TABLE OF CONTENTS

	Page
TABLE OF CONTENTS	
LIST OF TABLES	
LIST OF FIGURES	
INTRODUCTION	
LITERATURE REVIEWS	
Biology and Characteristic of Ralstonia solanacearum	3
Pathogenicity and Host Range of Ralstonia solanacearum	5
Molecular Characterization and Genetic Diversity	
of Ralstonia solanacearum	6
A Model System for the Study of Bacterial Pathogenicity	7
Insitghts from the R. solanacearum Genome Sequence	10
Possible Roles for Polyols in Plant Pathogen	12
MATERIALS AND METHODS	14
Bacterial Strain and Growth Condition	14
Pathogenicity Tests and Biovar Classification	16
DNA Amplification	16
Enzyme Activity Assay	18
Chromosomal DNA and Plasmid Preparation	19
DNA Manipulation	20
Construction of Expression polS in Plasmid pGEX-2T	22
Expression of Recombinant SDH	23
Protein Analysis on SDS-PAGE analysis	23
Construction for IDM Plasmid for Gene Disruption	
by Homologous Recombination	25
Southern Blot Hybridization	27
Quantification of EPS	29

TABLE OF CONTENTS (cont'd)

	Page
RESULTS	31
Amplification of polS Gene by Specific Primers and	
Hybridization of polS Gene	31
Nucleotide Sequencing and Analysis of polS Gene	35
SDS-PAGE of Expression Sorbitol Dehydrogenase	36
Construction of Plasmid for Insertion-Duplication Mutagenesis (IDM)	44
Conjugation pKS into R. solanacearum and Detection for IDM	
and AE by PCR and Hybridization Analysis	44
Biovar Test and Enzyme Activity Assay for Mutation	53
Pathogenicity, HR Test and EPS Quantification of	
Non-oxidizing Sorbitol Mutant	57
DISCUSSION	62
CONCLUSION	72
LITERATURE CITED	74
APPENDIX	91

LIST OF TABLES

Table		Page
1	Differentiation of Ralstonia solanacearum biovars based on	
	utilization and oxidation of sugar as positive (+) and negative (-)	4
2	Bacterial strains and plasmids used in this study	15
3	List of oligonucletides used to amplify internal and whole	
	polS gene regions for identification and mutagenesis	
	in this study	17
4	List of oligonucleotides used for PCR analysis of mutants	18
5	Sources of sorbitol dehydrogenase protein sequences from	
	Different strains of Ralstonia solanacearum and other bacteria	40
6	Enzyme activity of crude extract from	
	Ralstonia solanacearum sorbitol dehydrogenase	56
7	Pathogenicity Tests of Ralstonia solanacearum wild type	
	(To-Ud3-WT), nalidixic marker (To-Ud3-N) and	
	non-oxidizing sorbitol (MT5) strains on tomato host (L390)	59
8	The amount of EPS produced by Ralstonia solanacearum	
	wild type (To-Ud3-WT), nalidixic marker (To-Ud3-N) and	
	mutant strains in rich medium	60
Append	ix Table	
1	Dilution series of BSA standards	94
2	The correlation between final concentration of	
	standard BSA and their absorbance value at 595 nm	95
3	Dilution series of <i>N</i> -acetyl-D-glucosamine standards	96
4	The correlation between final concentration of standard <i>N</i> -	
	acetyl-D-glucosamine and their absorbance value at 530 nm	97

LIST OF FIGURES

Figur	e	Page
1	Agarose gel electrophoresis of 600 bp fragment amplified with	
	sorF and sorR primers and 800 bp fragment amplified by polSF	
	and polSR primers using DNA extracted from	
	Ralstonia solanacearum as a template	33
2	Southern blot analysis between sorS probe and DNA extracted	
	from different biovars of Ralstonia solanacearum and partially	
	digested with ClaI showing specific 1.8 kb DNA product in	
	biovars 3 and 4	34
3	Partial nucleotide and deduced amino acid sequence of	
	sorbitol dehydrogenase (polS) of R. solanacearum strain To 264	37
4	Multiple sequence alignment of the SDR proteins	38
5	Phylogenetic tree of sorbitol dehydrogenase protein sequences	
	from seven bacteria. Neighbor joining method of ClustalW	
	program was used to construct phylogenetic trees	41
6	Nucleotide and amino acid sequence similarity of	
	sorbitol dehydrogenase (SDH) and its homologues among	
	seven bacterial species and percent nucleotide similarity is	
	denoted above the diagonal and percent amino acid similarity is below	42
7	SDS-PAGE of crude extract from E. coli harboring pGEX-2T	
	and pGEX-polS in which cells were harvested at 2, 4, and 6 hr.	
	after induction	43
8	The creation of deletion constructs and the nucleotide sequence	
	of endogenous polS gene was deleted by overlapping PCR method	47
9	Southern blot hybridization between kan and sorS probe	
	with BamHI-EcoRI or ClaI partially digested DNA extracted	
	from wild type strain and transconjugant clones	49
10	Electroporesis gel of PCR product amplified by various	
	primers located upstream and downstream of endogenous	
	polS gene (claF and claR), located on plasmid (mobF-mobR	
	and kmF-kmR) and located on <i>polS</i> gene (sorF and sorR)	50

LIST OF FIGURES (cont'd)

Figure	e I	Page
11	Generation of a non-polar insertion mutation.	52
12	Comparison of biovar test between Ralstonia solanacearum	
	wild type strain (To-Ud3) and mutant	54
13	Enzyme activity assay for conversion of sorbitol by the sorbitol	
	dehydrogenase from Ralstonia solanacearum wild type (To-Ud3-WT),	
	nalidixic marker (To-Ud3-N) and mutants (MT5, MT6, MT7).	
	The absorbance of crude extract from biovar 1 (FC328) and 2 (PO1155)	
	were measured as a control	55
14	Bacterial wilt symptom and hypersensitive reaction (HR)	
	test caused by Ralstonia solanacearum strain To-Ud3 and	
	non-oxidizing sorbitol mutant	61
Ap	pendix Figure	
1	The standard curve of BSA ($\mu g/ml$) and their	
	absorbance value at OD ₅₉₅	95
2	The standard curve of <i>N</i> -acetyl-D-glucosamine (µg/ml) and their	97
	absorbance value at OD ₅₃₀	
3	pGEM®-T Easy Vector circular map and sequence reference points	100
4	The promoter and multiple sequence of the pGEM®-T Easy Vector	101
5	pGEX-2T Expression Vector circular map and multiple cloning site	102
6	pK18mob Integrating Vector circular map and multiple cloning sites	104