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Brain-Computer Interface (BCI) is a system designed for a specific 

application. In hand motor imagery, the Electroencephalograph (EEG) signal related 

to motor activity can be recorded from the sensorrimotor area, which releases 

informative signals during motor execution. Patterns used to classify left and right 

hand motor imagery are called Event Related Desynchronization (ERD). However, an 

individual produces the informative patterns in different frequency components. 

Therefore, the BCI system needs to be appropriately designed for both applications 

and subjects. This thesis attempts to design an adaptive filter for selecting proper 

frequency bands of each person. The filter based on wavelet transform is called 

Wavelet Filter. Nevertheless, the wavelet filter will not be adaptive if there is no band 

selection. The band selection is to choose the most discriminative bands by using a 

cost function. When a value from a cost function is high, it means there is high 

discrimination between the patterns of the two classes. After the process selects the 

bands, the adaptive wavelet filter will be implemented to eliminate undesirable 

components. In summary, the results indicate that the proposed method achieves 

higher classification accuracy than that of static filters. 
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HAND MOTOR IMAGERY EEG CLASSIFICATION USING 

ADAPTIVE BAND SELECTION FOR BRAIN-COMPUTER 

INTERFACE 

 

INTRODUCTION 

 

Brain-Computer Interface systems (BCIs) are a machine that translates brain 

waves into commands. The interaction between a human brain and computers 

provides an alternative channel for paralyzed patients not only in the field of 

rehabilitation but also in the field of communication. Nowadays, researchers are 

working hard at the crossroad of computer science, neurosciences, and biomedical 

engineering. The system is comprised of a device recording neural signals, an effecter 

controlled by commands, and an algorithm interpreting the signal into instructions. 

 

First of all, Electroencephalogram (EEG) signal is widely used in a non-

invasive system, and EEG recording devices are divided into 2 parts: analog part and 

digital part. The analog part consists of sensors, amplifiers, and active filters. Brain 

signal is recorded by sensors called electrodes. Although there are many types of the 

electrode, researchers have tendency to use Ag-AgCl electrodes because it’s 

reasonable between cost and quality. As electrodes are necessary to be placed on 

suitable positions, an EEG cap, which electrodes are installed on, is provided for 

precise measurement the neural signal. The widely-used standard of the EEG cap is 

the 10-20 system. The 10-20 system is based on distance between locations of 

electrodes and underlying areas of cerebral cortex. Owning to small amplitudes and 

noisy measurements of EEG signal, the signal must be passed through an amplifier in 

order to change level of the signal from micro voltage to voltage. In addition, 

irrelevant frequency components can be eliminated by active band-pass filters. The 

active filter implemented by operational amplifier (op-amp) consumes electric power; 

therefore, it is called active filters. The filter not only eliminates undesirable 

components but can gain amplitudes in the range of filter designation also. Another 

part is the digital part that consists of analog-to-digital convertors, FIR filters, and 
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Notch filters. To change analog signals into digital signals, we use an analog-to-

digital convertor (A/D). Normally, EEG signal is digitized at 16 bit resolution and 

sampled at 256 Hz. After quantization from analog to digital, the signal needs filtering 

by digital filters. Even though, the signal was passed through the analog filter, it is 

essential to filter the signal again. An analog filter is basically used to amplify 

amplitudes in a pass-band range but not is used to eliminate undesirable components. 

Therefore, the digital filter operates in decreasing noisy components. Besides, Notch 

filters are employed in reducing electric noise from 50 Hz power lines (50 Hz in 

Thailand). Subsequently, the operated signal is stored in a computer in order to 

process both offline and online application further. 

 

The second is an effecter controlled by commands. We need to know all 

physical characteristics of the effecter in order to model it into mathematic equations.  

Subsequently, it can be controlled by electrical instructions. For example, if the 

system is used to control a robot arm, the robot arm must be measure length, width, 

and distance in order to built characteristic equations first. EEG signal is decided into 

instructions that are used as parameters of the equations to change output of the 

effecter. 

 

The most important module of the BCI system is an algorithm that relies on 

methodologies. Methods of the system based on signal processing consist of 

preprocessing, enhancement, feature extraction, and classification. First, because EEG 

signal is contaminated by interference waveforms called artifacts, and types of EEG 

signal depend on a frequency range, EEG signal need selecting the range of interest. 

The selection is to suppress artifacts and retain essential patterns. Furthermore, 

because the informative pattern emerges in diverse time, for enhancement, Time-

Frequency analysis is used in selecting appropriate time duration and informative 

bands in order to clarify the pattern. Feature extraction is a method that finds some 

characteristics to represent the signal. Features have a highly impact on classification 

accuracy. The BCI system has wildly used effective features to represent EEG signal, 

such as statistical model, probabilistic model, power spectrum, and energy. A 
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classifier which is a learning machine trained by features will recognize the patterns. 

Then, it will decide patterns in order to turn brain waves into an instruction. 

 

In conclusion, a good BCI system must consist of three important modules: 

recording devices that measure brain activity in relative positions, An effecter 

controlled by the related signal for several applications, and an algorithm that is a 

method of the translation signals into commands. The process must appropriately 

choose a method for classification accuracy. Finally, the BCI systems will be 

designed for a specific task. Therefore, we need develop a proper way to deal with a 

suitable application. 

 

  Motivation 

 

The BCI system focuses on offering a human-interacting channel not only 

medical applications but also psychology study. The system is used in medical 

applications which must be in the control of a doctor. The more we have a variety of 

diagnosis, the more accurate a doctor can analyze diseases. The brain interface 

provides easy ways for a doctor to access patient’s brain by using computers. This 

communication is suitable for paralytics to receive appropriate treatment. Even 

through paralytics cannot move their limbs, their brains are still able to respond as 

normal. For example, a paralytic will be able to communicate with other people by 

thinking that makes him can ask for his requirement and state his symptom. In 

addition, not only is the BCI system used in medical analysis but also it can be 

applied to diverse fields. A psychology field directly related to brains gains benefices 

from the BCI system as well. Because psychologists need to know responds of 

subjects during an action, they are able to analyze brain waves from the system. For 

instance, in sport, coaches can study world-class sportsman thinking. 

 

Raw EEG signals need preprocessing to enhance precision of signal 

interpretation. First, each brain activity corresponding a specific frequency range 

occurs, while brains are being stimulated by an experiment task. Informative patterns 

emergence depends on stimulated time; therefore, it is called non-stationary signal, 
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which the signal contains both time and frequency information. We need to come up 

with the solution to a feature-mixed problem. One of the solutions is to use time-

frequency analysis, such as Short Time Fourier Transform (STFT), Wavelet 

Transform (WT), and Wavelet Packet Transform (WPT). When the transforms extract 

time and frequency features, researchers will analyze the data precisely. In addition, 

raw EEG signal has a low signal-to-noise ratio resulting in ineffective interpretation. 

Thus, the raw signal need removing noise to gain a higher signal-to-noise ratio. Noise 

removal is employed to eliminate outlier while retaining significant information. 

