v < ar = w <
'nsmmsﬂfomﬂluiaua’liﬁumﬂuazumnﬁ‘m UN 11 avud 2 WHENIAN — daMnAu 2568

Received: 28 131.8. 2568 Revised: 30 n.A. 2568 Accepted: 15 d@.A. 2568

nauaNuiiBanrguasnadmiunsiaTsiLazuaadanINsven wlusunsuatndoya
dulndandluinnife
A Causal Knowledge Graph for Analyzing and Visualizing Programming Language

Evolution from Wikipedia Infobox Data

USennsal dudelual, Usinid ‘i’sjjmﬁﬂﬁl, Hlass YMed” uay I5ITIU LATeYEY”
'nAdyaneInsAeNiiinesuaraNsAUmA, ANEINEIAINTUTENA, W Ingtaemalulag
WILIDUNANTEUATITLD, NTUVNUNIUAT
ZA1AIYNINGINITABURIADILATANTAUNA, ALINYIFEAS AITIVT, UNTINYIBBLAYATAERS

WMYWIAATINY, VAYS

Preeyaphorn Intamong?, Porawat Visutsak®, Chalothon Chootong?, and
Jirawan Charoensuk?®”
'Department of Computer and Information Science, Faculty of Applied Science,
KMUTNB, Bangkok, Thailand
“Department of Computer Science and Information Technology, Faculty of Science at
Sriracha, Kasetsart University, Sriracha Campus, Chonburi, Thailand

*Corresponding author: jirawan.charo@ku.th

Abstract

Understanding the evolutionary relationships between programming languages is
crucial for software development, education, and research. However, current research
lacks comprehensive tools for analyzing causal relationships and influence patterns across
the diverse programming landscape. This study proposes a method for creating a causal
knowledge graph that illustrates the evolution of programming languages by utilizing
automated data collection and graph modeling to identify different levels of influence.
The system processes structured English and Thai Wikipedia infobox data, analyzing and

transforming it into a graph format using Neodj. Graph visualization is performed using the

Cypher Query Language. The knowledge graph presents C-influenced programming
languages across three evolutionary stages, supporting both English and Thai. Key features
include displaying influence paths and illustrating languages with similar structures. The
results demonstrate that graph-based representations effectively capture the evolution of
programming languages, enabling learners, educators, and researchers to explore inter-

language relationships.

Keywords: Causal Knowledge Graph; Prosramming Language Evolution; Wikipedia Infobox

Data; Neodj Graph

UNANED
%} 6§ a av QI o £y 1

nsauyiandlaluauduiusi3atauimsseninsnwilvsunsududdfgee
=

[13 3 = a v ' [a v v a PN
ANSWRIUNGONAKIT NITANYT WAZIIUITY E]EJ’NIiﬂGﬂlI QWU?%HIUﬁQﬂUUSQ%’]@Lﬂi@QNE)'Vl

v v 6

ATBUARUAMTUNTIATIETANdNTUS I samnuarsULuUvesdninalugdvimivesniv

TWsunsudifinnunainuaite 9u3deiiausisnisasiansinanusideanvn iuansliviuds
ATAUINTVBIN1E LU THNTY ImsflsﬁmiLﬁuﬁayjaé’m‘[uﬁaLLazmifS’]aaﬁayjaTugﬂLLUUrmw Wie
Aumszauveadnsnaluudazdu sruuiuszaianateyaduldendiilasiasrenninise
2 d“l o a '3 [~4 ¥ 2 = 6 v
AMwIBINguLazN Y ng Fahundesgikazulasdunsiiegiudeyaiillelnsia nieunis
wansans e ulagldnwnadslanes naanuinliwanmudiusvesn wnlasusnina
INAFLUAINTEAVYDINITHAIUT KATTOITUNINIMITINgWIaEAI NG AAUTDITEUUL
lAWA N1TLARLHUNIDITNTNATENTNNY LazNITIANGUAI¥INTLATIET1eINALAYS U Ha

= a a

n3ENwILARlTIUIINTIE e azviuITauINsTRIn v U sunsuldagaliusEANS A
& A A Ao ¢ o U v v v awv ° v o ¢ !
wazilunsosllonfiuselevid msuiSou agdaou wazdnidelunisdrmamnuduiussening
ALUIHNTUAN 9|
=

