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Abstract 

Understanding the evolutionary relationships between programming languages is 
crucial for software development, education, and research. However, current research 
lacks comprehensive tools for analyzing causal relationships and influence patterns across 
the diverse programming landscape. This study proposes a method for creating a causal 
knowledge graph that illustrates the evolution of programming languages by utilizing 
automated data collection and graph modeling to identify different levels of influence. 
The system processes structured English and Thai Wikipedia infobox data, analyzing and 
transforming it into a graph format using Neo4j. Graph visualization is performed using the 
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Cypher Query Language. The knowledge graph presents C-influenced programming 
languages across three evolutionary stages, supporting both English and Thai. Key features 
include displaying influence paths and illustrating languages with similar structures. The 
results demonstrate that graph-based representations effectively capture the evolution of 
programming languages, enabling learners, educators, and researchers to explore inter-
language relationships. 
 
Keywords: Causal Knowledge Graph; Programming Language Evolution; Wikipedia Infobox 
Data; Neo4j Graph 
 
บทคัดย่อ 

การความทำความเข้าใจในความสัมพันธ์เชิงวิวัฒนาการระหว่างภาษาโปรแกรมเป็นสิ่งสำคัญต่อ
การพัฒนาซอฟต์แวร์ การศึกษา และงานวิจัย อย่างไรก็ตาม งานวิจัยในปัจจุบันยังขาดเครื ่องมือที่
ครอบคลุมสำหรับการวิเคราะห์ความสัมพันธ์เชิงสาเหตุและรูปแบบของอิทธิพลในภูมิทัศน์ของภาษา
โปรแกรมที่มีความหลากหลาย งานวิจัยนี้เสนอวิธีการสร้างกราฟความรู้เชิงสาเหตุที่แสดงให้เห็นถึง
วิวัฒนาการของภาษาโปรแกรม โดยใช้การเก็บข้อมูลอัตโนมัติและการจำลองข้อมูลในรูปแบบกราฟ เพ่ือ
ค้นหาระดับของอิทธิพลในแต่ละชั้น ระบบนี้ประมวลผลข้อมูลอินโฟบ็อกซ์มีโครงสร้างจากวิกิพีเดีย
ภาษาอังกฤษและภาษาไทย ซึ่งนำมาวิเคราะห์และแปลงเป็นกราฟด้วยฐานข้อมูลนีโอโฟร์เจ พร้อมการ
แสดงผลกราฟผ่านโดยใช้ภาษาคิวรีไซเฟอร์ กราฟความรู้ที่ได้แสดงความสัมพันธ์ของภาษาที่ได้รับอิทธิพล
จากภาษาซีในสามระดับของการพัฒนา และรองรับทั้งภาษาอังกฤษและภาษาไทย จุดเด่นของระบบนี้ 
ได้แก่ การแสดงเส้นทางของอิทธิพลระหว่างภาษา และการจัดกลุ่มภาษาที่มีโครงสร้างใกล้เคียง กัน ผล
การศึกษาแสดงให้เห็นว่าการใช้กราฟช่วยสะท้อนวิวัฒนาการของภาษาโปรแกรมได้อย่างมีประสิทธิภาพ 
และเป็นเครื่องมือที่มีประโยชน์สำหรับผู้เรียน ครูผู้สอน และนักวิจัยในการสำรวจความสัมพันธ์ระหว่าง
ภาษาโปรแกรมต่าง ๆ 
 
คำสำคัญ: กราฟความรู้เชิงเหตุและผล; วิวัฒนาการของภาษาโปรแกรม; ข้อมูลอินโฟบ็อกซ์จากวิกิพีเดีย; 
กราฟนีโอโฟร์เจ 
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1. Introduction 
 Understanding the evolution of programming languages is crucial for studying 
software development and technology. It enables researchers and students to effectively 
select appropriate languages to learn (Meyerovich & Rabkin, 2013). Valverde and Solé 
(2015) studied the evolution of programming languages based on adoption patterns and 
explored the relationship between evolutionary theory and programming language 
development. Systematic literature reviews have also examined the applications of 
knowledge graphs in software engineering contexts (Chen et al., 2020; Wang et al., 2017). 
However, a gap remains in creating comprehensive visual representations of programming 
language relationships using structured data. 

