสนองต่อก๊าซโอโซน102
6.25 กราฟความสัมพันธ์ระหว่างความไวในการตรวจจับก๊าซโอโซนของฟิล์มบาง
อินเดียมออกไซด์ กับอุณหภูมิทำงานค่าต่างๆ103
6.26 กราฟความสัมพันธ์ระหว่างค่าความไวในการตรวจจับก๊าซโอโซนกับเวลาใน
การตอบสนองต่อก๊าซโอโซน ของฟิล์มบางอินเดียมออกไซด์ที่อุณหภูมิทำงาน
350 องศาเซลเซียส105
6.27 ความสัมพันธ์ระหว่างอุณหภูมิการแอนนีลที่มีต่อ (🔹) ความไวในการตรวจจับก๊าซโอโซน
และ (🗖) เวลาการตอบสนองต่อก๊าซโอโซน106
6.28 แผนผังการติดตั้งเครื่องมือที่ใช้ในการวัดการตอบสนองต่อก๊าซชนิดต่างๆ107
6.29 ความไวในการตรวจจับเอทิลแอลกอฮอล์, ออกซิเจน, และ โอโซน ของหัวตรวจวัด
ก๊าซแบบฟิล์มบางอินเดียมออกไซด์ ที่อุณหภูมิทำงาน 350 องศาเซลเซียส108
6.30 ผลการวิเคราะห์ฟิล์มบางอินเดียมออกไซด์ ด้วยเครื่อง EDX109
6.31 ผลการวิเคราะห์ฟิล์มบางอินเดียมออกไซด์ ด้วยเครื่อง EDX ที่ผ่านการ
เติมสารคะตะ ไลต์อลูมิเนียม110
6.32 ผลการวิเคราะห์ฟิล์มบางอินเดียมออกไซด์ ด้วยเครื่อง EDX ที่ผ่านการ
เติมสารคะตะไลต์พลาเดียม110
6.33 ผลการวิเคราะห์ฟิล์มบางอินเดียมออกไซด์ ด้วยเครื่อง EDX ที่ผ่านการ
เติมสารคะตะไลต์แพลทินัม111
6.34 ผลการวิเคราะห์ฟิล์มบางอินเดียมออกไซด์ ด้วยเครื่อง EDX ที่ผ่านการ
เติมสารคะตะไลต์เหล็ก

รูปที่ หน้า
6.35 ความไวการตรวจจับเอทิลแอลกอฮอล์ที่ผ่านการเติมสารคะตะไลต์
และอุณหภูมิทำงานต่างๆ112
6.36 ความไวในการตรวจจับก๊าซออกซิเจนที่ผ่านการเติมสารคะตะไลต์
และอุณหภูมิทำงานต่างๆ113
6.37 ความไวในการตรวจจับก๊าซโอโซนที่ผ่านการเติมสารคะตะไลต์
และอุณหภูมิทำงานต่างๆ114
6.38 ความสัมพันธ์ระหว่างความไวในการตรวจจับก๊าซของหัวตรวจวัดก๊าซที่ผ่านการ
เติมสารคะตะ ไลต์ กับเวลาการตรวจจับก๊าซที่อุณหภูมิทำงาน 350 องศาเซลเซียส114
6.39 แผนผังการติดตั้งเครื่องมือที่ใช้ในการวัดการตอบสนองต่อความเข้มข้นของก๊าซ
โอโซน116
6.40 การตอบสนองต่อก๊าซโอโซนความเข้มข้น 500, 1000, 2000, และ 4000 ppm
ของหัวตรวจวัคก๊าซโอโซนแบบฟิล์มบางอินเดียมออกไซด์