AEIALY: NTIMMIINFITURLasHE; TIMINITYesn 18I TUNIU; TeyadulndensvinInmiae;

nsidlalnsia

362

w = ar = w o
Msasudlamalulagan saumaAnazuIanssy UN 11 atui 2 ngenAy — BaWAY 2568

1. Introduction

Understanding the evolution of programming languages is crucial for studying
software development and technology. It enables researchers and students to effectively
select appropriate languages to learn (Meyerovich & Rabkin, 2013). Valverde and Solé
(2015) studied the evolution of programming languages based on adoption patterns and
explored the relationship between evolutionary theory and programming language
development. Systematic literature reviews have also examined the applications of
knowledge graphs in software engineering contexts (Chen et al., 2020; Wang et al., 2017).
However, a gap remains in creating comprehensive visual representations of programming
language relationships using structured data.

This research aims to develop a knowledge graph that illustrates the relationships
among various programming languages. Wikipedia serves as a reliable source under free
documentation licenses, allowing for the distribution and modification of content. We
propose a methodology that involves collecting data on C-based programming languages
by extracting information from Wikipedia infoboxes. Data extraction is performed on both
English and Thai Wikipedia, focusing on the "influenced by" and "influenced" fields.
Additionally, a dictionary is used to ensure data consistency.

The knowledge graph is constructed using Neodj, a graph database system that
efficiently manages interconnected data in the form of nodes and relationships. The
Cypher Query Language is used to manipulate and query graph data. This method
demonstrates the efficiency of the graph-based approach in achieving completeness and
eliminating redundancies. The resulting system offers a valuable tool for examining
programming language relationships and creating knowledge g¢raphs from publicly

available data sources.

363

2. Literature reviews
2.1 Knowledge Graph Construction and Modeling

Knowledge graphs are graph-based data structures that represent knowledge units
through nodes and relationships, where nodes represent entities and relationships indicate
connections via semantic edges (Ji et al, 2021). This approach enables systems to
understand contextual overviews while supporting automated decision-making and
analytical capabilities. Knowledge graphs transform raw data into meaningful knowledge,
making them fundamental to artificial intelligence and semantic web technologies (Cheng,
2022). Their construction involves entity recognition, relationship identification, and
semantic integration from heterogeneous data sources.

Cheng (2022) demonstrated the effectiveness of knowledge graphs in educational
curricula by describing knowledge points and their interconnections, allowing students to
visualize content overviews more clearly. Qu et al. (2024) analyzed 48 publications from
2011 to 2023, revealing a rise in educational knowledge graph research incorporating
quantitative evaluation methods. Bi et al. (2024) introduced CodeKGC, showing that code-
based language models exhibit superior structured reasoning in knowledge graph
construction for technical domains compared to natural language models.

Domain-specific knowledge graph construction presents unique challenges,
particularly in technical fields where standard principles may not be directly applicable.
Since programming languages contain specialized terminology not found in general
dictionaries, domain-specific bilingual dictionaries are essential for both teaching and

automatic language processing applications.

2.2 Causal Knowledge Graphs and Query Language Integration

Graph databases such as Neodj have significantly enhanced the comprehension
and analysis of complex datasets composed of interconnected elements. Its native graph
architecture enables users to efficiently navigate and explore multi-level relationships.

According to Francis et al. (2018), the Cypher query language was introduced to explicitly

364

o o w o
MsasudlamalulagansaumAnazuiangsu UN 11 aUud 2 ngenIAY - FAY 2568

express complex graph patterns. In addition, Holzschuher and Peinl (2013) demonstrated
that Cypher is more readable and performs better than SQL, especially for multi-hop
queries in applications such as programming language genealogy.

Graph-based queries are also applicable to large analytical knowledge graphs.
Ferencz et al. (2024) demonstrated the efficiency of Neodj in analyzing large social or
computer network datasets. Dorpinghaus and Stefan (2020) proposed semantic queries on
biomedical graphs and showed optimizations through graph techniques and embeddings,
achieving performance gains of up to 3,839x. This evidence highlights the effectiveness of
graph databases in managing context-rich and structured data for large-scale knowledge
discovery.