 

Brain response of the same action differs from person to person both 

activated areas and frequency components. While a brain is being stimulated by a 

task, related areas release informative brain wave. Thus researchers can install 

electrodes on these areas to measure brain activity. Unfortunately, the activated areas 

are not the same positions in each person. For example, during left hand moving, an 

activity on the right side of the motor area is occurred. However, there are many 

electrodes placed on this area. The highest-powered activity may take place on 

channel C4 or other adjacent positions. Another notion is a variety of frequency 

components. A frequency range of activity depending on subject’s anatomy is also 

specific for a person, but almost all individual ranges are covered in the average-

experimented frequency range. For instance, MU band used in motor activity have an 

approximate range at 8-12 Hz, but an eminent frequency range of a subject may lie on 

10-12 Hz. Thus, proper electrode positions and informative bands are chosen by 

adaptive processing for making the system suitable for an individual. 
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Medical Background 

 

This medical background article derives from a part of fundamentals of 

―EEG Technology Volume 1: Basic Concept and Methods‖ book (Fay et al., 1983) 

and additionally some information from the Internet. 

 

1.  Electroencephalogram (EEG) Signal 

 

An electroencephalogram, abbreviated EEG, is a visible record of the 

amplified electrical activity generated by the nerve cells of the brain. The electrical 

activity can be recorded through the skull by placing electrodes on the scalp. As you 

can see, rising and falling electrical potentials are called brain waves. The sources of 

electrical activity are in the millions of nerve cells called Neurons, which compose the 

brain substance. In recording nerve response, a small area under each electrode is on 

the cortex, which is the outer surface of the brain. The synchronously changing in 

many neurons results in rhythms of various types describing below 

(http://en.wikipedia.org/wiki/Electroencephalography). 

 

Delta is the frequency range up to 4 Hz shown in Figure 1. It tends to be the 

highest in amplitude and the slowest waves. It is seen normally in adults in slow wave 

sleep. It is also seen normally in babies. It may occur focally with subcortical lesions 

and in general distribution with diffuse lesions, metabolic encephalopathy 

hydrocephalus or deep midline lesions. It is usually most prominent frontally in adults 

(e.g. FIRDA - Frontal Intermittent Rhythmic Delta) and posteriorly in children (e.g. 

OIRDA - Occipital Intermittent Rhythmic Delta). 
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Figure 1  The Delta rhythm of EEG signal.  

 

Theta is the frequency range from 4 Hz to 7 Hz shown in Figure 2. Theta is 

seen normally in young children. It may be seen in drowsiness or arousal in older 

children and adults; it can also be seen in meditation. Excess theta for age represents 

abnormal activity. It can be seen as a focal disturbance in focal subcortical lesions; it 

can be seen in generalized distribution in diffuse disorder or metabolic 

encephalopathy or deep midline disorders or some instances of hydrocephalus. On the 

contrary this range has been associated with reports of relaxed, meditative, and 

creative states. 

 

 

 

Figure 2  The Theta rhythm of EEG signal. 

 

Alpha is the frequency range from 8 Hz to 12 Hz shown in Figure 3. Hans 

Berger named the first rhythmic EEG activity he saw as the "alpha wave". This was 

the "posterior basic rhythm" (also called the "posterior dominant rhythm" or the 

"posterior alpha rhythm"), seen in the posterior regions of the head on both sides, 

higher in amplitude on the dominant side. It emerges with closing of the eyes and with 

relaxation, and attenuates with eye opening or mental exertion. The posterior basic 

rhythm is actually slower than 8 Hz in young children (therefore technically in the 

theta range). In addition to the posterior basic rhythm, there are other normal alpha 

http://en.wikipedia.org/wiki/Hertz
http://en.wikipedia.org/wiki/Hans_Berger
http://en.wikipedia.org/wiki/Hans_Berger
http://en.wikipedia.org/wiki/Hans_Berger
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rhythms such as the MU rhythm (alpha activity in the contralateral sensory and motor 

cortical areas that emerges when the hands and arms are idle; and the "third rhythm" 

(alpha activity in the temporal or frontal lobes). Alpha can be abnormal; for example, 

an EEG that has diffuse alpha occurring in coma and is not responsive to external 

stimuli is referred to as "alpha coma". 

 

 

 

Figure 3  The Alpha rhythm of EEG signal. 

 

Beta is the frequency range from 12 Hz to about 30 Hz shown in Figure 4. It 

is seen usually on both sides in symmetrical distribution and is most evident frontally. 

Beta activity is closely linked to motor behavior and is generally attenuated during 

active movements. Low amplitude beta with multiple and varying frequencies is often 

associated with active, busy or anxious thinking and active concentration. Rhythmic 

beta with a dominant set of frequencies is associated with various pathologies and 

drug effects, especially benzodiazepines. It may be absent or reduced in areas of 

cortical damage. It is the dominant rhythm in patients who are alert or anxious or who 

have their eyes open. 

 

 

 

Figure 4 The Beta rhythm of EEG signal. 

 

http://en.wikipedia.org/wiki/Motor_cortex
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Gamma is the frequency range approximately 30–100 Hz shown in Figure 5. 

Gamma rhythms are thought to represent binding of different populations of neurons 

together into a network for the purpose of carrying out a certain cognitive or motor 

function. 

 

 

 

Figure 5  The Gamma rhythm of EEG signal. 

 

Mu ranges 8–13 Hz shown in Figure 6, and partly overlaps with other 

frequencies. It reflects the synchronous firing of motor neurons in rest state. Mu 

suppression is thought to reflect motor mirror neuron systems, because when an 

action is observed, the pattern extinguishes, possibly because of the normal neuronal 

system and the mirror neuron system "go out of sync", and interfere with each other. 

 

 

Figure 6  The Mu rhythm of EEG signal. 

 

2.  Electrode 

 

EEG electrodes are the first instrumental link between the electrical 

generators in the brain. EEG electrodes are pieces of metal held against the scalp with 

a conductive jelly beneath them and wired to inputs of EEG amplifiers. The events 
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that occur at the interface of the electrode and the jelly called an electrolyte shown in 

Figure 7 are great importance because at this interface, current flow within body 

becomes electron flow in the electrode. The formation of two closely spaced and 

opposing charges is equivalent to the plates of a charged capacitor. Consequently, an 

EEG electrode placed on the scalp has the property of a capacitor. Different metals 

develop different voltages when immersed in the same electrolyte. Generally, EEG 

electrodes have two material components by using one electrode material as a 

standard. This electrode is called half-cell potential because single electrode acts as 

half of a battery. Therefore, two materials are used in the construction of electrodes in 

order that electrodes have the property of a battery. The equivalent circuit of the 

electrodes including electrolyte interface is shown in Figure 8. 

 

 

 

Figure 7  Electrode installation and the function of electrolyte. 

 

Source: Fay et al., (1983). 

 



                                                                                                                                    10 

 

 

Figure 8  Equivalent circuit of an electrode.  

 

Source: Fay et al., (1983). 

  

Capacity and resistive elements result in electrode impedance. The 

impedance of each electrode should be equal in order that DC voltage appearing at 

inputs also will be equal. Because of the property of the capacity, electrodes have 

properties of high-pass filter and a time constant. In general, electrodes present high 

impedances to very low frequency signals and low impedances to higher frequency 

signals. Empirical evidence suggests silver-silver chloride electrode is the best not 

only minimum drift of electrode potential but also a very time constant. 

