บทที่ 2

ทบทวนวรรณกรรมและงานวิจัยที่เกี่ยวข้อง

การประยุกต์ใช้ข้อมูลรีโมทเซ็นซิ่งและระบบสารสนเทศภูมิศาสตร์ สำหรับงานระบาค วิทยาของโรคมาลาเรีย พื้นที่จังหวัดอุบลราชธานี และจังหวัดศรีสะเกษ ได้มีการทบทวน วรรณกรรมและงานวิจัยที่เกี่ยวข้อง เพื่อเป็นแนวทางในการศึกษาครั้งนี้ดังนี้

- 2.1 มาถาเรีย
- 2.2 ระบาดวิทยาของโรคมาลาเรีย
- 2.3 แนวทางการควบคุมโรคมาลาเรีย
- 2.4 รีโมทเซ็นซึ่งและระบบสารสนเทศภูมิศาสตร์
- 2.5 งานวิจัยที่เกี่ยวข้อง

2.1 มาถาเรีย

มาลาเรียเป็นโรคที่เกิดขึ้นในภูมิภาคเขตร้อน มียุงกันปล่อง (Anophelines) เท่านั้นที่เป็น พาหะโรคมาลาเรีย มีรายงานพบยุงกันปล่องประมาณ 422 ชนิด (Species) ทั่วโลก แต่ ยุงกันปล่องเพียง 68 ชนิดที่เป็นยุงพาหะของโรคมาลาเรีย ในจำนวนนี้พบว่ามี 40 ชนิดที่เป็นยุง พาหะหลัก (Gilles and Warrel, 1993) ในประเทศไทย มีรายงานพบยุงกันปล่อง จำนวน 72 ชนิด ในจำนวนนี้มียุงกันปล่องที่พิสูจน์แล้วพบว่าเป็นยุงพาหะหลักเพียง 3 ชนิด ที่มีความพร้อมต่อการ รับเชื้อมาลาเรียสูง (High receptivity) ดังนี้

ยุงกันปล่องชนิคมินิมัส (Anopheles minimus s.l.)

ยุงกั้นปล่องชนิดใครัส (An. Dirus s.l.)

ยุงกันปล่องชนิดแมกคูลาตัส (An. Maculates complex)

ยุงพาหะรอง (Secondary Vector)

ได้แก่ยุงที่สงสัยว่าอาจเป็นพาหะนำเชื้อใช้มาลาเรียได้ มีความพร้อมต่อการรับ เชื้อมาลาเรียปานกลาง (Moderate receptivity) ตรวจพบ Sporozoite ในต่อมน้ำลาย แต่มีบทบาท ในการแพร่เชื้อน้อยกว่ายุงพาหะหลัก ยุงในกลุ่มนี้มี 3 ชนิด คือ

> ยุงกันปล่องชนิดซันใดกัส (An. sundicus) ยุงกันปล่องชนิดอโกในตัส (An. aconitus)

ยุงกันปล่องชนิดซูโควิวโมไร (An. pseudowillmori)

ยุงพาหะสงสัย (Suspected Vector)

ได้แก่ยุงที่สงสัยว่าอาจแพร่เชื้อ ใช้มาลาเรียได้ในบางสถานการณ์มีความพร้อมต่อ การรับเชื้อต่ำ (Row receptivity) ยุงในกลุ่มนี้มี 4 ชนิด คือ

ยุงกันปล่องชนิคฟิลิปปินส์เนนซีล (An. philippinensis)
ยุงกันปล่องชนิดบาร์บิรอสตริส (An. barbirostris)
ยุงกันปล่องชนิดแคมเพสตริส (An. campestris)
ยุงกันปล่องชนิดคิวลิซิเฟซีส์ (An. culicifacies)

ยุงกันปล่องมีวงจรชีวิตเป็นแบบที่มีการเปลี่ยนแปลงรูปร่างในแต่ละระยะของการเจริญ อย่างสมบูรณ์ ประกอบด้วย 4 ระยะ แต่ละระยะมีการเปลี่ยนแปลงรูปร่างแตกต่างกันอย่างเห็น เค่นชัด ได้แก่ ระยะไข่ ระยะลูกน้ำ ระยะดักแด้หรือตัวโม่ง และระยะตัวเต็มวัยหรือระยะตัวแก่ ซึ่ง 3 ระยะแรกอาศัยอยู่ในน้ำ

ไข่ยุงก้นปล่อง

ยุงกันปล่องจะวางไข่ใบเคี่ยวๆ มีลักษณะยาวรี รูปร่างคล้ายเรือซึ่งจะมีทุ่นลอย เรียก float เพื่อการลอยตัวบนผิวน้ำ ไข่ของยุงกันปล่องจะฟักในน้ำเสมอ และส่วนมากไม่สามารถ อยู่ได้ในสภาพแห้งแล้งที่ปราศจากน้ำซึ่งต่างกับไข่ของยุงลาย ยุงกันปล่องจะวางไข่ได้ในน้ำหลาย ลักษณะทั้งในน้ำจืด น้ำกร่อย และน้ำเค็ม โดยทั่วไปยุงกันปล่องจะวางไข่ได้ครั้งละ 50 – 500 ฟอง

ในฤดูร้อนของประเทศไทย ไข่ยุงกันปล่องจะฟักเป็นตัวภายใน 36 – 48 ชั่วโมง ในฤดู หนาวใช้เวลานานกว่าคือ ประมาณ 76 – 96 ชั่วโมง โดยเฉลี่ยทั่วไปประมาณ 2 – 3 วัน แต่ใน ประเทศแถบหนาวเย็นอาจใช้เวลานาน 2 – 3 สัปดาห์

ลูกน้ำยุงก้นปล่อง

เมื่อตัวอ่อนเจริญเติบโตเต็มที่แล้วจะฟักออกจากไข่ (hacth) กลายเป็นระยะลูกน้ำ ซึ่งไม่มีขา ลำตัวของลูกน้ำประกอบด้วย 3 ส่วน คือ ส่วนหัว ส่วนอก และส่วนท้อง สำหรับส่วน ท้องประกอบด้วยปล้องท้องจำนวน 9 ปล้อง แต่ปล้องที่ 8 และ 9 จะรวมติดกันเป็นอวัยวะหายใจ เรียก spiracular opening ลำตัวลูกน้ำจะมีสีขาวขุ่นหรือน้ำตาลอ่อน ส่วนบริเวณหัวจะมีสีน้ำตาล เข้ม ลูกน้ำยุงลายชอบอาศัยและเจริญเติบโตในน้ำค่อนข้างสะอาด แต่ลูกน้ำยุงก้นปล่องบางชนิด สามารถเจริญเติบโตได้ในน้ำกร่อยตามบริเวณบึงป่าชายเลน

ดักแด้หรือตัวโม่ง

เมื่อลูกน้ำลอกคราบครั้งสุดท้ายก็จะเข้าสู่ระยะตัวโม่ง มีรูปร่างคล้ายเลขหนึ่งไทย หรือเครื่องหมายคอมม่า ส่วนหัวและส่วนอกหลอมติดกัน ท่อหายใจมีรูปร่างคล้ายแตร ดักแด้หรือ ตัวโม่งไม่กินอาหาร เตรียมพร้อมที่จะพัฒนาเป็นยุงระยะตัวเต็มวัย โดยจะลอยตัวนิ่งที่ผิวน้ำเพื่อ หายใจเพียงอย่างเดียว ระยะนี้กินเวลาประมาณ 2 – 3 วัน จึงจะลอกคราบกลายเป็นตัวเต็มวัยบินขึ้น จากผิวน้ำ