More recently, efforts have been made to integrate causal inference into property
graph models. Pachera et al. (2024) proposed several extensions that enable causal
reasoning, including hypernodes, structural equations, and enhancements to query
languages such as Cypher and GQL. They introduced a framework for querying causal

paths, confounders, and interventions based on do-calculus.

3. Methodology
3.1 System workflow and overview

The workflow begins with identifying a list of C-family programming languages on
English Wikipedia and algorithmically generating corresponding Thai Wikipedia URLs
through automated translation. BeautifulSoup is employed as the web scraping library to
retrieve structured infobox data, targeting the "influenced by" and "influences" relationship
fields, and converting the extracted data into a standardized JSON format. The system
ensures cross-linguistic consistency through automated deduplication algorithms and the
integration of the Google Translate API for Thai language localization. This is followed by
systematic import into the Neodj graph database, where programming languages are
represented as nodes with directional influence relationships. Finally, Cypher query-based

normalization consolidates duplicate nodes and eliminates naming inconsistencies,

365

enabling comprehensive analysis of programming language evolution patterns and the
exploration of hierarchical influence structures within the programming language domain.
The system pipeline consists of six phases: (1) data extraction from Wikipedia infoboxes,
(2) data extraction and transformation, (3) cross-linguistic translation verification, (4) Import
into Neodj graph database, (5) Knowledge graph normalization, and (6) Knowledge graph

visualization.

3.2 Data extraction from Wikipedia infoboxes

This section presents a methodology for extracting programming language
relationship data from Wikipedia infobox across bilingual content (English and Thai). The
outcome of this process is a comprehensive list of URLs for C-family programming
languages in both English and Thai. The data extraction from Wikipedia infoboxes consists
of two sub-processes: (1) bilingual programming language URL generation and (2) Data
extraction and transformation.
3.2.1 Bilingual programming language URL generation

The target language corpus was constructed based on a list of C-family
programming languages from Wikipedia. The programming language list serves as our data
source for relational analysis, providing unified programming language names and URLs.
Two patterns were observed in English URLs: they either use the programming language

[13

name directly or append the suffix “ (programming language).” Similarly, two such
patterns exist in Thai URLs: they either use the programming language name or add the
prefix “A191” (meaning "language") before the name.

To enable bilingual analysis, Thai Wikipedia URLs were generated from their English
counterparts using a URL conversion algorithm. The Convert English URL to Thai URL
algorithm extracts article titles from English URLs, performs English-to-Thai translation, and
reconstructs the URLs according to Thai Wikipedia formatting standards. Each input URL is

first checked for the presence of the “/wiki/” segment. If found, the remaining segment,

representing the article path, is extracted. Underscores are replaced with spaces, and the

366

o o w: i
MsasudlamalulagansaumaAnazuiangsu UM 11 aUud 2 NgenIAY — FUAN 2568

resulting text is translated into Thai using the Google Translate API. The translated title is
then reformatted according to Wikipedia URL standards to construct the final Thai URL.
This method facilitates bilingual URL mapping and supports multilingual data
integration by generating Thai Wikipedia URLs directly from English sources. The
pseudocode for this algorithm is shown in Figure 1, and Table 1 presents examples of

English and Thai URLs generated by this method.

Table 1 Example of English-to-Thai URL.

Programmin English URL Thai URL
g language
C https://en.wikipedia.org/wiki/C (progra https://th.wikipedia.org/wiki/
mming_language) 1Y
Java https://en.wikipedia.org/wiki/Java (pro https://th.wikipedia.org/wiki/
gramming_language) FiCabiglely
PHP https://en.wikipedia.org/wiki/PHP https://th.wikipedia.org/wiki/i
LOYN

Python https://en.wikipedia.org/wiki/Python (https://th.wikipedia.org/wiki/

programming_language) A lnneu

367

Algorithm: Convert_English_URL_to_Thai_URL
Input: A list of English Wikipedia URLs
//Example input: https://en.wikipedia.org/wiki/C_(programming_language