This research aims to develop a knowledge graph that illustrates the relationships 
among various programming languages. Wikipedia serves as a reliable source under free 
documentation licenses, allowing for the distribution and modification of content. We 
propose a methodology that involves collecting data on C-based programming languages 
by extracting information from Wikipedia infoboxes. Data extraction is performed on both 
English and Thai Wikipedia, focusing on the "influenced by" and "influenced" fields. 
Additionally, a dictionary is used to ensure data consistency. 

The knowledge graph is constructed using Neo4j, a graph database system that 
efficiently manages interconnected data in the form of nodes and relationships. The 
Cypher Query Language is used to manipulate and query graph data. This method 
demonstrates the efficiency of the graph-based approach in achieving completeness and 
eliminating redundancies. The resulting system offers a valuable tool for examining 
programming language relationships and creating knowledge graphs from publicly 
available data sources. 
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2. Literature reviews 
2.1 Knowledge Graph Construction and Modeling 

Knowledge graphs are graph-based data structures that represent knowledge units 
through nodes and relationships, where nodes represent entities and relationships indicate 
connections via semantic edges (Ji et al., 2021). This approach enables systems to 
understand contextual overviews while supporting automated decision-making and 
analytical capabilities. Knowledge graphs transform raw data into meaningful knowledge, 
making them fundamental to artificial intelligence and semantic web technologies (Cheng, 
2022). Their construction involves entity recognition, relationship identification, and 
semantic integration from heterogeneous data sources. 

Cheng (2022) demonstrated the effectiveness of knowledge graphs in educational 
curricula by describing knowledge points and their interconnections, allowing students to 
visualize content overviews more clearly. Qu et al. (2024) analyzed 48 publications from 
2011 to 2023, revealing a rise in educational knowledge graph research incorporating 
quantitative evaluation methods. Bi et al. (2024) introduced CodeKGC, showing that code-
based language models exhibit superior structured reasoning in knowledge graph 
construction for technical domains compared to natural language models. 

Domain-specific knowledge graph construction presents unique challenges, 
particularly in technical fields where standard principles may not be directly applicable. 
Since programming languages contain specialized terminology not found in general 
dictionaries, domain-specific bilingual dictionaries are essential for both teaching and 
automatic language processing applications. 

 
2.2 Causal Knowledge Graphs and Query Language Integration 

Graph databases such as Neo4j have significantly enhanced the comprehension 
and analysis of complex datasets composed of interconnected elements. Its native graph 
architecture enables users to efficiently navigate and explore multi-level relationships. 
According to Francis et al. (2018), the Cypher query language was introduced to explicitly 
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express complex graph patterns. In addition, Holzschuher and Peinl (2013) demonstrated 
that Cypher is more readable and performs better than SQL, especially for multi-hop 
queries in applications such as programming language genealogy. 

Graph-based queries are also applicable to large analytical knowledge graphs. 
Ferencz et al. (2024) demonstrated the efficiency of Neo4j in analyzing large social or 
computer network datasets. Dörpinghaus and Stefan (2020) proposed semantic queries on 
biomedical graphs and showed optimizations through graph techniques and embeddings, 
achieving performance gains of up to 3,839×. This evidence highlights the effectiveness of 
graph databases in managing context-rich and structured data for large-scale knowledge 
discovery. 

More recently, efforts have been made to integrate causal inference into property 
graph models. Pachera et al. (2024) proposed several extensions that enable causal 
reasoning, including hypernodes, structural equations, and enhancements to query 
languages such as Cypher and GQL. They introduced a framework for querying causal 
paths, confounders, and interventions based on do-calculus. 

 
3. Methodology 
3.1 System workflow and overview 
 The workflow begins with identifying a list of C-family programming languages on 
English Wikipedia and algorithmically generating corresponding Thai Wikipedia URLs 
through automated translation. BeautifulSoup is employed as the web scraping library to 
retrieve structured infobox data, targeting the "influenced by" and "influences" relationship 
fields, and converting the extracted data into a standardized JSON format. The system 
ensures cross-linguistic consistency through automated deduplication algorithms and the 
integration of the Google Translate API for Thai language localization. This is followed by 
systematic import into the Neo4j graph database, where programming languages are 
represented as nodes with directional influence relationships. Finally, Cypher query-based 
normalization consolidates duplicate nodes and eliminates naming inconsistencies, 
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enabling comprehensive analysis of programming language evolution patterns and the 
exploration of hierarchical influence structures within the programming language domain. 
The system pipeline consists of six phases: (1) data extraction from Wikipedia infoboxes, 
(2) data extraction and transformation, (3) cross-linguistic translation verification, (4) Import 
into Neo4j graph database, (5) Knowledge graph normalization, and (6) Knowledge graph 
visualization. 
 