ยุงระยะตัวเต็มวัยหรือตัวแก่

ยุงระยะตัวเต็มวัยมีถ้าตัวยาวเรียวเล็ก สามารถมองเห็นชัดเจนว่าถ้ำตัว ประกอบด้วย 3 ส่วนคือ ส่วนหัว ส่วนอก และส่วนท้อง ระยะตั้งแต่ไข่จนถึงตัวเต็มวัย ใช้เวลา ประมาณ 12 – 14 วันในฤดูร้อน และประมาณ 21 – 28 วันในฤดูหนาว

พฤติกรรมของยุงก้นปล่อง

การเกาะพัก (Resting)

ยุงกันปล่องเกือบทั้งหมดออกหากินในเวลากลางคืนและจะพักผ่อนในเวลากลางวัน ยกเว้นบางชนิดที่อยู่ในป่าซึ่งจะออกกัดกินเหยื่อที่พบในเวลากลางวัน บริเวณที่เกาะพัก ของยุงกันปล่องจะแตกต่างกันไปขึ้นอยู่กับชนิดของยุง เช่น ซอกหินนอกบ้าน คอกสัตว์ ริมฝั่งน้ำ โพรงต้นไม้ กอหญ้า พุ่มไม้ บริเวณที่มีความชื้นและจะแตกต่างกันไปตามฤดูกาล ท่าการเกาะพัก ของยุงสามารถใช้เป็นสิ่งแบ่งแยกชนิดของยุงกันปล่องออกจากยุงชนิดอื่น เช่น ยุงกันปล่องเวลา เกาะส่วนท้องจะตั้งทำมุมกับพื้นผิวที่เกาะพักหรือผิวหนังเหยื่อ ส่วนยุงชนิดอื่นส่วนใหญ่เวลาเกาะ ลำตัวขนานกับพื้นผิวที่เกาะหรือกัด

การบินและการกระจายตัว

ยุงกันปล่องสามารถทำการบินได้ตลอดทั้งคืนจากก่อนมืดและหลังจากรุ่งอรุณ เล็กน้อย การบิน (flight) หมายถึงระยะทางที่ยุงกันปล่องบินโดยใช้อวัยวะปิกเป็นตัวปฏิบัติการ แต่การกระจายตัว (dispersal) หมายถึงการที่ยุงกันปล่องแพร่ไปในที่ต่างๆ เป็นการบินระยะสั้นๆ โดยกระทำซ้ำแล้วซ้ำอีก การบินและการกระจายตัวของยุงไม่เพียงแต่เป็นความสามารถโดย ธรรมชาติของยุงเท่านั้น แต่ยังได้รับอิทธิพลจากธรรมชาติและสิ่งแวดล้อมด้วย เช่น แหล่งเลือด หรือการมีสิ่งกิดขวาง เช่น ต้นไม้ใหญ่ ป่า ภูเขาและความเร็วของกระแสลม เป็นต้น สาเหตุที่ยุง บินเกิดจากหลายวัตถุประสงค์ เช่น การมีพฤติกรรมทางเพศโดยการบินเวียนเกี้ยวพาราสีล่อตัว เมียให้บินมาผสมพันธุ์ หรือบินเพื่อหาที่เกาะพักหรือหาแหล่งเพาะพันธุ์ และหาเหยื่อ เป็นต้น โดยทั่วไปยุงกันปล่องสามารถบินไม่เกิน 2 – 3 กิโลเมตรจากแหล่งเพาะพันธุ์ อย่างไรก็ตามมี รายงานว่ายุงกันปล่องสามารถบินได้ใกลถึง 72 กิโลเมตร

การกระจายทางพื้นที่

Hagerstrand (1962) กล่าวว่าการแพร่กระจายจากจุดกำเนิดไปสู่ที่ใหม่มีความ เป็นไปได้ในหลายลักษณะ และหลายวิธี ซึ่งขึ้นอยู่กับองค์ประกอบหลายอย่างด้วยกัน ในอดีต เชื่อว่าเป็นการศึกษาเส้นทางการแพร่กระจายและลักษณะการกระจายของสิ่งนั้นในพื้นที่ใหม่ไม่ว่า จะเป็นเทคโนโลยี นวตกรรม ข่าวสาร โรคติดต่อ และผลอันเกิดจากการขอมรับการแพร่กระจาย คือ ความแตกต่างทางพื้นที่และยังเชื่อว่าจุดกำเนิดของสิ่งต่างๆ มีน้อยแต่การกระจายจะช่วยให้สิ่ง นั้นแผ่กลุมพื้นที่กว้างภายในเวลาและสถานที่ต่างกัน การศึกษาการแพร่กระจายจะทำให้ทราบ ศูนย์กลางการแพร่กระจาย และเหตุผลว่าทำไมถึงอยู่ตรงนั้น อัตราการกระจายเป็นไปในลักษณะ ใดเส้นทางและช่องทางการแพร่กระจายเป็นอย่างไร ลักษณะการแพร่กระจายของโรคติดต่อบาง โรคจะเป็นการแพร่แบบย้ายแหล่ง (Relocation Diffusion) โดยย้ายจากถิ่นเดิมไปสู่ที่ใหม่ทำให้ที่ เดิมปราศจากปรากฏการณ์นั้น เช่น การย้ายถิ่นของประชากร แต่โดยปกติการแพร่กระจายไม่ได้ เป็นไปโดยราบรื่น มีอุปสรรคจากภูมิประเทศ สังคมและวัฒนธรรมต่างๆ กันทำให้การ แพร่กระจายช้าลงหรือเปลี่ยนทิศทางหรือหยุดชะจักได้

ปัจจัยที่สำคัญของยุงพาหะต่อการแพร่เชื้อมาลาเรีย

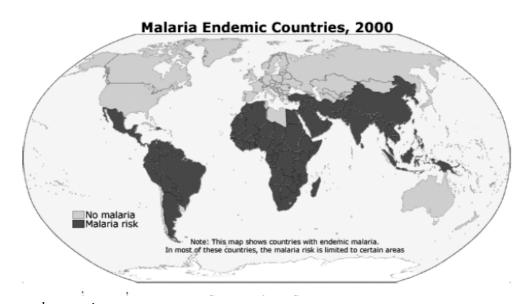
การแพร่เชื้อมาลาเรียในธรรมชาติขึ้นอยู่กับปัจจัยเกี่ยวข้องกับเชื้อมาลาเรีย ยุงพาหะ คน และสิ่งแวคล้อม ซึ่งจะมีความสัมพันธ์และบทบาทร่วมกันในการแพร่โรคในแต่ละท้องถิ่น ปัจจัยที่ เกี่ยวกับยุงพาหะประกอบด้วย