1. Initialize an empty list called Thai_URL_List
2. For each URL in the input list do:
3. If (URL does not contain "/wiki/"), Then Append "Invalid URL" to Thai_URL_List
4. Else Continue to the next URL
5 Extract the article title after "/wiki/" // Result: "C_(programming_language)"”
6 Replace all underscores (_) with spaces //Result: "C (programming language)"”
7 Translate the title from English to Thai using a translation service
// Result: "C (programming language)” = "amwia
8. Construct the Thai URL by concatenating: "https://th.wikipedia.org/wiki/" +
translated_title
// Result: https://th.wikipedia.org/wiki/nmwd
9. Append the constructed Thai URL to Thai_URL_List
10. Return Thai_URL_List

Figure 1 Pseudocode of Convert English URL to Thai URL.

3.3 Data extraction and transformation

The extraction procedure begins by retrieving programming language data from
Wikipedia articles in both Thai and English. The infobox is typically located on the right
side of each article page. This research explicitly targets two key relationship types:
“influenced by” and “influences.” When accessing each language’s article page, we utilize
BeautifulSoup—a Python library designed for parsing HTML web content. The extracted
data is temporarily stored in system variables before being converted into JSON format,
which provides an optimal structure for storage and subsequent processing.

Using the list of English and Thai URLs generated in the Bilingual Programming
Language URL Generation process as input for this stage, we found that 35 English-

[

language articles and 14 Thai-language articles contained infobox fields for “influenced
by” and “influences.” Figure 2 illustrates an example of related languages listed in the

infobox of the C programming language article on both English and Thai Wikipedia.

368

v = o P w o
MsarsudlamalulagansaumaAnazuiangsy UN 11 aUud 2 NRENIAY — FWAN 2568

c L]
https:/en.wikipedia.org/wiki/C_(programming_language) https://th.wikipedia.org/wiki/n1wd

Influenced by —eep aFudnswasin
B (BCPL, CPL), ALGOL 68,14l PL/I, FORTRAN U (U¥Wuoa, Inuoa), danea 68,5 usaiwuud, W
ifiierioea \ ueoa/du, wesunsu

Numerous: AMPL, AWK, csh, C++, C--, C#, = ﬂiﬁnir‘no—l‘n . -
Objective-C, D, Go, Java, JavaScript, JS++, wINUL: LeLBURLeA, 9N, Tivad, Indandd, 3
Julia, Limbo, LPC, Perl, PHP, Pike, Taundalunda, Jv5, Beuaniin-g, Und, #, Tn, 3a

Processing, Python, Rust, Seed7, V (Viang), @, 9171, 9Man3us, aulu, weand, ida, W
Vala, Verilog (HDL),8! Nim, Zig wuR, nd, Twswwads, a7, 1no3aon (oviuea)4!

Figure 2 The infobox of C language on English and Thai Wikipedia.

The JSON structure uses the Wikipedia article URL as the root object, labeled
<language article title>”, for each programming language, such as “python
(programming_language).” Each key contains a nested object with two fields: “influenced”
and “influenced by.” These fields are arrays listing programming languages that the given
language has influenced or been influenced by. This structure is well-suited for graph-
based analysis or for constructing knowledge representations of programming language

evolution.

Python infobox

Influenced by

1191
e 15 Data extraction and
transformation
1

Bw s W

Figure 3 Python language data in JSON format.

An example of Python data saved in a JSON file is shown in Figure 3. According to
its JSON structure, Python has been influenced by 14 programming languages such as C,
C++, Haskell, and Lisp, and has influenced 16 programming languages such as JavaScript,
Go, Swift, and Ruby. This JSON structure offers several advantages, including a query-
friendly format for analyzing relationship patterns, direct conversion to graph nodes and
edges, and scalability for adding new languages. The standardized format ensures

consistency across all programming languages in the dataset and facilitates cross-platform

369

compatibility, automated processing, and integration with graph visualization tools and

relationship analysis algorithms.