3.2 Data extraction from Wikipedia infoboxes 

This section presents a methodology for extracting programming language 
relationship data from Wikipedia infobox across bilingual content (English and Thai). The 
outcome of this process is a comprehensive list of URLs for C-family programming 
languages in both English and Thai.   The data extraction from Wikipedia infoboxes consists 
of two sub-processes: (1) bilingual programming language URL generation and (2) Data 
extraction and transformation. 
3.2.1 Bilingual programming language URL generation 

The target language corpus was constructed based on a list of C-family 
programming languages from Wikipedia. The programming language list serves as our data 
source for relational analysis, providing unified programming language names and URLs. 
Two patterns were observed in English URLs: they either use the programming language 
name directly or append the suffix “_(programming_language).” Similarly, two such 
patterns exist in Thai URLs: they either use the programming language name or add the 
prefix “ภาษา” (meaning "language") before the name. 

To enable bilingual analysis, Thai Wikipedia URLs were generated from their English 
counterparts using a URL conversion algorithm. The Convert_English_URL_to_Thai_URL 
algorithm extracts article titles from English URLs, performs English-to-Thai translation, and 
reconstructs the URLs according to Thai Wikipedia formatting standards. Each input URL is 
first checked for the presence of the “/wiki/” segment. If found, the remaining segment, 
representing the article path, is extracted. Underscores are replaced with spaces, and the 
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resulting text is translated into Thai using the Google Translate API. The translated title is 
then reformatted according to Wikipedia URL standards to construct the final Thai URL. 

This method facilitates bilingual URL mapping and supports multilingual data 
integration by generating Thai Wikipedia URLs directly from English sources. The 
pseudocode for this algorithm is shown in Figure 1, and Table 1 presents examples of 
English and Thai URLs generated by this method. 

Table 1 Example of English-to-Thai URL. 

Programmin
g language 

English URL Thai URL 

C https://en.wikipedia.org/wiki/C_(progra
mming_language) 

https://th.wikipedia.org/wiki/
ภาษาซี 

Java https://en.wikipedia.org/wiki/Java_(pro
gramming_language) 

https://th.wikipedia.org/wiki/
ภาษาจาวา 

PHP https://en.wikipedia.org/wiki/PHP https://th.wikipedia.org/wiki/พี
เอชพี 

Python https://en.wikipedia.org/wiki/Python_(
programming_language) 

https://th.wikipedia.org/wiki/
ภาษาไพทอน 
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Figure 1 Pseudocode of Convert_English_URL_to_Thai_URL. 
3.3 Data extraction and transformation  

The extraction procedure begins by retrieving programming language data from 
Wikipedia articles in both Thai and English. The infobox is typically located on the right 
side of each article page. This research explicitly targets two key relationship types: 
“influenced by” and “influences.” When accessing each language’s article page, we utilize 
BeautifulSoup—a Python library designed for parsing HTML web content. The extracted 
data is temporarily stored in system variables before being converted into JSON format, 
which provides an optimal structure for storage and subsequent processing. 

Using the list of English and Thai URLs generated in the Bilingual Programming 
Language URL Generation process as input for this stage, we found that 35 English-
language articles and 14 Thai-language articles contained infobox fields for “influenced 
by” and “influences.” Figure 2 illustrates an example of related languages listed in the 
infobox of the C programming language article on both English and Thai Wikipedia. 
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Figure 2 The infobox of C language on English and Thai Wikipedia. 

The JSON structure uses the Wikipedia article URL as the root object, labeled 
<language_article_title>”, for each programming language, such as “python_ 
(programming_language).” Each key contains a nested object with two fields: “influenced” 
and “influenced by.” These fields are arrays listing programming languages that the given 
language has influenced or been influenced by. This structure is well-suited for graph-
based analysis or for constructing knowledge representations of programming language 
evolution. 