- 1. ความหนาแน่นของยุงพาหะ (vector density) ยุงที่มีนิสัยชอบดูดกินเลือดคนจะมี โอกาสแพร่เชื้อมาลาเรียได้สูงกว่ายุงที่ชอบดูดกินเลือดสัตว์ ความหนาแน่นของยุงโดยทั่วไปขึ้นอยู่ กับฤดูกาล เนื่องจากยุงแต่ละชนิดจะมีแหล่งเพาะพันธุ์ที่แตกต่างกันออกไป ในช่วงที่ฝนตกชุก แหล่งเพาะพันธุ์อาจลดลงเนื่องจากปริมาณน้ำมาก กระแสน้ำไหลแรง และหรือน้ำท่วมแหล่ง เพาะพันธุ์ การแพร่เชื้อมาลาเรียจึงเกิดขึ้นในช่วงระยะเวลาที่มีความชุกชุมของยุงพาหะสูงเป็นส่วน ใหญ่
- 2. นิสัยการดูดกินเลือด (host preference) ยุงที่มีนิสัยชอบกินเลือดคนจะมีความสามารถ แพร่เชื้อมาถาเรียสู่คนได้สูง เช่น Anopheles dirus ซึ่งพบมากในท้องที่ป่าเขา มีความสามารถสูงใน การแพร่เชื้อมาถาเรียสู่คน มีค่าดัชนีเลือดคน (human blood index) สูงถึง 0.9 เมื่อเทียบกับ Anopheles minimus จึงมีความสามารถในการเป็นยุงพาหะที่ดีกว่า
- 3. ความถึ่งองการเข้ากัดคน (frequency of man biting) ยุงเพศเมียจะเข้ากัดกินเลือดตาม ช่วงเวลา gonotrophic cycle คือระยะเวลาตั้งแต่ยุงเพศเมียกินเลือดจนวางไข่และต้องการกินเลือด อีกครั้งหนึ่ง ซึ่งโดยทั่วไปจะกินเวลา 2 4 วัน ทั้งนี้ขึ้นอยู่กับฤดูกาลด้วย เมื่ออุณหภูมิเฉลี่ยลด ต่ำลง ระยะเวลาที่ใช้สำหรับการเจริญเติบโตของไข่ยาวนานขึ้น การเข้ากัดกินเลือดจะช้าลงกว่า ปกติ ทำให้โอกาสของการแพร่เชื้อลดน้อยลงด้วย แต่เมื่ออุณหภูมิเฉลี่ยสูงขึ้น ยุงพาหะจะเข้ากัดคน บ่อยมาก ทำให้การแพร่เชื้อเพิ่มขึ้น

- 4. อายุขัย (longevity) ตามปกติยุงเพศเมียจะมีอายุขัยประมาณ 4 6 สัปดาห์ ขึ้นอยู่กับ อุณหภูมิเป็นตัวกำหนด ยุงพาหะที่มีอายุยืนยาวโอกาสแพร่เชื้อมาลาเรียจะสูงกว่ายุงที่มีอายุสั้น โดยเฉพาะอย่างยิ่งหลังจากพบ sporozoite ในต่อมน้ำลายแล้ว เพราะทุกครั้งที่เข้ากัดกินเลือดคนยุง สามารถปล่อยเชื้อมาลาเรียเข้าสู่คนได้ทุกครั้งจนตลอดอายุขัย
- 5. ระยะบิน (flight range) ยุงพาหะแต่ละชนิดมีระยะบินแตกต่างกัน ทั้งนี้มีองค์ประกอบ อื่นที่เกี่ยวข้องอีกมาก เช่น ทิศทางลม สภาพท้องที่ สิ่งกีดขวาง ภูเขา ต้นไม้ ระยะทางจากแหล่ง เพาะพันธุ์และแหล่งที่อยู่ของเหยื่อ เป็นต้น ยุงพาหะที่บินได้ไกลสามารถแพร่เชื้อไปได้กว้างขวาง มาก ยุงพาหะบางชนิดสามารถแพร่เชื้อมาลาเรียในพื้นที่ห่างไกลออกไปโดยติดไปกับเครื่องบิน เรือ รถยนต์ หรือยานพาหนะอื่นๆ ได้เช่นกัน

2.2 ระบาดวิทยาของโรคมาลาเรีย

โรคมาลาเรียในประเทศไทย


ใช้มาลาเรียหรือโรคมาลาเรียได้ปรากฏเป็นปัญหาสำคัญทางสาธารณสุขของประเทศไทย มาแต่โบราณ เคยมีบันทึกการเสียชีวิตจากใช้จับสั่นสูง 40,347 รายในปี พ.ศ. 2473 ปัจจุบันใช้ มาลาเรียมีแนวโน้มลดลงมากจากที่เคยพบผู้ป่วยชาวไทยจำนวน 168,370 รายในปี พ.ศ. 2535 เหลือเพียง 30,612 รายในปี พ.ศ. 2547 คิดเป็นอัตราป่วยหรือมีอุบัติการณ์ของโรคมาลาเรีย 0.51 ต่อประชากร 1,000 คนและมีผู้ป่วยตายจากโรคมาลาเรีย 230 ราย แม้ว่าจำนวนผู้ป่วยจะลดลงอย่าง มากโดยลำดับแต่โรคมาลาเรียยังถือเป็นโรคประจำท้องถิ่นที่ต้องเฝ้าระวังของประเทศไทยทั้งนี้ ผู้ป่วยแต่ละปีมากกว่าร้อยละ 70 จะพบในจังหวัดที่มีพื้นที่ชายแดนไทยกับเมียนมาร์และไทยกับ กัมพูชา การระบาดของโรคมาลาเรียในประเทศไทยปรากฏมากใน 2 ช่วงของปี ได้แก่ ในช่วงฤดู ฝน คือเดือนมิถุนายนถึงสิงหาคม และฤดูหนาว คือเดือนพฤศจิกายนถึงธันวาคม

การติดต่อของโรคมลาเรีย

โดยวิธีธรรมชาติใช้มาลาเรียจะติดต่อได้เมื่อผู้ป่วยถูกยุงพาหะที่มีเชื้อมากัดแต่การได้รับ เลือดที่มีเชื้อมาลาเรียระยะไม่มีเพศสามารถทำให้เกิดโรคได้เช่นกัน ในบางกรณีพบว่าสามารถพบ เชื้อมาลาเรียในทารกหลังคลอดได้หากมารดาป่วยเป็นโรคมาลาเรีย อย่างไรก็ตามยังไม่พบ หลักฐานว่าเชื้อสามารถผ่านจากมารดาสู่ระบบไหลเวียนของรกไปยังทารกในครรภ์ได้โดยตรง จึง เชื่อว่าโรคมาลาเรียในทารกหลังคลอดเกิดจากการหลุดลอดของเชื้อไปสู่ทารกขณะเกิดการลอกตัว ของรกในกระบวนการคลอด

องค์ประกอบทางระบาควิทยา การเกิด โรคมาถาเรีย ได้ต้องอาศัยปัจจัยหลักทางด้านปัจจัย สิ่งแวคล้อม (อุษา เล็กอุทัย, 2540)