3.4 Cross-linguistic translation verification

Data extraction from the Thai Wikipedia infobox fields “influenced” and
“influenced by” was the prior step. However, analysis revealed that some programming
language names in these fields appeared in both Thai and English, rather than consistently
in Thai. For example, the Objective-C article shows both Thai and English names in these
fields, as illustrated in Figure 4. To address this, this paper proposes a translation dictionary
using the Google Translate API to verify consistency and completeness when creating the
Thai-language knowledge graph. By automatically translating English programming
language names from Thai Wikipedia into their Thai equivalents, this method facilitates
the construction of a knowledge graph and enables efficient visualization in subsequent

phases.

Objective-C

"influenced" with Thai
language

orary
VGocoa
"influenced by" with
English language

Figure 4 Objective-C infobox with both English and Thai language.

3.5 Import into Neodj graph database

The structured JSON data is systematically imported into the Neodj graph database
platform, which provides efficient storage and retrieval capabilities for graph-structured
data while supporting subsequent analytical operations. The import process organizes the
data into two fundamental components: programming language nodes and graph

relationships. Programming language nodes serve as the primary entities within the graph

370

ar = |
MsasudlamalulagansaumAnazuinngsu UN 11 aUui 2 ngen1Ay - B9AY 2568

structure. Each programming language is represented as a separate node with attributes
such as language names and related programming languages, ensuring that all data is
interconnected within the overall graph architecture.

Graph relationships create links between programming language nodes using two
distinct relationship types that describe the directionality among programming languages.
By establishing backward-looking dependency links between languages influenced by
earlier languages, the “influenced by” relationship traces the historical development of
programming paradigms. The “influenced” relationship, on the other hand, connects
languages that have shaped the evolution of other programming languages, creating
forward-looking impact connections that show how foundational languages continue to

influence the design and implementation of contemporary programming languages.

3.6 Knowledge graph normalization

Normalization of programming language names was implemented to remove
variations and potential ambiguities in search results caused by inconsistent naming
conventions. Many programming languages have unique names that include prefixes or
suffixes such as “programming language,” which can lead to redundant node creation and
inaccurate search results.

This process removes symbols, punctuation, and suffix phrases from
programming language names to minimize such differences. Cypher queries in the Neod;j
database are used as part of the normalization procedure to merge duplicate nodes that
represent the same programming language but differ in naming conventions. For example,
"Python_(programming_language)" is merged with "Python" to ensure consistency within
the knowledge graph. The process uses the apoc.refactor.mergeNodes function to
correctly merge nodes and prevent data duplication.

After node consolidation, duplicate relationships are eliminated using a
complementary Cypher query that identifies multiple relationships between the same pair

of nodes, retains one instance, and removes redundant connections. This systematic

371

approach ensures that the knowledge graph maintains both node uniqueness and
relationship integrity throughout the normalization process. The use of Cypher queries for

normalization and duplicate relationship removal is illustrated in Figure 5.

Normalization Remove duplicate relationships

1. MATCH (n:Language)

2. WHERE n.name ENDS WITH "_(programming_language)”

3. WITH n, replace(n.name, "_(programming_language)", "")
AS newName

MATCH (a)-[r]->(b)

WITH a, b, collect(r) as rels
WHERE size(rels) > 1

FOREACH (r IN tail(rels) | DELETE r)

tall ol o

4. MATCH (m:Language {name: newName})
5. WHEREn <>m

6. CALL apoc.refactor.mergeNodes([n, m]) YIELD node
7. RETURN node;

Figure 5 Cypher commands for knowledge graph normalization.

3.7 Knowledge graph visualization

After completing the data normalization step, we used the Neodj graph database
to create a graph-based data structure. This process demonstrates the relationships
between programming languages as structured, semantically meaningful connections
within a knowledge graph context. In particular, we applied graph traversal methods to
analyze and visualize these relationships with respect to the C programming language.

The initial analysis focused on direct relationships, providing insight into how
languages immediately affect or depend on each other. This process then became more
complex by involving multi-level traversals that explore indirect or hierarchical
relationships up to three levels deep. Such analysis enables visualization of how
programming languages have evolved over time and how they interconnect and interact
within the programming landscape. This graph-based approach proves effective in

supporting research on programming language evolution.

372

MsarsudlamalulagansaumaAnazuiangsy Un 11 atuit 2 ngenAl — BaWAN 2568

4. Results and discussion
This section presents the results derived from the methodology section, with a
focus on constructing a knowledge graph to represent relationships between programming

languages originating from primary language.