 

2.1  Surface Electrode 

 

       Surface electrodes are metal discs or shallow cups, and the diameter may 

vary from 4 to 10 mm. Most of the cup electrodes have a hole in their center through 

which the electrolyte can be introduced after attachment to the scalp. Before surface 

electrodes are applied, the scalp must be prepared properly, requiring topical cleaning 

at the measured locations. Local scrubbing with a gauze pad using alcohol will 

remove local oils and reduce scalp resistance. After the local area is cleaned, an 

electrolyte, usually an ECG paste containing free chloride ions, is rubbed into it. A 
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small amount of electrolyte is then speared on the surface of the electrode to be placed 

against the scalp, and a cup electrode is filled with electrolyte. The most effective 

method of securing an EEG electrode to the scalp is to use an EEG cap as Figure 9. 

EEG caps are used to hold the electrodes in place to the subject’s head during routine 

EEG tests. With the help of the grid (created by the longitudinal and lateral silicon 

tubes), the electrodes can be placed on the patient’s head and held in place. This is 

done according to the International 10-20 electrodes placement system. There are 

general two types of EEG caps: Standard and Universal caps. Standard caps are 

designed for a quick application, and they are offered in different sizes but they are 

unable to resize. Universal caps have a tube grid that is able to resize totally in any 

direction. So it is possible to adapt the cap size individual to the patients head. 

 

 

 

 

Figure 9  An EEG cap in the 10-20 system.  

 

Source: JNetDirect Biosciences (2008). 

 

2.2  Measurement of Electrode Impedance 

 

       Regardless of electrode types, the impedance (Z) of every electrode 

should be measured before recording begins. This measurement is carried out by 

using an AC impedance meter. Generally, the impedance of subdermal electrodes is 

higher than the impedance of surface electrode limited by surface area. For example, 
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an effective subdermal electrode with a diameter of 12 mm has a surface area of 20 

mm
2
 while the surface area of a 10-mm disc electrode is 78.5 mm

2
. The impedance of 

most electrodes varies with the frequency of the recorded signal, particularly below 

10 Hz. The impedance of Ag-AgCl surface electrode remains constantly low from 10 

Hz to less than 1 Hz. Others confirm the poor impedance of subdermal electrode at 

low frequencies, especially below 0.5 Hz. The use of a DC ohmmeter can determine 

only resistance, but it does not include any capacitive component. Therefore, the use 

of AC impedance meters has been implemented to measure the impedance by using a 

10 to 30 Hz alternatively current (EEG frequency range). Electrode impedance meters 

may be connected directly to board of the EEG for expedient measurement. All 

electrodes expect the tested one are interconnect within the device, and then the 

impedance of the selected electrode is measured against the impedance of the other in 

parallel. A switch consecutively selects electrodes should be below 5 kΩ. After a 

recording has started, it’s necessary from time to time to recheck the impedances, 

particularly if there are unusual asymmetries. Many modern EEG instrument have a 

built-in impedance checking system. If an electrode’s impedance rises above 5 kΩ, it 

should be reduced by adding electrolyte, or the electrode should be replaced as 

necessary.  

 

3.  Electrode Placement 

 

An EEG recording system can be facilitated if there are general agreements 

regarding the locations of the electrodes. The system of electrode placement was 

called ―ten-twenty electrode system‖, and it is widely used throughout the world. The 

basic principles endorsed by the America Electroencephalographic Society are that 

Positions of electrodes should be determined by measurement from standard 

landmarks on the skull. Measurement should be proportional to skull size and shape, 

insofar as possible. Adequate coverage of all parts of the head should be provided 

with standard designated positions. Designation of positions should be in terms of 

brain areas (Frontal, Parietal, etc.) rather than only in numbers, so that communication 

becomes more meaningful.  Anatomical studies should be carried out to determine the 



                                                                                                                                    13 

cortical areas more likely to be found beneath each of the standard electrode positions 

in the average subject. 

 

The locations of the electrodes are shown in Figure 10. Each electrode has a 

standard abbreviation based on the brain area it represents. Odd-numbered positions 

are on the left and even-numbered positions are on the right. 

 

 

Figure 10  Electrode placement of the 10-20 system. 

 

Source: Fay et al., (1983). 

 

The landmark anatomical points referred to by the Committee are shown in 

Figure 11 consisting of nasion, inion, left and right preauricular points. By proceeding 

from these four landmarks, it is possible to establish locations for all of the electrode 

placements shown in Figure 10. 
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Figure 11  Anatomical landmarks. 

 

Source: Fay et al., (1983). 

 

 

 

Figure 12  Anteroposterior and transverse planes. 

 

Source: Fay et al., (1983). 
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Figure 13  Circumferential plane. 

 

Source: Fay et al., (1983). 

 

In Figure 12, the electrodes have been organized by front-to-back lines and 

left-to-right lines. front-to-back lines are identified as the left anteroposterior, the 

sagittal (which is in the midline), and the right anteroposterior. The transverse lines 

are identified ordering from front to back as the frontal polar, the frontal, the central, 

the parietal, and the occipital. Another lines identified is a circumferential line above 

the preauricular points as Figure 13.  

 

4.  Polarity and Localization 

 

The amplifier used for EEG recording is differential amplifiers. Each 

electrode is a recording of the difference in voltage between the electrode terminal 1 

and the electrode terminal 2. If there is no difference in voltage at the input terminals, 

the output will be zero. All EEG instruments, by international agreement, are 

designed so that input 1 more negative than input 2, the wave rises up in an upward 

direction. Further, when input 2 is more negative then input1, the wave declines in a 

downward direction. On the other hands, when input 1 is more positive than input 2, 
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the wave moves in a downward direction, and when input 2 is more positive, the wave 

also moves in an upward direction. 

 

4.1  Bipolar Recording 

 

       Bipolar recording uses multiple electrode derivations (a derivation is a 

pair of electrodes) without any one common electrode connected with input of all the 

channels. Usually, the derivations are arranged so that the electrodes are in a straight 

line called an array, and adjacent channels have an electrode in common as shown in 

Figure 14. The shared electrode (C3) results in activity localization. For example, 

when a negative event occurs near electrode C3, channel 1 has a downing movement 

and upgoing movement at channel 2. In contract, if the event becomes positive, the 

first channel has an upgoing, while the second channel has a downing. 

 

 

 

Figure 14  Two-channel bipolar recording.  

 

Source: Fay et al., (1983). 

 

4.2  Reference Recording 

 

       Reference recording (sometimes called monopolar) of the same EEG 

event would require three amplifiers as shown in Figure 15.  A different scalp 
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electrode is connected to input 1 of each amplifier, and a single common reference 

electrode is connected to input 2 of each amplifier. Normally, the left earlobe (A1) is 

used as the reference (R). If a negative EEG event occurs at C3, it will produce an 

upward movement in channel 2, whereas other channels show no charge. On the other 

hands, if a positive event occurs, the output of channel 2 will move downwardly, and 

others also show no charge. 

 

 

 

Figure 15  Referential recording.  

 

Source: Fay et al., (1983). 