1. สภาพภูมิประเทศ มาลาเรียเป็นโรคที่พบได้ทั้งในเขตร้อนและกึ่งเขตร้อน เนื่องจากยุงกันปล้องเจริญเติบโตไม่ดีในอุณหภูมิต่ำกว่า 20 องศาเซลเซียส มาลาเรียมีขอบเขตการ แพร่กระจายกว้างขวาง ระหว่างเส้นรุ้งที่ 64 องศาเซลเซียส เหนือ ถึงเส้นรุ้งที่ 32 องศาเซลเซียส ใต้ และครอบคลุมพื้นที่ซึ่งอยู่ต่ำกว่าระดับน้ำทะเลปานกลางถึง 400 เมตร จนถึงพื้นที่ที่อยู่สูงกว่า ระดับน้ำทะเลปานกลางถึง 2,600 เมตร

ภาพที่ 2 แผนที่การกระจายของโรคมาลาเรียของโลก (University of Wisconsin, 2002)

ยุงกันปล้องจะออกหากินใกล้ๆ กับแหล่งน้ำที่มันเกิดไม่เกิน 2 – 3 กิโลเมตร จำนวนเลือด ที่ดูดและจำนวนครั้งที่กัดขึ้นอยู่กับชนิดของยุงกันปล้อง เฉลี่ยอยู่ระหว่าง 1.3 – 3.9 ไมโครลิตรต่อ ครั้งหลังจากดูดเลือดแล้วโดยมากจะเกาะที่ผนังบ้านหรือเพดานก่อนแล้วจึงบินออกจากบ้าน ซึ่งยุง กันปล้องในแต่ละท้องที่จะมีความเป็นพาหะต่างกันด้วย

- 2. การสร้างบ้าน บ้านที่อยู่ใกล้แหล่งเพาะพันธุ์พาหะ มีความถี่ของการติดเชื้อ มาลาเรียสูง ระยะเวลาที่อาศัยในหมู่บ้าน ประชากรที่อาศัยในพื้นที่ที่มีมาลาเรียนานกว่า 5 เคือน มี อัตราการติดเชื้อสูง การศึกษาของตวงพร วงศ์จันทร์พงษ์ (2533) พบว่า ระยะเวลาที่อยู่ใน ท้องถิ่นไม่มีความสัมพันธ์ต่อการป่วยด้วยโรคมาลาเรีย
- 3. ฤดูกาล ฤดูแล้งและฤดูที่มีฝนตกในระยะเวลาสั้นๆ มีอัตราในการติดเชื้อและ ความรุนแรงสูงกว่าในฤดูที่มีฝนตกเป็นเวลานาน ส่วนการศึกษาใน Guinea Bissau พบว่าการติด เชื้อมาลาเรียในเด็กจะมีอาการใช้ หรือไม่มีใช้ที่มีการติดเชื้อตลอดปี จะรุนแรงในช่วงฤดูฝน

การศึกษาการกระจายของโรกมาลาเรียในประเทศศรีลังกา พิจารณาการกระจายตาม กวามสัมพันธ์ของปริมาณฝนและโซนภูมิอากาศ วิธีการศึกษาโดยการนำเสนออัตราผู้ป่วยออกมา เป็นแผนที่โรก จัดกลุ่มอัตราป่วยออกเป็น 3 กลุ่ม คือต่ำกว่าร้อยละ 15 ร้อยละ 15-35 และ มากกว่าร้อยละ 35 ซึ่งมีความสัมพันธ์กับความแตกต่างของภูมิอากาศในการแพร่พันธุ์ของยุง บริเวณที่มีการแพร่กระจายของผู้ป่วยสูงปรากฏในเขตภูมิภาคแห้ง และปริมาณน้ำฝนเลลี่ยรายปี 50-75 นิ้ว ส่วนบริเวณที่มีการกระจายของผู้ป่วยน้อยปรากฏในเขตภูมิภาคอากาศชื้นและปริมาณ น้ำฝนรายปี ตั้งแต่ 100 นิ้วขึ้นไป ทั้งนี้ยังมีการศึกษาการแพร่ระบาดของโรกที่สัมพันธ์กับประเภท การใช้ที่ดินในพื้นที่ ผลการศึกษาพบว่า การระบาดของโรกมาลาเรียเกิดจากความแตกต่างของ ภูมิอากาศในด้านการเพาะพันธุ์ของยุงพาหะ คือ Anopheles culicifacies ที่ต้องการแหล่งน้ำ เช่น บ่อน้ำ น้ำชลประทาน และน้ำขุ่น เพื่อให้เป็นแหล่งในการสร้างไข่และพัฒนาตัวอ่อน การไหล ของน้ำในโซนภูมิอากาศชื้น โดยปกติจะไหลอข่างต่อเนื่องและมีความเร็วเพียงพอสำหรับใช้ใน การทำให้ตัวอ่อนเติบโต อย่างไรก็ตามเมื่อช่วงมรสุมตะวันตกเฉียงใต้หมดลงเกิดการสะสมของ น้ำนิ่งอยู่ในบ่อน้ำนำไปสู่การเพิ่มจำนวนของยุงพาหะและการแพร่เชื้อมาลาเรีย ดังนั้นสภาวะนี้ทำ ให้เกิดอัตราการตายสูง

Meade (1977) ศึกษาการเปลี่ยนแปลงทางชีวภาพและการเพิ่มขึ้นหรือลดลงของความ เสี่ยงต่อโรคติดต่อในประเทศมาเลเซีย ซึ่งขณะนั้นรัฐบาลมีนโยบายในการส่งเสริมการตั้งถิ่นฐาน ใหม่ในพื้นที่ป่าเพื่อเป็นกลยุทธ์ในการพัฒนาทรัพยากรของประเทศและลดความกดดันเรื่องที่ดิน ทำกินของประชากร โครงการพัฒนาที่ดินในมาเลเซียทำให้เกิดการโยกย้ายถิ่นฐานของประชากร นับแสนคน มีการตัดป่าไม้เพื่อใช้พื้นที่ปลูกยางและปาล์มน้ำมัน ประชากรจำนวนมากมี ความสัมพันธ์กับสิ่งแวดล้อมระดับจุลภาคโดยมากจะเป็นบ้าน ที่ทำงาน ที่อาจมีการออกมาเผชิญ กับปัจจัยเสี่ยงและการสัมผัสกับสิ่งแวดล้อม ทำให้เกิดการติดเชื้อชนิดต่างๆ พื้นที่ศึกษามีพื้นที่ว่าง อยู่มากและปกกลุมด้วยหญ้า ทำให้เกิดความเสี่ยงในการติดเชื้อโรคจากพาหะนำโรค ผลจาก รูปแบบการตั้งถิ่นฐานเมื่อประชาชนมีการเดินทางต้องผ่านลำห้วย และทุ่งหญ้า ต้องสัมผัสกับ ปรสิต ต่างๆ มากมายโดยเฉพาะพื้นที่ใกล้แหล่งน้ำ นอกจากนี้ยังเป็นที่อยู่ของยุงก้นปล่องที่เป็น พาหะนำโรคมาลาเรียอีกด้วย

2.3 แนวทางการควบคุมโรคมาลาเรีย

องค์การสากลนานาชาติต่างๆ เช่น WHO UNICEF และ UNDP ใค้มีการกำหนด ยุทธศาสตร์เพื่อการควบคุมโรคมาลาเรียอย่างยั่งยืน (core technical strategies for the sustainable control of malaria) โดยมืองค์ประกอบที่สำคัญ 4 ข้อได้แก่