4.1 Results from data extraction on Wikipedia

A total of 35 programming languages influenced by the C programming language
were identified through data extraction. The analysis revealed multi-level influence chains,
with some extending up to three levels (e.g.,, C — C++ —> Java — Kotlin). The data
were formatted in JSON and imported into a Neodj graph database to construct a
knowledge graph of these relationships. In total, 35 English-language and 14 Thai-language

articles were found to contain infobox fields for “influenced by” and “influenced.”

4.1.1 Programming language in English

Data describing influences of programming languages related to C was obtained
via the “influenced by” and “influenced” fields of infoboxes for 35 English Wikipedia
articles about C and descendant languages and used to build a hierarchy model of the
layered influences of the C programming language on modern programming languages.

Programming languages that were influenced by C were classified into three levels,
as shown in Table 2. Level 1 consisted of C-influenced languages, totaling 31 languages.
Level 2 consisted of languages influenced by Level 1 languages, totaling 68 languages.
Level 3 consisted of the next generation of languages influenced by Level 2 languages,
totaling 77 languages. After deducting duplicates across the three levels, a total of 93
unique programming languages were identified as being influenced by C, whether directly

or indirectly.

373

Table 2 Influence Levels of C-family programming languages from English Wikipedia.

Number of
Influence Level Examples of programming language
Languages
Level 1 — Directly
31 C++, Objective-C, Perl, Pike, JavaScript, D
influenced by C
Level 2 — Influenced
68 Java, C#, Swift, PHP, Rust
by Level 1
Level 3 — Influenced
7 Kotlin, TypeScript, Hack, Dart, Nim, CoffeeScript
by Level 2
Total (Unique
93 -

Languages, Levels 1-3)

4.1.2 Programming language in Thai

The analysis categorized the influenced Thai programming languages into three

levels according to their relation to C. The levels of influence are summarized in Table 3.

Level 1 comprises languages directly influenced by C in either design or syntax, totaling

21 languages. Level 2 contains languages that were influenced by Level 1 languages, which

contain essential elements of C and have developed them further. The total number of

Level 2 languages was 41. Level 3 contains languages directly influenced by or derived

from Level 2 languages. A total of 37 languages fell under Level 3. After removing all

duplicates that occurred across levels, 60 technologies constituted programming

languages in Thai that were influenced directly or indirectly by C.

374

o pr w ol
MsasudlamalulagansaumAnazuiangsu UM 11 aUud 2 ngenIAY - FAY 2568

Table 3 Influence Levels of C-family programming languages from Thai Wikipedia.

Number of
Influence Level Examples of programming language
Languages

FNSANSE (C++), DaULRNTIN-& (Objective-
Level 1 — Directly . . .
21 languages Q), Wiisa (Perl), twn (Pike), 911@A3UR
influenced by C -

(JavaScript), # (D)

Level 2 — Influenced 9791 (Java), 3v15U (CH), el (PHP), a8
41 languages
by Level 1 (Rust), g9 (Lua)

Tandu (Kotlin), ndan3ud (TypeScript),
Level 3 — Influenced B . o .
37 languages wan (Hack), A58 (Dart), Asnwaasun
by Level 2

(CoffeeScript)

Total (Unique
60 languages
Languages, Levels 1- -
) (non-duplicated)
3

4.2 Results from knowledge graph implementation in Neodj

The programming language knowledge graph in Neodj provides a bilingual database
of English and Thai resources. The programming languages were stored as nodes in the
graph and then connected using two directed relationship types: “influenced by” and
“influenced,” forming a network showing the development and influence of programming
languages. The graph was navigated and queried using the Cypher query language. Figure
6 displays the first-level influence graph of the C programming language based on English
Wikipedia data, while Figure 7 is based on Thai Wikipedia. An example of the second-level
influence graph of C from Thai Wikipedia is shown in Figure 8.