 

4.3  Fields 

 

       Transient focal EEG activities that are negative at the surface of the 

scalp are called surface negative events. By using either bipolar or referential surface 

derivations, it is possible to localize an EEG event to either a small or a large area of 

the scalp called a field. The field can be described in terms of its surface polarity 

shown in Figure 16.  
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Figure 16   Field of brain activity. 

 

Source: Fay et al., (1983). 

 

In Figure 16, it shows the equipotential area, in which the voltage is equal, 

on C3 and P3. However, it is feasible that there may be a higher or a lower potential 

between these locations. This problem can be solved by adding more electrodes 

located between older electrodes to an array. The circle line inside the field is an 

equipotential line. As you see in Figure 16, C3 and P3 were not at the focal point, and 

the field can be drawn schematically on the scalp as in Figure 17. A reference 

recording of the event is displayed in Figure18. 
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Figure 17   Graph representation of the field. 

 

Source: Fay et al., (1983). 

 

 

 

Figure 18   Referential recording in the same event. 

 

Source: Fay et al., (1983). 
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4.4  Contaminated Reference 

 

       In Figure 19, it shows a reference-contaminated situation. A focus is 

presented at T3, the left midtemporal area, with a wide field surrounding it, extending 

as far as F7 and A1. The voltage at A1 is less than that at T3 and equal to the voltage at 

F7. A reference recording is obtained with A1 as the reference. Therefore, the 

reference (A1) is contaminated by activity emerging at T3. As you can see in Figure 

20, 6 channels (Fp1, T5, F3, C3, P3, and O1) have a downward deflection, one channel 

(T3) has a small upward deflection, and one channel (F7) has no deflection. Because 

A1 is common to all channels connecting to input 2 of all channels, these deflections 

can be explained in the following manner: T3 is slightly more negative than A1. T3 

goes to input 1, causing an upward deflection. A1 is more negative than Fp1, T5, F3, C3, 

P3, and O1. Because A1 is on input 2, there is a downward deflection in all channels to 

which input 1 is connected to those electrodes. F7 and A1 are equipotential. 

 

 

 

Figure 19  Schema of field relative to electrodes. 

 

Source: Fay et al., (1983). 
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Figure 20  Output of each designed channels when using A1 as reference. 

 

Source: Fay et al., (1983). 

  

Such involvement of a reference electrode is not uncommon. It is sometimes 

called a contaminated reference. Based on understanding of the polarity rules, it will 

warn researchers to recognize the signs as illustrated in Figure 20. The contaminated 

reference problem can fix by changing the reference from A1 to A2 as shown in Figure 

21. 

 

 

 

Figure 21  Output of each designed channels when using A2 as reference.  

 

Source: Fay et al., (1983). 
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5.  Artifacts 

 

The EEG record is presumed to represent only cerebral activity. In reality, it 

includes undesirable electrical activities that deteriorate the brain signal. These noise 

activities are called artifact. Artifacts are divided into 2 types namely Physiological 

Artifact and Nonphysiological Artifact. Figure 22 shows the EEG record that 

combines artifacts. 

 

 

 

Figure 22  Noise from several sources. 

 

Source: Fay et al., (1983). 

 

5.1   Physiological Artifact 

 

        Physiological artifact is electrical signals originating from other sources 

of the patient. These include muscle potentials, electrocardiographic potentials, 

potentials from the eyes, skin potentials, and glossokinetic potentials. 
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5.2   Nonphysiological Artifact 

 

       Nonphysiological artifact, which can be in the control of researchers, 

may originate from electrodes, switch contacts of the EEG instrument, or external 

signals. 

 

5.2.1  50 Hz Artifact 

 

          50 Hz interference is the greatest nonphysiological noise in the 

EEG recording. There are two ways in which 50 Hz can produce the interference. The 

first is via electrostatic effects caused by capacitance between 50 Hz conductor (the 

AC mains wiring) and other conductor such as EEG electrode wires, metal bed 

frames, or the patient. Any capacitively-induced voltages reach the input of the EEG 

amplifiers. If the voltages at input 1 and input 2 are unequal, the output of the 

recording system will appear 50 Hz artifact. The second source of 50 Hz artifact is an 

electromagnetic effect, caused by electrical appliances such as transformers, power 

supplies in T.V., or EEG-associated equipment. The electrical field generated by these 

devices is inductively coupled to the electrode wires attached to the patient that act as 

the secondary of a transformer. Thus, 50 Hz interference will take place in the EEG 

recording. To eliminate 50 Hz artifact, the use of 50 Hz notch filters will remove all 

except very high voltage interference.  

 

5.2.2  Artifacts Originating from Electrodes 

 

 A common artifact is electrode ―pop‖. This artifact may simulate 

a spike or sharp wave. It is caused by an electrically unstable electrode, by a drying 

electrolyte or by slight mechanical instability. On occasion, an electrode that has not 

been kept clean will develop pops and other electrical transients. 
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5.2.3  Internal Artifact 

 

 All amplifiers have internal noise. Internal noise is the result of 

electron moving randomly in the various parts of the amplifier as well as voltages 

created at all contact points in the circuit. Developers choose components with low 

inherent noise for using in their EEG amplifiers. The greatest source of noise is in the 

early stages of amplification before amplified progressively in later stages. If 

components in amplifiers fail, there may be an increase in noise beyond tolerable 

limits. Therefore, thorough study of manufacturer’s instruction manual will help 

developers know the majority of problems. 
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OBJECTIVES 

 

1.  To classify EEG patterns of hand motor imagery between left and right. 

2.  To study impacts on EEG processing such as types of reference, kinds of filter, 

and the proposed method. 

3.  To design a specific filter for each user. 
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LITERATURE REVIEW 

 

Classification of EEG patterns plays a key role in Brain-Computer Interface 

system (BCIs) especially non-invasive systems (Millá et al., 2007; Stephan et al., 

2009). In hand motor imagery, patterns of brain oscillations reducing amplitudes of 

EEG signal is called Event-Related Desynchronization (ERD) used in classification. 

The oscillation has frequencies between 9-13 Hz corresponding to MU rhythm. 

Another activity related to motor imagery is Beta rhythm that lies on a frequency band 

at 16-24 Hz (Lopes et al., 1857; Pfurtscheller et al., 2006). Because of low signal-to-

noise ratios and head volume contaminated EEG signals, Surface Laplacian Filtering 

have been a standard technique for removing artifacts and increasing signal-to-noise 

ratios (Oostendorp and Oosterom, 1996). In enhancement of EEG signals, initially, 

filter banks were applied to decompose the signal into subfrequency bands (Keng Ang 

et al., 2008). However, the fixed bands require prior knowledge of reactive frequency 

bands. Therefore, an adaptive filter banks has been proposed to determine the most 

discriminative frequency bands by using Fisher ratio of spectral power (Kavitha et al., 

2009). Although the most discriminative bands were selected, the method did not 

consider features from multiple time and frequency indexes. Wavelet Transform 

(WT) has been used to consider the both features. WT implemented by band-pass 

filters is one of the Time-Frequency Analysis (Vetterli, 1992). Even though WT has 

had powerful efficiency to deal with non-stationary signals, the decomposed signals 

have a logarithmic frequency resolution. Wavelet Packet Transform (WPT), a 

developed version of WT, provides 2
level

 frequency resolutions to decompose EEG 

signal into subbands (Ting et al., 2008). According to the perfect reconstruction 

property of the wavelet transform, a wavelet filter can be implemented by 

reconstructing only informative subbands of the decomposed signals (XiaoNan et al., 

2010). Nevertheless, features from subbands of WPT have high dimensionality. The 

large dimensional features influence not only on computation performance but 

classification accuracy also. Hence, Local Discriminant Bases (LDB) algorithm 

attempt to decrease redundancy of the subbands and increase the accuracy by find out 

an optimum tree (the best-basis paradigm). Furthermore, the most distinguished bands 

are proper bands (Saito and Coifman, 1995). 