- 1. ให้ประชาชนทุกท้องที่มียารักษาโรคมาลาเรียที่มีประสิทธิภาพ
- 2. เพิ่มการใช้มุ้งชุบสารเคมี และมีการควบคุมพาหะตามวิถีท้องถิ่น
- 3. เฝ้าระวังและเข้าควบคุมการระบาดอย่างรวดเร็ว
- 4. ป้องกันและรักษาโรคมาลาเรียในหญิงมีครรภ์ในท้องที่แหล่งระบาดของโรคมาลาเรีย การบำบัดรักษาโรคมาลาเรียกับการควบคุมโรค

ยุคมิชซันนารีเข้ามาในประเทศไทยในปี พ.ศ. 2404 และมีบทบาทสำคัญในการ รักษาโรคมาลาเรียเรื่อยมาจนปัจจุบัน ต่อมาได้มีการพัฒนานำยาใหม่มาใช้ทดแทน ได้แก่ ยาคลอ โรควิน ยาผสมซัลฟาดอกซินร่วมกับยาไพริเมชามิน หรือแฟนชิดา จนมาถึงยุคของยาเมโฟลควิน และอาร์ติซูเนต โดยสาเหตุหลักที่มีการเปลี่ยนแปลงขนานยาคือ การคื้อต่อยารักษาของเชื้อ มาลาเรียชนิด Plasmodium falciparum แม้ว่าประเทศไทยถือเป็นประเทศแรกๆ ที่มักจะประสบ ปัญหาเชื้อคื้อยาในแถบเอเชียตะวันออกเฉียงใต้ และของโลก แต่ประเทศไทยได้รับการยอมรับว่า มีการจัดการต่อปัญหาการคื้อยามีการบริหารจัดการในรูปนโยบายยาระดับชาติที่ดีจนเป็นตัวอย่าง ให้กับหลายประเทศที่เริ่มประสบปัญหานี้

การวินิจฉัยที่รวดเร็วและการรักษาให้หายขาดที่ถูกต้องโดยทันทีจะช่วยตัดวงจร ลด โอกาสการแพร่ของเชื้อมาลาเรียจึงถือเป็นการควบคุมโรควิธีหนึ่ง นอกจากการพัฒนาใช้ยาที่มี ประสิทธิภาพแล้ว ประเทศไทยยังได้พัฒนาขีดความสามารถในการวินิจฉัยให้ถูกต้อง รวดเร็ว และ เข้าถึงประชาชนนำไปสู่การใช้ยุทธศาสตร์ของการจัดตั้งมาลาเรียกลินิกเพิ่มขึ้นจำนวนมากในพื้นที่ มีปัญหาการระบาดของมาลาเรียมาตั้งแต่ปี พ.ศ. 2526 ส่งผลให้จำนวนผู้ป่วยลดลงอย่างต่อเนื่อง ชัดเจน และมีผลให้ผู้ป่วยเสียชีวิตจากโรคมาลาเรียลดลงอย่างมาก ในปัจจุบันหลายพื้นที่ได้เริ่มการ นำชุดตรวจมาลาเรียชนิดเร่งด่วน (rapid diagnostic tests) ซึ่งเป็นเทคนิกใหม่แต่ไม่ยุ่งยากมาใช้และ มีแนวโน้มที่จะนำไปประยุกต์ใช้เพิ่มขึ้น

อย่างไรก็ดีแม้ปัญหาโรคมาลาเรียในประเทศไทยจะลดลง แต่ปัญหาเชื้อดื้อยาได้เกิดขึ้น เป็นระยะๆ อย่างต่อเนื่อง ทำให้ต้องมีการจัดทำนโยบายยาและการรักษาโรคมาลาเรียที่คำนึงถึง การรักษาที่มีประสิทธิภาพ และลดโอกาสการดื้อยา จึงทำให้มีการยกเลิกการใช้ยาแบบหมู่ (mass drug administration) และการรักษาขั้นต้นก่อนทราบผลตรวจวินิจฉัย ส่วนการวินิจฉัยว่าติดเชื้อ มาลาเรียหรือไม่ ต้องมีผลยืนยันทางห้องปฏิบัติการเท่านั้น ได้แก่ การตรวจด้วยกล้องจุลทรรศน์ หรือชุดตรวจแบบเร่งค่วน ทั้งนี้เพื่อหลีกเลี่ยงการใช้ยาที่ไม่จำเป็นจากการวินิจฉัยแบบอาศัยอาการ ทางคลินิก แต่ได้มีการทดแทนด้วยการขยายเครือข่ายการตรวจวินิจฉัย และรักษาให้เข้าถึงเกือบทุก พื้นที่แม้ในที่ห่างไกล

ยุงพาหะกับการควบคุมโรคมาถาเรีย

ยุงพาหะของเชื้อมาลาเรียนับเป็นปัจจัยสำคัญต่อการแพร่ระบาคของโรค ตั้งแต่ ช่วงปี พ.ส. 2475 – 2478 ที่ได้มีการพบว่ายุงกันปล่องมินิมัสเป็นพาหะสำคัญของเชื้อมาลาเรียใน ประเทศไทย ได้มีการนำมาตรการควบคุมยุงพาหะมาใช้ โดยเริ่มมีการพ่นสารเคมีชนิดมีฤทธิ์ ตกค้างด้วยคีดีที่ในพื้นที่ที่มีการระบาคมาตั้งแต่ปี พ.ส. 2493 และได้ผลดีมาตลอด แต่ปัจจุบัน เนื่องจากปัญหาผลกระทบสิ่งแวคล้อม ทำให้ได้มีการยกเลิกการใช้ DDT ในการควบคุมยุงพาหะ มาตั้งแต่ปี พ.ส. 2540 และเปลี่ยนมาเป็นสารเคมีสังเคราะห์กลุ่มไพริทรอยค์ซึ่งปลอดภัยกว่า แต่ ยังคงมีการพ่นสารเคมีชนิดมีฤทธิ์ตกค้างตามฝาผนังอยู่ นอกจากนี้ยังได้มีการใช้มุ้งชุบสารเคมีไพริทรอยค์ เพื่อควบคุมโรคในหลายพื้นที่อย่างได้ผล ซึ่งวิธีการหลังนี้ในหลายประเทศได้มีการใช้เป็น มาตรการหลักเพื่อควบคุมยุงพาหะและได้ผลดี มีความยุ่งยากน้อยกว่า ทำให้ประเทศไทยมี แนวโน้มลดการพ่นสารเคมีชนิดมีฤทธิ์ตกค้างและใช้มุ้งชุบสารเคมีมาทดแทนเพิ่มขึ้นเรื่อยๆ ใน อนาคต