The experiment in constructing a knowledge graph to illustrate the relationships
among programming languages influenced by C-family programming languages was

conducted successfully. The results demonstrated that the Neodj graph database is

375

capable of efficiently processing and retrieving data. This confirms its suitability for
representing complex relational structures such as programming language influence
networks. Utilizing the Cypher query language enables fast and accurate data access,
allowing comprehensive representation of language relationships across all nodes at

various levels.

Figure 6 First-level Influence Graph of the C Programming Language from English

Wikipedia.

376

= wr =) |
MsarsndlamalulagansaumaAnazuiangsy UM 11 aUud 2 ngunIAY - FWIAY 2568

MATCH (c:languageTH {name: "§"})-[r]-(connected) RETURN DISTINCT c, r, connected o e

Graph = Table RAW &) Results overview

Nodes (30) N
ooin e &
Tn (30) LanguageTH (30)
Relations hips (29)
g3 wia Auoa/y)
u

Asdndwasio (21)

oLy

iy

Figure 7 First-level Influence Graph of the C Programming Language from Thai
Wikipedia
This experiment also revealed the occurrence of redundant relationships between
nodes, with some programming languages appearing as both “influenced by” and
“influenced” within the same node. Consequently, the graph exhibited some circular
relationships, which contributed to its increased complexity. To avoid this in the future,
the system was developed to ensure that relationships are stored in one direction only,
reducing structural complexity and improving clarity in presenting data for the analysis of

programming language evolution.

4.3 Evaluation of the Knowledge Graph with Quantitative Analysis

The research aimed to evaluate the effectiveness of graph designs representing
relationships among programming languages by analyzing key structural components—
node connectivity, edge layout, and data layering—and their impact on user
comprehension. A total of 50 participants with varying levels of IT experience (none, basic,

intermediate, or experienced) completed a questionnaire, rating five different graph

377

formats using a five-point Likert scale (5 = strongly agree, 1 = strongly disagree) in response

to the same evaluation question.

tamon & [P Results overview

Nodes (59)
e - - “(59) LanguageTH (59)
e o Relationships (86)
et somes o *(86)

y £ Asdvdnasio (57)

o 4
sugae = - T

4

E
£
)

Figure 8 Second-level Influence Graph of the C Programming Language from Thai
Wikipedia.

The quantitative analysis of the responses involved calculations of mean and
standard deviation to evaluate trends and the consistency of responses, as shown in Table
4. The graph created using the methodology proposed by this study had the highest
average score (4.150) and the lowest standard deviation (1.137), and was therefore rated
as having good clarity and interpretive consistency. The graph appears to be effective due
to its strong organizational structure and hierarchy of nodes, the standardized directional

links, and the use of distinct colors to differentiate the dataset.

378

MsarsudlamalulagansaumaAnazuiangsy Un 11 atuit 2 ngenAl — BaWAN 2568

Table 4 Mean scores and standard deviations of user ratings.

Standard Deviation

Graph Mean Score
(SD)
1 2.650 1.309
2 4.150 1.137
3 3.100 1.447
a4 2.400 1.231
5 2.950 1.191

Conversely, the lowest-rated graph had a cluttered layout, with overlapping links
and no clear hierarchy, which hindered comprehension. Overall, the analysis revealed that
simple, organized, and logically grouped designs significantly improved the communication
of complex relationships. These results support Graph Comprehension Theory, which
highlights the importance of visual simplicity, clear navigation paths, and minimizing link

complexity to enhance interpretability.

5. Conclusions

This paper proposes the development of a knowledge graph designed using a
Neodj graph database to represent and study influence relationships among programming
languages that originated from C. The process involved the systematic extraction of data
from Wikipedia, transformation of the data into a structured JSON format, and exploration
as a graph. The resulting system, built using the Neodj knowledge graph, showed improved
searchability of connected information. The Neodj knowledge graph was more effective
than a typical manual approach in terms of search accuracy and response time.

By using the Cypher query language, users of the graph were able to query multi-
level inheritance and influence relationships that provided relevant context to help
connect the influence relationships to the development of programming languages. The
architecture of the system is modular and extensible, allowing for future integration of

data from additional sources without changing the structure of the original knowledge

379

graph. This method is not limited to programming language impact and could be
employed in other applications involving large datasets used for modeling complex
relational information. The results support the viability of graph models for effectively
representing and interacting with interconnected information as a research tool in
computing.