                                                                                                                                    27 

 

Feature extraction is a key issue in EEG classification. A great variety of 

features have been used to design BCIs, such as amplitude values of raw EEG signal 

(Kaper et al., 2004), Power Spectral Density (PSD) (Millán and Mouriño, 2003), 

energy of wavelet coefficients (Bao GuoXu and Ai Guo, 2008), and Common Spatial 

Pattern (CSP) feature (Ramoser et al., 2000). The feature selection must be 

considered properties of features following; noise and outliers, high dimensionality, 

time information, and small training set. 

 

Several classifiers are used in BCIs. Such classifiers are roughly divided into 

two categories: linear classifiers and non-linear classifiers. Linear classifiers have a 

discriminating function that uses linear functions to distinguish classes. They are 

probably the most popular algorithms for BCIs like Linear Discrimination Analysis 

(LDA) (Pfurturtscheller, 1999), Linear Support Vector Machine (LSVM) (Schlögl et 

al., 2005). On the other hand, non-linear classifiers that use more complicated 

functions are also used in BCI research because, in some cases, there are more 

accurate than linear classifiers. Non-linear classifiers perform more efficient rejection 

of uncertain samples, such as Artificial Neural Network (ANN) (Anderson and 

Sijercic, 1996), Support Vector Machine (SVM) (Kaper et al., 2004), Bayes Decision 

Theory (Kolmorgen and Blanertz, 2002), and Hidden Markov Model (HMM) 

(Solhjoo et al., 2005). 
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The Proposed Method 

 

From an idea that we need to design an adaptive filter, we will design a 

specific filter for each person by selecting appropriate bands using energy of wavelet 

coefficients as a discriminative value. The selected bands will be a part of the 

designed filter implemented by a wavelet filter.  

 

First of all, the signal of interest is decomposed into subbands by Wavelet 

Packet Decomposition (WPD). Every subband is calculated a discriminative value 

using energy coefficient of each band following band selection box in Figure 23. The 

subbands are sorted by descending order of the value, and we select the highest-

valued bands. The wavelet filter is implemented by decomposing the signal into 

subbands. The filter is able to eliminate undesirable bands by remaining the selected 

bands from the previous process and adding zeros to the undesirable bands. Then, we 

reconstruct the selected signals using the perfect reconstruction property. The 

reconstructed signal is the band-pass filtered signal. The diagram below (Figure 23) 

shows the proposed method. 

 

 

 

 

Figure 23  The proposed method of the designed filter. 
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MATERIALS AND METHODS 

 

Materials 

 

Data Description 

 

BCI competition 2008 data set (Brunner et al., 2008) consists of EEG data 

from 9 subjects. The cue-based BCI paradigm consisted of four different motor 

imagery tasks, namely the imagination of movement of the left hand (class 1), right 

hand (class 2), both feet (class 3), and tongue (class 4). Two sessions on different days 

were recorded for each subject. Each session is comprised of 6 runs separated by short 

breaks. One run consists of 48 trials (12 for each of the four possible classes), yielding 

a total of 288 trials per session. At the beginning of each session, a recording of 

approximately 5 minutes was performed to estimate the EOG influence. The 

recording was divided into 3 blocks: (1) two minutes with eyes open (looking at a 

fixation cross on the screen), (2) one minute with eyes closed, and (3) one minute 

with eye movements. The timing scheme of one session is illustrated in Figure 24. 

Note that due to technical problems the EOG block is shorter for subject A04T and 

contains only the eye movement condition. 

 

 

 

Figure 24  Timing scheme of one session. 

 

Source: Brunner et al., (2008). 
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Figure 25  Timing scheme of the paradigm. 

 

Source: Brunner et al., (2008). 

 

The subjects were sitting in a comfortable armchair in front of a computer 

screen. At the beginning of a trial (t = 0 s), a fixation cross appeared on the black 

screen. In addition, a short acoustic warning tone was presented. After two seconds (t 

= 2 s), a cue in the form of an arrow pointing either to the left, right, down or up 

(corresponding to one of the four classes left hand, right hand, foot or tongue) 

appeared and stayed on the screen for 1.25 s. This prompted the subjects to perform 

the desired motor imagery task. No feedback was provided. The subjects were ask to 

carry out the motor imagery task until the fixation cross disappeared from the screen 

at t = 6 s. A short break followed where the screen was black again. The paradigm is 

illustrated in Figure 25. Twenty-two Ag/AgCl electrodes (with inter-electrode 

distances of 3.5 cm) were used to record the EEG; the montage is shown in Figure 26 

left. All signals were recorded monopolarly with the left mastoid serving as reference 

and the right mastoid as ground. The signals were sampled with 250 Hz and 

bandpass-filtered between 0.5 Hz and 100 Hz. The sensitivity of the amplifier was set 

to 100 μV. An additional 50 Hz notch filter was enabled to suppress line noise. 
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Figure 26  Left: Electrode montage corresponding to the international 10-20 system. 

Right: Electrode montage of the three monopolar EOG channels. 

 

Source: Brunner et al., (2008). 
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Methods 

 

1.  Data Rereferencing 

 

A study of a suitable EEG reference is important because the reference will 

influence in the BCIs. In BCI competition 2008, the data set were recorded 

monopolarly with the left mastoid as reference and right mastoid as ground. 

Monopolar recording may cause a contaminated problem. Therefore, we need to study 

EEG rereferencing. This thesis will test Monopolar, Bipolar, Laplacian, and Common 

Average Referenced (CAR). 

 

Researchers use one differential amplifier per a pair of electrodes. A 

differential amplifier gains voltage between the active electrode and the reference 

normally, 1,000-100,000 times. In monopolar recording, the electrode at left mastoid 

is connected to input 2 of all amplifiers as reference, and the active electrodes are 

connected to input 1 of each amplifier. In bipolar recording, an anterior electrode is 

connected to input 1 of each amplifier, and a posterior electrode is connected to the 

other input. Laplacian recording is implemented by subtracting averaged four 

neighborhood channels from the channel of interest. CAR recording is similar to 

monopolar recording, but reference of CAR is mean of all electrodes instead. 

 

2.  Frequency Filtering 

 

EEG signal in motor imagery must be filtered in an 8-30 Hz band involving 

with a motor activity (MU and Beta bands). We use Finite Impulse Response (FIR) 

Filter to implement 8-30 Hz bandpass filters. The FIR filters with odd symmetric 

coefficients shown in Figure 27 result in linear phase response, which is a crucial 

characteristic in signal processing. The FIR filters can be designed by the window 

method. This thesis will test filters designed by the window method namely 

Rectangular, Hanning, Bartless, Hamming, Blackman, and Kaiser windows. Figure 28 

shows the shape of the windows and their impulse responses. 
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Figure 27  Odd symmetric impulse response. 