นอกจากมาตรการหลักต่อยุงพาหะทั้ง 2 ข้างต้นแล้ว ยังมีมาตรการอื่นที่ใช้กัน เช่น การพ่น หมอกควัน ซึ่งนับว่าเป็นมาตรการเฉพาะหน้าที่ให้ผลไม่ยั่งยืน ไม่เกิน 7 วันและสิ้นแปลือง จึงมี การใช้น้อยเท่าที่จำเป็นเท่านั้น ส่วนมาตรการต่อลูกน้ำยุงพาหะ ได้แก่ มาตรการทางชีววิธี เช่น ใช้ ปลาหางนกยูง ปลาแกมบูเชีย หรือปลาหัวตะกั่ว (เฉพาะภาคใต้) เพื่อให้กินลูกน้ำ การใช้แบคทีเรีย ฆ่าลูกน้ำหรือใช้ฮอร์ โมนยับยั้งการเจริญเติบโตนั้น หลายการศึกษาพบว่าให้ผลได้ไม่แน่นอน เนื่องจากแหล่งเพาะพันธุ์ยุงพาหะมักอยู่ในธรรมชาติและควบคุมได้ยาก หรือมาตรการสารเคมีฆ่า ลูกน้ำซึ่งเคยมีการศึกษาและใช้ในอดีตระยะหนึ่ง ปัจจุบันได้เลิกใช้ไปแล้วเนื่องจากผลกระทบต่อ สิ่งแวคล้อม และให้ผลควบคุมไม่ยั่งยืน มาตรการเหล่านี้ถือได้ว่าเป็นมาตรการเสริมเพื่อใช้ร่วมกับ มาตรการหลักเพื่อช่วยให้การควบคุมโรคได้ผลยิ่งขึ้นเท่านั้น

หัวใจของการควบคุมโรคมาถาเรีย

การคำเนินการควบคุมโรคมาลาเรียมีเป้าหมายในการลดหรือป้องกันไม่ให้เกิด การเสียชีวิตจากโรคนี้ ลดอัตราป่วยและผลกระทบต่อเนื่อง เช่น ความสูญเสียทางเศรษฐกิจ และใน ที่สุดต้องป้องกันไม่ให้พื้นที่ปลอดโรคมาลาเรียกลับมาเป็นปัญหาอีก

ในการวางแผนควบคุมนั้นต้องระถึกเสมอว่าการแพร่ระบาดของโรคมาถาเรียนั้น ประกอบด้วยปัจจัยพื้นฐาน 3 อย่าง ได้แก่ เชื้อมาถาเรีย ยุงพาหะ และคน การควบคุมให้ได้ผลต้อง มีมาตรการต่อปัจจัยทั้ง 3 และมักจะต้องดำเนินการร่วมกันไม่ใช้เฉพาะเพียงมาตรการใดมาตรการ หนึ่ง สำหรับแผนโครงการควบคุมโรคมาถาเรียในประเทศไทยได้มีการจัดแบ่งท้องที่ที่การ ปฏิบัติงานตามลักษณะการแพร่เชื้อมาลาเรียเพื่อให้เกิดแผนปฏิบัติงานที่เป็นระบบ มีเหตุผล และ ตรวจสอบได้

มาตรการต่อเชื้อมาลาเรีย

แม้ว่าการรักษาผู้ป่วยมาลาเรียจะมีเป้าหมายเพื่อลดการเจ็บป่วย หรือป้องกัน ไม่ให้เกิดการเสียชีวิตในแต่ละราย แต่เชื้อมาลาเรียระยะมีเพศในกระแสเลือดเป็นตัวการสำคัญใน การแพร่จากผู้ป่วยผ่านยุงพาหะไปสู่บุคคลอื่นได้ ดังนั้นการรักษาผู้ป่วยให้มีผลหายขาดและทำลาย เชื้อระยะมีเพศจึงเป็นประเด็นสำคัญต่อความสำเร็จของการควบคุมโรค หัวใจของมาตรการนี้คือ การให้การรักษาหายขาดโดยรวดเร็วทันที

มาตรการนี้จึงประกอบด้วย

- 1. การค้นหาผู้ป่วยทั้งทางตรง (active case detection) และทางอ้อม (passive case detection) เพื่อให้การวินิจฉัย
 - 2. การให้ยารักษาขั้นหายขาด (curative treatment)
 - 3. การติดตามผู้ป่วย (follow up) จนมีผลหายขาด

นอกจากนี้เพื่อให้เกิดผลการควบคุมโรคในชุมชน ควรมีการสอบประวัติผู้ป่วยเพื่อให้ได้ ข้อมูล แหล่งแพร่เชื้อนำไปใช้ขยายผลควบคุมโรคต่อไป โดยต้องอาศัยความร่วมมือที่ดีระหว่าง หน่วยงานรักษาและหน่วยงานควบคุมเป็นปัจจัยสำคัญ

มาตรการควบคุมยุงพาหะ

งานควบคุมยุงพาหะ เป็นมาตรการสำคัญที่สามารถทำให้การแพร่ระบาดของโรค มาลาเรียยุติลงได้ โดยมุ่งเป้าไปที่ยุงตัวเต็มวัยและลูกน้ำยุง ทั้งนี้ โดยอาศัยผลการศึกษาทางด้านกิฎ วิทยาเพื่อให้ทราบชีวนิสัยของยุงพาหะ เช่น ยุงก้นปล่องสามารถบินหากินไกลถึง 2 กิโลเมตร มัก เกาะพักในบ้านตามฝาผนังสูงไม่เกิน 2 เมตร บางชนิดชอบกัดคนมากกว่าสัตว์ เป็นต้น ทำให้เกิด ความเข้าใจอันจะนำไปสู่การกำหนดกลวิธีที่เหมาะสมถูกต้อง

มาตรการที่ใช้มี 2 ประการคือ

- 1. มาตรการต่อยุงตัวเต็มวัย ได้แก่ การพ่นเคมีมีฤทธิ์ตกค้าง การพ่นหมอกควัน การใช้มุ้ง ชุบสารเคมี เป็นต้น
- 2. มาตรการต่อลูกน้ำยุง ได้แก่ การควบคุมโดยใช้ชีววิธี เช่น ใช้ปลากินลูกน้ำ ใช้แบคทีเรีย หรือปรับปรุงสภาพแวคล้อมไม่ให้มีแหล่งเพาะพันธุ์ยุงพาหะ เป็นต้น

มาตรการต่อคน

แม้การค้นหาผู้ป่วยจะทำอย่างเข้มข้น และมีการควบคุมยุงพาหะอย่างจริงจังแต่จะ ไม่เกิดความยั่งยืนในการควบคุม ถ้าชุมชนไม่มีการป้องกันตนเองหรือยังมีพฤติกรรมที่เสี่ยงต่อการ รับเชื้อ มาตรการนี้จึงมีวัตถุประสงค์เพื่อกระตุ้นให้ประชาชนรับรู้ เรียนรู้ ป้องกันตัวเองจากโรค มาลาเรีย และมีส่วนร่วมในการควบคุมในชุมชนนั้นๆ ตลอดจนปรับเปลี่ยนพฤติกรรมให้ห่างไกล จากความเสี่ยงต่อการรับเชื้อมาลาเรียที่สุด