Future work should focus on expanding the knowledge graph with data beyond
Wikipedia—such as GitHub repositories, academic papers, and official documentation—to
better illustrate connections between programming languages. Deep learning techniques
could support predictive modeling of future language influences and automate
relationship extraction from text. The modular design also allows for extension to
frameworks, libraries, development tools, and educational sources (e.g., online courses,
tutorials, code snippets). Finally, the approach should be validated in another domain
(e.g., scientific research networks or tech innovation ecosystems) to demonstrate cross-

domain applicability.

References

Bi, Z., Chen, J,, Jiang, Y., Xiong, F., Guo, W., Chen, H., & Zhang, N. (2024). CodeKGC: Code
language model for generative knowledge graph construction. ACM
Transactions on Asian and Low-Resource Language Information Processing, 23(3),
Article 1-16.

Chen, X,, Jia, S., & Xiang, Y. (2020). A review: Knowledge reasoning over knowledge
graph. Expert Systems with Applications, 141, 112948.

Cheng, Y. (2022, December). A learning path recommendation method for knowledge
graph of professional courses. In 2022 [EEE 22nd International Conference on
Software Quality, Reliability, and Security Companion (QRS-C) (pp. 469-476).

Dorpinghaus, J., & Stefan, A. (2020). Semantic graph queries on linked data in
knowledge graphs. In The Workshop on Computational Optimization (pp. 81-
102). Springer International Publishing.

380

ar = w o
MsasudlamalulagansaumAnazuiangsy UM 11 aUud 2 ngenIAY - FAN 2568

Ferencz, K., Rigo, E., Domokos, J., & Kovacs, L. (2024). Implementation of network data
analysis using the Neodj graph database. Acta Universitatis Sapientiae,
Electrical and Mechanical Engineering, 16(2024), 162-176.

Francis, N., Green, A., Guagliardo, P., Libkin, L., Lindaaker, T., Marsault, V., Plantikow, S.,
Rydberg, M., Selmer, P., & Taylor, A. (2018). Cypher: An evolving query language
for property graphs. In Proceedings of the 2018 International Conference on
Management of Data (SIGMOD ’18) (pp. 1433-1445). Association for Computing
Machinery. https://doi.org/10.1145/3183713.3190657

Holzschuher, F., & Peinl, R. (2013). Performance of graph query languages:
Comparison of Cypher, Gremlin and native access in Neodj. In Proceedings of
the Joint EDBT/ICDT 2013 Workshops (pp. 195-204). ACM.

Ji, S., Pan, S., Cambria, E., Marttinen, P., & Yu, P. S. (2021). A survey on knowledge
graphs: Representation, acquisition, and applications. /EEE transactions on
neural networks and learning systems, 33(2), 494-514.

Meyerovich, L. A., & Rabkin, A. S. (2013, October). Empirical analysis of programming
language adoption. In Proceedings of the 2013 ACM SIGPLAN international
conference on Object oriented programming systems languages &
applications (pp. 1-18)

Pachera, A., Palmiotto, M., Bonifati, A., & Mauri, A. (2024). What if: Causal analysis with
graph databases. arXiv preprint arXiv:2412.13965. https://arxiv.org/abs/2412.13965

Qu, K, Li, K. C., Wong, B. T. M., Wu, M. M. F., & Liu, M. (2024). A survey of knowledge
graph approaches and applications in education. Electronics, 13(13), 2537.
https://doi.org/10.3390/electronics13132537

Valverde, S., & Solé, R. V. (2015). Punctuated equilibrium in the large-scale evolution
of programming languages. Journal of the Royal Society Interface, 12(107),
20150249. https://doi.org/10.1098/rsif.2015.0249

381

https://doi.org/10.1145/3183713.3190657
https://arxiv.org/abs/2412.13965
https://doi.org/10.3390/electronics13132537
https://doi.org/10.1098/rsif.2015.0249

Wang, Q., Mao, Z., Wang, B., & Guo, L. (2017). Knowledge graph embedding: A survey
of approaches and applications. /EEE transactions on knowledge and data

engineering, 29(12), 2724-2743.

382