 

 

 

Figure 28  Left: Characteristics of window designation. Right: Impulse response of 

each window.  

 

3. Wavelet Packet Transform (WPT) 

 

As informative patterns occur from task stimulation, time response of each 

brain is not equal. A variety of pattern occurrence results in non-stationary signal. In 

motor imagery, the pattern is located in 8-30 Hz range which covers MU and Beta 

bands. Because of non-stationary signal, signal analysis must concern not only with 

frequency domain but with time domain also. Therefore, Short Time Fourier 

Transform (STFT), which is one of the most useful time-frequency transforms, is used 

for analyzing non-stationary signal. Wavelet Transform (WT) (Selesnick, 2007) was 

developed as an alternative analysis to overcome the fixed window problem in STFT. 

Mother wavelets, similar to window in STFT, can adjust their shapes by shifts and 

dilation parameters. Discrete Wavelet Transform (DWT) can be implemented by half 

cut-off high-pass and low-pass filters. The output of the high-pass filter is represented 
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as details, and the output of the low-pass filter is represented as approximation. The 

approximation will be decomposed into detail and approximation in the next level 

further. However, details that are not computed in lower levels may contain 

significant information. Consequently, WPT will compute details as well to remain 

information and provide more frequency resolutions. 

 

4. Band Selection 

 

In band selection, we intend to select the most informative frequency bands 

for each individual. The bands are selected by a discriminative value. The value can 

be determined by energy of wavelet coefficients seeing more details Appendix A. The 

pre-processed signal is decomposed by the decomposition. However, because the 

packet decomposition produces 2level  subbands, it’s redundant. Therefore, we should 

reduce dimensions of the decomposition by finding an optimal tree (the best-basis 

paradigm). 

 

Local Discriminant Bases (LDB) algorithm (Saito and Coifman, 1995) has 

been used in the dimensional reduction. LDB will find an optimal tree following a 

discriminative value with the bottom-up search. As an objective of this algorithm is to 

select an efficient tree, there is no any information loss after this process. The bands 

in the tree are sorted by the discriminative value. Because high discriminative values 

mean highly different patterns between the two classes, we will select the highest-

valued band(s) in order to implement in the further adaptive filter. 

 

5. Wavelet Filter 

 

Owning to the perfect reconstruction property of the wavelet transform, it’s 

able to implement a band-pass filter. The filter is computed by decomposing and 

reconstructing only the selected bands. First, original signal is decomposed by WPD, 

and then we select bands from the previous process and remove other bands by setting 

all values in the undesirable subbands to zeros. Subsequently, the reconstructed signal 

is the band-pass filtered signal (XiaoNan et al., 2010). 
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6. Feature Extraction 

 

The characteristic finding to represent the signal is called Feature Extraction. 

The feature is directly related to classification accuracy because if we choose good 

features representing the signal, the feature will contain information enough to be 

identified. In this thesis, we consider variances of CSP signal as features that 

popularly represent EEG signal. It’s well known that raw EEG signal has a poor 

spatial resolution because of volume conduction. Thus, the signal of interest can only 

be observed after appropriate signal processing. The most useful approach is Common 

Spatial Pattern (CSP) technique (Ramoser et al., 2000). This approach calibrates the 

system specific for each user. Besides, CSP technique maximizes variance of the 

filtered signal under one condition (classify left and right hand motor imagery), while 

minimizing it for other conditions. In CSP analysis, EEG data are represented as an 

N T  matrix E, where N  is a number of channels and T  is a number of task 

samples. First, the normalized covariance is obtained by Equation 1, where the trace 

function is summation of the diagonal matrix. 

 

 
( )

EE
C

trace EE





 (1) 

 

In this paper, we will classify between left hand ( l ) and right hand ( r ) motor 

imagery tasks. Thus, lC  is calculated by averaging over the trials of the left hand task 

group, and rC  is calculated similarly. cC , which is the spatial covariance, can find 

eigenvalues and eigenvectors following Equation 2-3. cU  is the matrix of the 

eigenvectors and c  is the diagonal matrix of the eigenvalues. Before next processing, 

the eigenvectors in matrix cU  are sorted in descending order of the eigenvalues in 

matrix
 c . 

 

 C l rC C C   (2) 

 C C C CC U U   (3) 
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To decorrelate relationship among variables, the whitening transformation 

has been used.  

 

 1

C CP U    (4) 

 

Subsequently, during decorrelation in Equation 5-6, lC  and rC  are 

transformed to lS  and rS  by using matrix P  in Equation 4 resulting in the shared 

eigenvector matrix. Equation 7 shows the shared eigenvalues of each class, where I  

is the identity matrix. l  and r  are the eigenvalue matrix of each class after the 

whitening transforming, and B  is the transformed eigenvector matrix. Therefore, the 

eigenvector with the largest eigenvalue in lS  has the smallest eigenvalue in rS . 

 

 l lS PC P , r rS PC P  (5) 

 l lS B B  , r rS B B   (6)  

 l r I    (7) 

 

To construct the projection matrix as Equation 8, first and last m  

eigenvector of matrix B  are chosen, where W  is the transformation that uses for the 

later data. 

 

 W B P  (8) 

 Z WE  (9) 

 

When the signal matrix E  multiplies the transformation W , Z is the CSP 

signal matrix following Equation 9. Because the transformation maximizes variance 

of the signal, features representing the signal should be the variance computed from 

Equation 10, where p  is a number of channels of interest.  Function var is variance of 

the signal. 
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7. Classifier 

 

 A learning machine that is able to recognize patterns of a signal must be 

trained by these features of the pattern. Most learning machine techniques are used in 

pattern recognition as classifiers. Several classifiers are available, but Bayes Classifier 

based on probability is chosen in this thesis. Bayes decision models Guassian 

equations from mean and variance of the two-class training set in order to recognize 

the patterns. Bayes Decision Theory has been proposed as a classifier which is about 

to probabilistic terms terms (Kolmorgen and Blanertz, 2002). The solution of Bayes 

theory is to maximize the posterior probabilities ( | )iP x . However, ( | )iP x  cannot 

be directly calculated, but Bayes formula allows us to calculate ( | )iP x  from the 

prior probabilities ( | )iP x   and the probability of each class ( )iP   given as equation 

11. The feature probability ( )P x  can be ignored because it must be equal every 

comparison. Features that represent the signal each class are calculated the posterior 

probability by equation 12.  

 

 
( | ) ( )

( | )
( )

i i
i

P x P
P x

P x

 
   (11) 

 

If the features belonging to which class have the probability higher than that 

of the other one, the signal represented by these features will be decided as this class.  

 

 ( ) ln ( | ) ln ( )i i ig x P x P    (12) 

 1 2( ) ( ) ( )g x g x g x   (13) 
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As a result, one of the most convenient ways to classify patterns is to use the 

decision function in Equation 13. The decision rule is able to classify a two-class data 

by deciding as class 1 when ( ) 0g x  ; otherwise deciding as class 2. 

 

8. Procedure 

 

 

 

Figure 29  Flow chart of the experiment. 