กิจกรรมส่วนใหญ่เป็นเรื่องของการประชาสัมพันธ์และให้สุขศึกษา โดยผ่านทางสื่อ รูปแบบต่างๆ เช่น สื่อมวลชนในท้องถิ่น หอกระจายข่าว เอกสารสิ่งพิมพ์ โปสเตอร์ หรือ แม้กระทั่งการให้สุขศึกษาไม่ว่าจะในโรงเรียน ในที่ประชุมหมู่บ้าน ในสถานบริการสาธารณสุข รวมทั้งตามแหล่งท่องเที่ยว ความคาดหวังคือให้มีความเข้าใจถึงอันตรายจากโรคมาลาเรีย รู้วิธี ป้องกันหลีกเลี่ยง จนถึงมีการปรับเปลี่ยนพฤติกรรมสุขภาพให้ปลอดจากโรค เช่น การนอนในมุ้ง จนเป็นนิสัย ทั้งชาวบ้านและนักท่องเที่ยว การป้องกันตนเองจากยุงกัดด้วยยาทากันยุง ยาจุดกันยุง เป็นต้น ปัจจุบันได้มีการหันมาให้ความสนใจกับมาตรการด้านนี้มากขึ้น โดยใช้กระบวนการทาง สังคม และอาสัยความร่วมมือจากภาคประชาชนเป็นแรงขับเคลื่อน เป็นมาตรการที่ใช้ได้ในทุก ลักษณะท้องที่

ปัจจัยภายนอกที่มีผลต่อการวางแผนควบคุมโรค

ปัญหาที่เป็นอุปสรรคได้แก่ การที่ยุงเปลี่ยนชีวนิสัย กัดคนนอกบ้านมากขึ้นทำให้ การวางแผนควบคุมด้วยสารเคมีทำได้ยาก หรือการที่ความร่วมมือของประชาชนลดลงตาม สถานการณ์โลกที่ลดน้อยลง โดยเฉพาะต่อกิจกรรมควบคุมยุงพาหะ หรือการที่ประชาชนมี พฤติกรรมที่เสี่ยงต่อโรคตามวิถือาชีพที่เปลี่ยนไป เช่น ปลูกไร่กาแฟ การอพยพเคลื่อนย้ายของ แรงงานต่างค้าวในบางฤดูกาล หรือแม้การปรับเปลี่ยนโครงสร้างของหน่วยงานราชการ เหล่านี้ เป็นปัจจัยที่ส่งผลต่อความสำเร็จในการควบคุมโรคในแต่ละพื้นที่ แต่ที่สำคัญคือต้องอาศัยความ ร่วมมือจากทุกภาคส่วนทั้งราชการส่วนกลาง ส่วนท้องถิ่น และประชาชนในพื้นที่ การเลือกใช้ กิจกรรมใดให้เหมาะสมกับพื้นที่จึงเป็นทั้งสาสตร์และศิลป์ ต้องมีการวางแผนและสามารถ ปรับเปลี่ยนกิจกรรมโดยคำนึงถึงปัจจัยดังกล่าวด้วย

2.4 รีโมทเซ็นซึ่ง และระบบสารสนเทศภูมิศาสตร์

รีโมทเซ็นซึ่ง (Remote Sensing : RS)

การสำรวจระยะใกลหรือรีโมทเซ็นซิ่ง (RS) หมายถึงการได้มาซึ่งข้อมูลเกี่ยวกับวัตถุ พื้นที่ หรือปรากฏการณ์จากเครื่องมือบันทึกข้อมูลโดยปราสจากการเข้าไปสัมผัสวัตถุเป้าหมาย ทั้งนี้อาศัยคุณสมบัติของคลื่นแม่เหล็กไฟฟ้าเป็นสื่อในการได้มาของข้อมูลใน 3 ลักษณะ คือ 1. คลื่นรังสี (Spectral) 2. รูปทรงสัณฐานของวัตถุบนพื้นผิวโลก (Spatial) และ 3.การเปลี่ยนแปลง ตามช่วงเวลา (Temporal)

หลักการของรีโมทเซ็นซึ่ง

องค์ประกอบที่สำคัญของการสำรวจจากระยะใกลได้แก่ คลื่นแสงที่เป็นพลังงาน แม่เหล็กที่เกิดขึ้นเองตามธรรมชาติ เรียกว่า "Passive Remote Sensing" ส่วนระบบบันทึกที่มี แหล่งพลังงานที่สร้างขึ้นและส่งไปยังวัตถุเป้าหมาย เช่น ระบบเรดาร์เรียกว่า "Active Remote Sensing"

ระบบสารสนเทศภูมิศาสตร์ (Geographic Information System :GIS)

ระบบสารสนเทศภูมิศาสตร์ เป็นเครื่องมือที่ใช้ระบบคอมพิวเตอร์ เพื่อใช้ในการนำเข้า จัดเก็บ การจัดการ การวิเคราะห์และการแสดงผลข้อมูลในรูปแบบเชิงพื้นที่ ตามวัตถุประสงค์ ต่างๆ และสามารถเชื่อมโยงและผสมผสานข้อมูลทั้งข้อมูลเชิงพื้นที่และข้อมูลเชิงบรรยายที่เก็บไว้ ฐานข้อมูล ซึ่งข้อมูลดังกล่าวสามารถช่วยสนับสนุนการตัดสินใจ การแก้ไขปัญหาเกี่ยวกับการ วางแผน เพื่อให้ได้ข้อมูลข่าวสารที่มีประสิทธิภาพ

ประเภทข้อมูลในระบบ GIS

ระบบสารสนเทศภูมิศาสตร์แบ่งข้อมูลออกเป็น 2 ประเภท คือ

- 1. ข้อมูลเชิงพื้นที่ (Spatial Data) ซึ่งเป็นข้อมูลที่เกี่ยวข้องกับตำแหน่งที่ตั้งของ ข้อมูลต่างๆ บนพื้นโลก ซึ่งข้อมูลเชิงพื้นที่สามารถแสดงสัญลักษณ์ได้ 3 รูปแบบ คือ
 - จุด (Point) เช่น ที่ตั้งโรงพยาบาล, ที่ตั้งหมู่บ้านและที่ตั้งโรงเรียน เป็นต้น
 - เส้น (Line) เช่น ถนน, แม่น้ำ และเส้นทางเดินเท้า
 - พื้นที่ (Polygon) เช่น ขอบเขตการปกครอง, พื้นที่ป่าไม้ และพื้นที่อาศัย เป็นต้น
- 2. ข้อมูลเชิงคุณลักษณะ (Attribute Data) เป็นข้อมูลเชิงคุณลักษณะหรือข้อมูล บรรยาย ซึ่งบอกรายละเอียดของคุณสมบัติพื้นที่นั้นๆ ณ ช่วงเวลาใดเวลาหนึ่ง เช่น ข้อมูลจำนวน ประชากร, ข้อมูลจำนวนผู้ป่วย และข้อมูลการใช้ที่ดิน เป็นต้น

การซ้อนทับข้อมูล (Overlay Function)

การซ้อนทับข้อมูล เป็นขั้นตอนหนึ่งที่สำคัญและเป็นพื้นฐานทั่วไปในระบบ สารสนเทศภูมิศาสตร์ หลักการคือการนำข้อมูลที่มีอยู่เข้ามารวมกันจากแหล่งข้อมูลที่มีอยู่ หลากหลาย เพื่อใช้ในการตัดสินใจแก้ปัญหา (Decision Making)

หลักการในการซ้อนทับข้อมูล

โดยทั่วไปในการซ้อนทับข้อมูลแผนที่จะอาศัยจุดคู่ควบ (x,y) และข้อมูลเชิงบรรยายจะ ถูกสร้างขึ้นใหม่ หลังจากที่เราทำการ overlay ในระบบสารสนเทศภูมิศาสตร์การซ้อนทับข้อมูล อาจจะใช้กระบวนการทางเลขคณิต (arithmetic) (เช่น การบวก, ลบ, คูณ, หาร) หรือตรรกศาสตร์ logical (เช่น AND, OR, XOR, etc.)