 
Figure 3 Python language data in JSON format. 

 
An example of Python data saved in a JSON file is shown in Figure 3. According to 

its JSON structure, Python has been influenced by 14 programming languages such as C, 
C++, Haskell, and Lisp, and has influenced 16 programming languages such as JavaScript, 
Go, Swift, and Ruby. This JSON structure offers several advantages, including a query-
friendly format for analyzing relationship patterns, direct conversion to graph nodes and 
edges, and scalability for adding new languages. The standardized format ensures 
consistency across all programming languages in the dataset and facilitates cross-platform 
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compatibility, automated processing, and integration with graph visualization tools and 
relationship analysis algorithms. 

 
3.4 Cross-linguistic translation verification 

Data extraction from the Thai Wikipedia infobox fields “influenced” and 
“influenced by” was the prior step. However, analysis revealed that some programming 
language names in these fields appeared in both Thai and English, rather than consistently 
in Thai. For example, the Objective-C article shows both Thai and English names in these 
fields, as illustrated in Figure 4. To address this, this paper proposes a translation dictionary 
using the Google Translate API to verify consistency and completeness when creating the 
Thai-language knowledge graph. By automatically translating English programming 
language names from Thai Wikipedia into their Thai equivalents, this method facilitates 
the construction of a knowledge graph and enables efficient visualization in subsequent 
phases. 

 

Figure 4 Objective-C infobox with both English and Thai language. 

3.5 Import into Neo4j graph database 
The structured JSON data is systematically imported into the Neo4j graph database 

platform, which provides efficient storage and retrieval capabilities for graph-structured 
data while supporting subsequent analytical operations. The import process organizes the 
data into two fundamental components: programming language nodes and graph 
relationships. Programming language nodes serve as the primary entities within the graph 
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structure. Each programming language is represented as a separate node with attributes 
such as language names and related programming languages, ensuring that all data is 
interconnected within the overall graph architecture. 

Graph relationships create links between programming language nodes using two 
distinct relationship types that describe the directionality among programming languages. 
By establishing backward-looking dependency links between languages influenced by 
earlier languages, the “influenced by” relationship traces the historical development of 
programming paradigms. The “influenced” relationship, on the other hand, connects 
languages that have shaped the evolution of other programming languages, creating 
forward-looking impact connections that show how foundational languages continue to 
influence the design and implementation of contemporary programming languages. 

 
3.6 Knowledge graph normalization 
 Normalization of programming language names was implemented to remove 
variations and potential ambiguities in search results caused by inconsistent naming 
conventions. Many programming languages have unique names that include prefixes or 
suffixes such as “programming language,” which can lead to redundant node creation and 
inaccurate search results. 
 This process removes symbols, punctuation, and suffix phrases from 
programming language names to minimize such differences. Cypher queries in the Neo4j 
database are used as part of the normalization procedure to merge duplicate nodes that 
represent the same programming language but differ in naming conventions. For example, 
"Python_(programming_language)" is merged with "Python" to ensure consistency within 
the knowledge graph. The process uses the apoc.refactor.mergeNodes function to 
correctly merge nodes and prevent data duplication. 
 After node consolidation, duplicate relationships are eliminated using a 
complementary Cypher query that identifies multiple relationships between the same pair 
of nodes, retains one instance, and removes redundant connections. This systematic 
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approach ensures that the knowledge graph maintains both node uniqueness and 
relationship integrity throughout the normalization process. The use of Cypher queries for 
normalization and duplicate relationship removal is illustrated in Figure 5. 
 

 
 

Figure 5 Cypher commands for knowledge graph normalization.  
 

3.7 Knowledge graph visualization 
After completing the data normalization step, we used the Neo4j graph database 

to create a graph-based data structure. This process demonstrates the relationships 
between programming languages as structured, semantically meaningful connections 
within a knowledge graph context. In particular, we applied graph traversal methods to 
analyze and visualize these relationships with respect to the C programming language.
 The initial analysis focused on direct relationships, providing insight into how 
languages immediately affect or depend on each other. This process then became more 
complex by involving multi-level traversals that explore indirect or hierarchical 
relationships up to three levels deep. Such analysis enables visualization of how 
programming languages have evolved over time and how they interconnect and interact 
within the programming landscape. This graph-based approach proves effective in 
supporting research on programming language evolution.  
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4. Results and discussion 
This section presents the results derived from the methodology section, with a 

focus on constructing a knowledge graph to represent relationships between programming 
languages originating from primary language.  