 

To follow the flow chart in Figure 29, the data set is equally separated into 2 

sets: training set and tested set. The training set is filtered by Kaiser 8-30 Hz band-

pass filter to remove irrelevant frequency components. Next, the filtered signal is 

decomposed into binary-tree subbands, and the subbands are sorted by the 

discriminative value. The highest-valued bands are selected as appropriate bands in 

order to use in the adaptive filter designation. The adaptive filter is used for both 

training set and tested set. After adaptive filtering, the filtered signal is extracted 

features. The learning machine is trained by these features by Bayes decision theory. 

The theory models probabilistic equations to classify the patterns. For the tested set, it 

is filtered by the wavelet filter. Then, the filtered signal is extracted the features. 

Finally, Bayes equation is applied to classify the test set. 
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RESULTS AND DISCUSSION  

 

Results 

 

First of all, we trim the data set into trials. Each the EEG signal is cut from 

t=3s to t=6s of each execution, and the signal is sampled at 250 Hz. Therefore, the 

signal has 750 samples. Average of all trials (channel C3 and C4) are shown in Figure 

30. The next step is to filter the signal in order to remove irrelevant frequency 

components. The FIR filter is designed by Kaiser window method. The specification 

of the designed filter is shown in Figure 31. The signal is filtered by the designed 

filter, and comparison between the original signal and the filtered signal is shown in 

Figure 32. 

 

 

 

Figure 30  Averaged signal of all trials. 
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Figure 31  Specification of the designed FIR filter. 
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Figure 32  A: Comparison between original signal and filtered signal (channel C3). B: 

Comparison between original signal and filtered signal for (channel C4). 
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In the band selection, the signal needs decomposing by WPD. The signal is 

decomposed into 6 levels of the packet tree by Daubechies4 mother wavelet shown in 

Figure 33. The 2level subbands of the tree can be reduced the dimensions by finding an 

optimum tree using LDB. The bands in the tree are sorted by the discriminative value. 

We select the highest-valued bands as appropriate bands of each person. For example, 

in subject A01, the selected band of 3C and 4C  approximately are 10-12 Hz and 12-16 

Hz respectively shown in Figure 34. Next, the wavelet filtered signal is shown in 

Figure 35.  

 

 

 

Figure 33  Daubichies4 mother wavelet that uses in the decomposition. 

 

 

Band Range (Hz) 

  9.7-11.7 11.7-15.6  

C3      

C4     

 

 

Figure 34  The best bands produced by subject A01. 



43 

 

After wavelet filtering, the filtered signal is extracted features by CSP 

technique. The algorithm maximized variance of the filtered signal. Maximization of 

the filtered signal is shown in Figure 36. Subsequently, we calculate the variance from 

the processed signal as features. These features are used to train the learning machine. 

Bayes equations are modeled by the mean and the standard deviation of the features 

for deciding patterns.  

 

 

 

 

Figure 35  Filtered signal by the wavelet filter. 
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Figure 36  Maximization of the signal by CSP.  

 

1.  Rereferencing 

 

Besides, although there are 72 samples per class in training set and test set, 

some samples for each person are improper to use in classification, which are labeled 

by experts. Thus, samples of each person may not be equal. The number of samples in 

the classification is shown in Table1.  

 

Table 1  The number of training and test set. 

 

 

Person 

Task 

Left training  Left test Right training  Right test 

A01 69 72 69 70 

A02 67 71 69 71 

A04 62 59 67 57 

A05 63 70 66 65 

A07 67 71 66 69 

A09 53 65 63 65 
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This thesis studies a reference impact on classification accuracy. Therefore, 

we vary types of reference in the experiments called rereferencing. After 

rereferenecing, the EEG signal is filtered and is extracted features by using variances 

of CSP signal. The features train Bayes classifier for deciding pattern in test set. Then, 

we select the reference suitable for hand motor imagery task. 

 

Table 2  Classification accuracy of various references (Left hand task). 

 

 

Reference 

Person 

A01 A02 A04 A05 A07 A09 Average 

Mon1 26.76% 64.78% 55.93% 94.28% 26.76% 33.84% 50.39% 

Mon2 40.84% 66.19% 88.13% 67.14% 26.76% 76.92% 60.99% 

Mon3 57.74% 60.56% 72.88% 90% 61.97% 60% 67.19% 

Lap1 90.14% 61.97% 16.94% 55.71% 59.15% 18.46% 50.39% 

Lap2 92.95% 80.28% 27.11% 77.14% 59.15% 3.07% 56.61% 

Lap3 61.97% 70.42% 81.35% 82.85% 53.52% 78.46% 71.42% 

Bi1 70.42% 66.19% 66.10% 87.14% 32.39% 50.76% 62.16% 

Bi2 71.83% 94.36% 93.22% 68.57% 85.91% 72.30% 81.03% 

CAR1 84.50% 85.91% 27.11% 91.42% 12.67% 23.07% 54.11% 

CAR2 81.69% 81.69% 20.33% 72.85% 12.67% 32.30% 50.25% 

CAR3 52.11% 85.91% 67.79% 91.42% 70.42% 95.38% 77.17% 
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Table 3  Classification accuracy of various references (Right hand task). 

 

 

Reference 

Person 

A01 A02 A04 A05 A07 A09 Average 

Mon1 81.42% 28.16% 56.14% 0% 81.15% 76.92% 53.96% 

Mon2 91.42% 33.80% 36.84% 26.15% 63.76% 60% 51.99% 

Mon3 88.57% 52.11% 38.59% 9.23% 40.57% 72.30% 50.22% 

Lap1 40% 47.88% 92.98% 55.38% 95.65% 89.23% 70.18% 

Lap2 32.85% 32.39% 73.68% 13.84% 94.20% 100% 57.82% 

Lap3 85.71% 45.07% 21.05% 13.84% 53.62% 73.84% 48.85% 

Bi1 90% 40.84% 71.92% 1.53% 66.66% 63.07% 55.67% 

Bi2 91.42% 5.63% 17.54% 15.38% 17.39% 33.84% 30.20% 

CAR1 30% 12.67% 73.68% 12.30% 44.92% 78.46% 42.00% 

CAR2 31.42% 22.53% 66.66% 21.53% 62.31% 76.92% 46.89% 

CAR3 95.71% 26.76% 40.35% 12.30% 23.18% 21.53% 36.63% 

 

Table 4  Classification accuracy of various references (Both hand task). 