รูปแบบของการซ้อนทับข้อมูล

รูปแบบของการซ้อนทับข้อมูล ได้แก่ การทำ Buffer, การตัดข้อมูล-Clip, การ เชื่อมต่อแผนที่-Merge, การรวมข้อมูล-Dissolve, การขจัดข้อมูล-Eliminate, การลบข้อมูล-Erase, การซ้อนทับข้อมูลแบบ Identity, การซ้อนทับข้อมูลแบบ Intersect, การซ้อนทับข้อมูลแบบ Union, การหาระยะทางระหว่างข้อมูล 2 Theme-Near, การปรับปรุงข้อมูล-Update แนวระยะห่าง ด้วย Buffer - Buffers selected features เป็นการหาระยะทางให้ห่างจากรูปแบบภูมิศาสตร์ (Features) ที่กำหนด โดยที่การจัดทำ Buffer เป็นการวิเคราะห์พื้นที่เพียง 1 Theme และเป็นการ สร้างพื้นที่ล้อมรอบ Graphic Features (point, line and polygon) ของ 1 theme ที่ได้คัดเลือกไว้ บางส่วน หากไม่ได้เลือกจะทำ buffer ทั้ง theme ผลที่ได้รับคือ theme ใหม่ ที่มีขนาดความกว้าง ของพื้นที่จากตำแหน่งที่เลือก เท่ากับขนาดของ Buffer ที่ได้กำหนดมีหน่วยเป็นเมตร

2.4 ผลงานวิจัยที่เกี่ยวข้อง

Aruna Srivastava. et,. al. ได้นำระบบสารสนเทศภูมิศาสตร์มาช่วยในการบริหาร จัดการระบบฐานข้อมูลในการควบคุมมาลาเรีย ประเทศอินเดีย วัตถุประสงค์ เพื่อพัฒนา แบบจำลองที่ช่วยในการวางแผนและการควบคุมมาลาเรีย การพัฒนาระบบสามมารถช่วยในการ จำแนกพื้นที่ที่มีผู้ป่วยสูง และสามารถจำแนกพื้นที่เสี่ยงต่อโรคมาลาเรียได้เป็นอย่างดี

Eveline Klinkenberg. et,. al. ได้นำระบบสารสนเทศภูมิศาสตร์มาช่วยในการวิเคราะห์ หาพื้นที่เสี่ยงต่อ โรคมาลาเรียในพื้นที่ชลประทานประเทศศรีลังกา จากการศึกษาพบว่า โรค มาลาเรียมีความสัมพันธ์กับการใช้ที่ดินและแหล่งน้ำ และยังมีความสัมพันธ์กับเศรษฐกิจและ สังคม ปัจจัยที่ทำให้เกิดโรคมาลาเรียสูงคือ 1) ปริมาณน้ำฝน 2) พื้นที่ป่าไม้ 3) การทำ เกษตรกรรม 4) อ่างเก็บน้ำชลประทาน และ 5) สภาพเศรษฐกิจและสังคมที่ยากจน และที่สำคัญ การปลูกข้าวในพื้นที่ชลประทานมีความเสี่ยงกว่าพื้นที่ไม่มีเขตชลประทานประกอบกับความ แตกต่างของสภาพเศรษฐกิจและสังคมที่เป็นปัจจัยสัมพันธ์กับการพัฒนาเขตพื้นที่ชลประทาน แผนที่เสี่ยงต่อ โรคมาลาเรียเป็นเครื่องมือที่สะดวกสำหรับการศึกษาพื้นที่ การสืบสวน และการ ควบคุมป้องกันมาลาเรียได้อย่างมีประสิทธิภาพ

Carrin martin. et,.al. ได้พัฒนาโปรแกรมระบบสารสนเทศภูมิศาสตร์ในการวิจัยและ การควบคุมโรคมาลาเรีย ในประเทศแอฟริกาใต้ เพื่อเป็นการพัฒนาโปรแกรมสำหรับการควบคุม โรคมาลาเรียและการสำหรับการวิจัยของสภาการแพทย์ในประเทศแอฟริกาใต้ และเป็นการ ติดตามเฝ้าระวังในการควบคุมมาลาเรีย

อริศรา เจริญปัญญาเนตร ศึกษาการแพร่ระบาดและการวิเคราะห์พื้นที่เสี่ยงของโรค มาลาเรีย บริเวณชายแดนไทย-พม่า ในอำเภอเมืองแม่ฮ่องสอน พบว่า การกระจายของโรค มาลาเรียในอำเภอเมืองแม่ฮ่องสอน ช่วงปี พ.ศ. 2540 – 2544 ตำบลที่มีการกระจายทางพื้นที่ของ โรคมาลาเรียสูงที่สุดคือตำบลปางหมู เพราะเป็นตำบลที่มีการเคลื่อนย้าย เข้า-ออกอยู่เป็นประจำ และมีสถิติการติดเชื้อมาลาเรียสูงที่สุด และศึกษาพบว่าพื้นที่เสี่ยงต่อการแพร่ระบาดของโรก มาลาเรีย จากการเปรียบเทียบพื้นที่เสี่ยงตามปัจจัยทางกายภาพ โดยใช้ปัจจัยพื้นที่ป่า ระดับความ ้สูง และแหล่งน้ำ และพื้นที่เสี่ยงตามปัจจัยทางกายภาพ เศรษฐกิจและสังคม ใช้ปัจจัยทางด้านพื้นที่ ป่าไม้ ระดับความสูง แหล่งน้ำ สวนผลไม้ ทุ่งนา เส้นทางเดินเท้า ที่ตั้งของหมู่บ้าน สถานบริการ ทางการแพทย์ ศูนย์พักพิงผู้ลี้ภัยจากการสู้รบ และช่องทางการลับลอบเข้าเมือง พบว่าพื้นที่เสี่ยงทั้ง 2 ลักษณะ มีบางส่วนที่สอดคล้องกัน โดยมีการเปลี่ยนแปลง 5 รปแบบ คือ พื้นที่เสี่ยงระดับต่ำเป็น ระดับปานกลาง พื้นที่เสี่ยงระดับปานกลางเป็นระดับต่ำ พื้นที่ระดับปานกลางเป็นระดับสูง พื้นที่ ระดับสูงเป็นระดับต่ำ และพื้นที่ระดับสูงเป็นระดับปานกลาง โดยการเปลี่ยนแปลงระดับต่ำเป็น ระดับที่สูงขึ้น เนื่องจากปัจจัยเส้นทางการเคลื่อนย้ายของประชากร ที่ตั้งของหมู่บ้านที่มีผู้ติดเชื้อ มาลาเรียสูง และศูนย์พักพิงผู้ลี้ภัยจากการสู้รบ ส่วนการเปลี่ยนแปลงจากระดับสูงเป็นระดับที่ต่ำลง นั้น เพราะอิทธิพลของปัจจัยแหล่งน้ำ และระดับความสูงของพื้นที่ 400 – 600 เมตรจาก ระดับน้ำทะเลปานกลาง