 
4.1 Results from data extraction on Wikipedia 
 A total of 35 programming languages influenced by the C programming language 
were identified through data extraction. The analysis revealed multi-level influence chains, 

with some extending up to three levels (e.g., C → C++ → Java → Kotlin). The data 
were formatted in JSON and imported into a Neo4j graph database to construct a 
knowledge graph of these relationships. In total, 35 English-language and 14 Thai-language 
articles were found to contain infobox fields for “influenced by” and “influenced.” 
 
4.1.1 Programming language in English 

Data describing influences of programming languages related to C was obtained 
via the “influenced by” and “influenced” fields of infoboxes for 35 English Wikipedia 
articles about C and descendant languages and used to build a hierarchy model of the 
layered influences of the C programming language on modern programming languages. 

Programming languages that were influenced by C were classified into three levels, 
as shown in Table 2. Level 1 consisted of C-influenced languages, totaling 31 languages. 
Level 2 consisted of languages influenced by Level 1 languages, totaling 68 languages. 
Level 3 consisted of the next generation of languages influenced by Level 2 languages, 
totaling 77 languages. After deducting duplicates across the three levels, a total of 93 
unique programming languages were identified as being influenced by C, whether directly 
or indirectly. 
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Table 2 Influence Levels of C-family programming languages from English Wikipedia. 

Influence Level 
Number of 
Languages 

Examples of programming language 

Level 1 — Directly 
influenced by C 

31 C++, Objective-C, Perl, Pike, JavaScript, D 

Level 2 — Influenced 
by Level 1 

68 Java, C#, Swift, PHP, Rust 

Level 3 — Influenced 
by Level 2 

77 Kotlin, TypeScript, Hack, Dart, Nim, CoffeeScript 

Total (Unique 
Languages, Levels 1–3) 

93 - 

 
4.1.2 Programming language in Thai 

The analysis categorized the influenced Thai programming languages into three 
levels according to their relation to C. The levels of influence are summarized in Table 3. 
Level 1 comprises languages directly influenced by C in either design or syntax, totaling 
21 languages. Level 2 contains languages that were influenced by Level 1 languages, which 
contain essential elements of C and have developed them further. The total number of 
Level 2 languages was 41. Level 3 contains languages directly influenced by or derived 
from Level 2 languages. A total of 37 languages fell under Level 3. After removing all 
duplicates that occurred across levels, 60 technologies constituted programming 
languages in Thai that were influenced directly or indirectly by C. 
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Table 3 Influence Levels of C-family programming languages from Thai Wikipedia. 

Influence Level 
Number of 
Languages 

Examples of programming language 

Level 1 — Directly 
influenced by C 

21 languages 
ซีพลัสพลัส (C++), อ็อบเจกทีฟ-ซี (Objective-
C), เพิร์ล (Perl), ไพก์ (Pike), จาวาสคริปต์ 
(JavaScript), ดี (D) 

Level 2 — Influenced 
by Level 1 

41 languages 
จาวา (Java), ชีชาร์ป (C#), พีเอชพี (PHP), รัสต์ 
(Rust), ลูอา (Lua) 

Level 3 — Influenced 
by Level 2 

37 languages 
โคทลิน (Kotlin), ไทป์สคริปต์ (TypeScript), 
แฮ็ก (Hack), ดาร์ต (Dart), คอฟฟ่ีสคริปต์ 
(CoffeeScript) 

Total (Unique 
Languages, Levels 1–
3) 

60 languages 
(non-duplicated) 

- 

 
4.2 Results from knowledge graph implementation in Neo4j  

The programming language knowledge graph in Neo4j provides a bilingual database 
of English and Thai resources. The programming languages were stored as nodes in the 
graph and then connected using two directed relationship types: “influenced by” and 
“influenced,” forming a network showing the development and influence of programming 
languages. The graph was navigated and queried using the Cypher query language. Figure 
6 displays the first-level influence graph of the C programming language based on English 
Wikipedia data, while Figure 7 is based on Thai Wikipedia. An example of the second-level 
influence graph of C from Thai Wikipedia is shown in Figure 8. 