สัญลักษณ์

สัญลักษณ์	ความหมาย	หน่วย
С	ค่าความจุไฟฟ้า	ฟารัด
E _C	พลังงานระดับความนำ	อิเล็กตรอน-โวลต์
E _{CD}	ความกว้างของระดับอะตอมผู้ให้	อิเล็กตรอน-โวลต์
E _{CS}	พลังงานระดับความน้ำที่สถานะผิว	อิเล็กตรอน-โวลต์
E _D	พลังงานที่ระดับอะตอมผู้ให้	อิเล็กตรอน-โวลต์
E _F	ระดับพลังงานเฟอร์มิ	อิเล็กตรอน-โวลต์
E _{FSS}	ระดับพลังงานระดับเฟอร์มิที่สถานะผิว	อิเล็กตรอน-โวลต์
E _I	พลังงานที่ระดับครึ่งของแถบพลังงาน	อิเล็กตรอน-โวลต์
E _s	พลังงานที่กำแพงศักย์	อิเล็กตรอน-โวลต์
E_{v}	พลังงานที่ระดับวาเลนซ์	อิเลี้กตรอน-โวลต์
E _{vs}	พลังงานที่ระดับวาเลนซ์ที่สถานะผิว	อิเลี้กตรอน-โวลต์
E _O	พลังงานที่ทำให้เคลื่อนที่จากออกซิเจนไปใน	
	ชั้นแถบความนำ	อิเลี้กตรอน-โวลต์
e	ประจุของอิเล็กตรอน	คูลอมบ์
ΔG	พลังงานที่ใช้ในการย่อยสลายโมเลกุลออกซิเจน	อิเลี้กตรอน-โวลต์
Is	กระแสดิสชาร์จ	ใมโครแอมแปร์
σ	สภาพนำไฟฟ้า	$(\Omega - cm)^{-1}$
ρ	สภาพต้านทาน	Ω-cm
R _s	ความต้านทานแผ่น	Ω/\square
i _s	ความหนาแน่นกระแสที่เป้าสารเคลือบ	แอมป์ต่อตารางเมตร
j	ความหนาแน่นกระแสที่ขั้วแคโทด	แอมป์ต่อตารางเมตร
K	ค่าคงที่ Lattice Scattering Mode (3 π /8)	-
K ₁	ค่าคงที่	-
Ι	ระยะห่างระหว่างกู่อิเล็กโทรด	เซนติเมตร
Ν	ความหนาแน่นของประจุที่สถานะผิว	(cm^{-3})
N(E)	ความหนาแน่นของระดับพลังงาน	(cm^{-3})
N _D	ความหนาแน่นของผู้ให้ในสาร	(cm^{-3})

สัญลักษณ์ (ต่อ)

สัญลักษณ์	ความหมาย	หน่วย
N _s	ความหนาแน่นของประจุบนผิว	(cm^{-3})
n _s	ความหนาแน่นของประจุพาหะที่ผิว	(cm^{-3})
Р	ความคันก๊าซ	Kg/cm ²
q	ประจุไฟฟ้า	คูลอมบ์
R	ค่าความต้านทานฟิล์มที่สภาวะปกติ	โอห์ม
R _g	ค่าความต้านทานฟิล์มในบรรยากาศก๊าซ	โอห์ม
ΔR	ค่าความไวการตรวจจับ	-
R _H	ก่า Hall coefficient	cm ³ /C
r _e	รัศมีแค โทด	เซนติเมตร
S	สัมประสิทธิ์ในการสปัตเตอร์ริง	-
t	ความหนา	ນີດຄືເນຕຽ
$V_{\rm H}$	แรงคันฮอลล์	ใมโครแอมป์
V _R	ความต่างศักย์ระหว่างขั้ว 1 และ 2	อังสตรอม
Т	อุณหภูมิ	เคลวิน
t	เวลา	นาที
X _o	ความหนาแน่นของชั้น Space charge	-
Ψ	ศักดาที่ Double layer	โวลต์
$\psi_{\rm s}$	ศักดาที่ผิวสัมผัสกับเนื้อสาร	โวลต์
ε	ค่าคงที่ไดอิเล็กตริก	-
<i>E</i> ₀	ค่าเพอร์มิติวิตีในอากา ศ	F/cm
μ _H	ก่ากวามกล่องตัวของพาหะ	cm ² /V-s
λ	ความยาวคลื่น	นาโนเมตร
$\lambda_{\rm o}$	ก่า Mean free path	-