The experiment in constructing a knowledge graph to illustrate the relationships 
among programming languages influenced by C-family programming languages was 
conducted successfully. The results demonstrated that the Neo4j graph database is 
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capable of efficiently processing and retrieving data. This confirms its suitability for 
representing complex relational structures such as programming language influence 
networks. Utilizing the Cypher query language enables fast and accurate data access, 
allowing comprehensive representation of language relationships across all nodes at 
various levels. 

 
  

Figure 6 First-level Influence Graph of the C Programming Language from English 
Wikipedia. 
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Figure 7 First-level Influence Graph of the C Programming Language from Thai 
Wikipedia 

This experiment also revealed the occurrence of redundant relationships between 
nodes, with some programming languages appearing as both “influenced by” and 
“influenced” within the same node. Consequently, the graph exhibited some circular 
relationships, which contributed to its increased complexity. To avoid this in the future, 
the system was developed to ensure that relationships are stored in one direction only, 
reducing structural complexity and improving clarity in presenting data for the analysis of 
programming language evolution. 

 
4.3 Evaluation of the Knowledge Graph with Quantitative Analysis 

The research aimed to evaluate the effectiveness of graph designs representing 
relationships among programming languages by analyzing key structural components—
node connectivity, edge layout, and data layering—and their impact on user 
comprehension. A total of 50 participants with varying levels of IT experience (none, basic, 
intermediate, or experienced) completed a questionnaire, rating five different graph 
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formats using a five-point Likert scale (5 = strongly agree, 1 = strongly disagree) in response 
to the same evaluation question. 

 

Figure 8 Second-level Influence Graph of the C Programming Language from Thai 
Wikipedia. 

The quantitative analysis of the responses involved calculations of mean and 
standard deviation to evaluate trends and the consistency of responses, as shown in Table 
4. The graph created using the methodology proposed by this study had the highest 
average score (4.150) and the lowest standard deviation (1.137), and was therefore rated 
as having good clarity and interpretive consistency. The graph appears to be effective due 
to its strong organizational structure and hierarchy of nodes, the standardized directional 
links, and the use of distinct colors to differentiate the dataset. 
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Table 4 Mean scores and standard deviations of user ratings. 

Graph Mean Score 
Standard Deviation 

(SD) 

1 2.650 1.309 
2 4.150 1.137 

3 3.100 1.447 

4 2.400 1.231 
5 2.950 1.191 

Conversely, the lowest-rated graph had a cluttered layout, with overlapping links 
and no clear hierarchy, which hindered comprehension. Overall, the analysis revealed that 
simple, organized, and logically grouped designs significantly improved the communication 
of complex relationships. These results support Graph Comprehension Theory, which 
highlights the importance of visual simplicity, clear navigation paths, and minimizing link 
complexity to enhance interpretability. 

 
5. Conclusions 

This paper proposes the development of a knowledge graph designed using a 
Neo4j graph database to represent and study influence relationships among programming 
languages that originated from C. The process involved the systematic extraction of data 
from Wikipedia, transformation of the data into a structured JSON format, and exploration 
as a graph. The resulting system, built using the Neo4j knowledge graph, showed improved 
searchability of connected information. The Neo4j knowledge graph was more effective 
than a typical manual approach in terms of search accuracy and response time. 

By using the Cypher query language, users of the graph were able to query multi-
level inheritance and influence relationships that provided relevant context to help 
connect the influence relationships to the development of programming languages. The 
architecture of the system is modular and extensible, allowing for future integration of 
data from additional sources without changing the structure of the original knowledge 
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graph. This method is not limited to programming language impact and could be 
employed in other applications involving large datasets used for modeling complex 
relational information. The results support the viability of graph models for effectively 
representing and interacting with interconnected information as a research tool in 
computing. 

Future work should focus on expanding the knowledge graph with data beyond 
Wikipedia—such as GitHub repositories, academic papers, and official documentation—to 
better illustrate connections between programming languages. Deep learning techniques 
could support predictive modeling of future language influences and automate 
relationship extraction from text. The modular design also allows for extension to 
frameworks, libraries, development tools, and educational sources (e.g., online courses, 
tutorials, code snippets). Finally, the approach should be validated in another domain 
(e.g., scientific research networks or tech innovation ecosystems) to demonstrate cross-
domain applicability. 
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