 

 

Reference 

Person 

A01 A02 A04 A05 A07 A09 Average 

Mon1 54.09% 46.47% 56.03% 47.14% 53.96% 55.38% 52.17% 

Mon2 66.13% 50% 62.48% 46.64% 45.26% 68.46% 56.49% 

Mon3 73.15% 56.33% 55.73% 49.61% 51.27% 66.15% 58.70% 

Lap1 65.07% 54.92% 54.96% 55.54% 77.40% 53.84% 60.22% 

Lap2 62.90% 56.33% 50.41% 45.49% 76.67% 51.53% 57.22% 

Lap3 73.84% 57.74% 51.20% 48.35% 53.57% 76.15% 60.14% 

Bi1 80.21% 53.52% 69.01% 44.34% 49.53% 56.92% 58.92% 

Bi2 81.62% 50% 55.38% 41.93% 51.65% 53.07% 55.60% 

CAR1 57.25% 49.29% 50.40% 51.86% 28.80% 50.76% 48.06% 

CAR2 56.55% 52.11% 43.50% 47.19% 37.49% 54.61% 48.54% 

CAR3 73.91% 56.33% 54.07% 51.86% 46.80% 58.46% 56.90% 
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Mon1 = two-channel monopolar reference (C3 and C4) 

Mon2 = three-channel monopolar reference (C3, Cz, and C4) 

Mon3 = seventeen-channel monopolar reference (C5, FC3, C3, CP3, FC1, C1, 

CP1, FCz, Cz, CPz FC2, C2, CP2, FC4, C4 CP4, and C6) 

Lap1 = two-channel laplacian reference (C3 and C4) 

Lap2 = three-channel laplacian reference (C3, Cz, and C4) 

Lap3 = seventeen-channel laplacian reference (C5, FC3, C3, CP3, FC1, C1, 

CP1, FCz, Cz, CPz FC2, C2, CP2, FC4, C4 CP4, and C6) 

Bi1 = two-channel bipolar reference (FC3- CP3 and FC4- CP4) 

Bi2 = three-channel bipolar reference (FC3- CP3, FCz- CPz, and FC4- CP4) 

CAR1 = two-channel CAR reference (C3 and C4) 

CAR2 = three-channel CAR reference (C3, Cz, and C4) 

CAR3 = seventeen-channel CAR reference (C5, FC3, C3, CP3, FC1, C1, CP1, 

FCz, Cz, CPz FC2, C2, CP2, FC4, C4 CP4, and C6) 

 

The results in Table 2-4 indicate that ―Lap1‖ is the best result for hand motor 

imagery. As a result, we used this reference in all our experiments further. 

 

2.  Filtering 

 

We then test the various impacts of FIR static filters. The results in Table 5-7 

indicate that the Kaiser filter produces the best result. 
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Table 5  Classification accuracy of various FIR filters (Left hand task). 

 

 

Filters 

Person 

A01 A02 A04 A05 A07 A09 AVG 

Bartlett 87.32% 74.64% 30.50% 55.71% 52.11% 20% 70.18% 

Blackman 87.32% 81.69% 57.62% 64.28% 52.11% 24.61% 61.27% 

Gaussian 87.32% 74.64% 22.03% 61.42% 49.29% 20% 52.45% 

Hamming 87.32% 78.87% 38.98% 64.28% 47.88% 24.61% 56.99% 

Hanning 87.32% 78.87% 40.67% 65.71% 47.88% 24.61% 57.51% 

Kaiser 90.14% 61.97% 16.94% 55.71% 59.15% 18.46% 50.39% 

Rectangular 88.73% 74.64% 22.03% 58.57% 63.38% 20% 54.55% 

 

Table 6  Classification accuracy of various FIR filters (Right hand task). 

 

 

Filters 

Person 

A01 A02 A04 A05 A07 A09 AVG 

Bartlett 50% 32.39% 61.40% 47.69% 62.31% 90.76% 57.42% 

Blackman 47.14% 29.57% 42.10% 44.61% 60.86% 90.76% 52.50% 

Gaussian 54.28% 30.98% 87.71% 46.15% 78.26% 93.84% 65.20% 

Hamming 52.85% 30.98% 50.87% 43.07% 60.86% 90.76% 54.89% 

Hanning 52.85% 30.98% 42.10% 41.53% 60.86% 90.76% 53.18% 

Kaiser 40% 47.88% 92.98% 55.38% 95.65% 89.23% 70.18% 

Rectangular 52.85% 33.80% 87.71% 49.23% 75.36% 93.84% 65.46% 
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Table 7  Classification accuracy of various FIR filters (Both hand task). 

 

 

Filters 

Person 

A01 A02 A04 A05 A07 A09 AVG 

Bartlett 68.66% 53.52% 45.95% 51.70% 57.21% 56.15% 55.53% 

Blackman 67.23% 55.63% 49.86% 54.45% 56.49% 57.69% 56.89% 

Gaussian 70.80% 52.81% 54.87% 53.79% 63.77% 56.92% 58.82% 

Hamming 70.09% 54.92% 44.93% 53.68% 54.37% 57.69% 55.94% 

Hanning 70.09% 54.92% 41.39% 53.62% 54.37% 57.69% 55.34% 

Kaiser 65.07% 54.92% 54.96% 55.54% 77.04% 53.84% 60.22% 

Rectangular 70.79% 54.22% 54.87% 53.90% 69.37% 56.92% 60.01% 

 

As a consequence, we will use the two-channel Laplacian reference with 

Kaiser window filtering as a benchmark. 
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3.  Individual Results 

 

3.1  Subject A01 

 

For person 1, ―A01‖, we make this experiment to test our proposed filter 

by varying the number of remaining bands. While Kaiser filtering produces the best 

result in static filters, the adaptive filter using the highest-valued band can improve 

the result of the pervious method from 65.07 % to 68.16 %. Classification accuracy of 

the improvement is shown in Table 8.   

 

Table 8  Classification accuracy of the proposed method (A01). 

 

The number of band reconstruction Accuracy (%) 

Left Right All 

10 99.29 12.85 55.72 

9 100 2.85 51.42 

8 100 4.28 52.14 

7 100 2.85 51.42 

6 100 2.85 51.42 

5 100 2.85 51.42 

4 100 2.85 51.42 

3 100 0 50 

2 100 0 50 

1 56.33 80 68.16 

The Kaiser filter (8-30 Hz) 90.14 40 65.07 

 

Table 9 shows the remaining band of C3 and C4. The number of remaining 

bands of C3 and C4 must be equal. In this person, the appropriate band of C3 is S(6,5) 

equivalent 9.76-11.71 Hz, and the appropriate band of C4 is S(5,3) equivalent 11.71-

15.62 Hz. 
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Table 9  The remaining band of C3 and C4 (A01). 

 

The remaining band for C3 Frequency range (Hz) 

S(6,5) 9.76-11.71 

 

The remaining band for C4 Frequency range (Hz) 

S(5,3) 11.71-15.62 
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4.2  Subject A02 

 

For person 2, ―A02‖, we make this experiment to test our proposed filter 

by varying the number of remaining bands. While Kaiser filtering produces the best 

result in static filters, the adaptive filter using the highest-valued bands can improve 

the result of the pervious method from 54.92 % to 61.97 %. Classification accuracy of 

the improvement is shown in Table 10.   

 

Table 10  Classification accuracy of the proposed method (A02). 

 

The number of band reconstruction Accuracy (%) 

Left Right All 

10 83.09 33.80 58.45 

9 90.14 25.35 57.74 

8 76.05 45.07 60.56 

7 88.73 33.80 61.26 

6 92.95 22.53 57.74 

5 83.09 40.84 61.97 

4 83.09 40.84 61.97 

3 80.28 36.61 58.45 

2 84.50 15.49 50 

1 83.09 22.53 52.81 

The Kaiser filter (8-30 Hz) 61.97 47.88 54.92% 

 

Table 11 shows the remaining bands of C3 and C4. In this person, the 

appropriate band of C3 is S(6,12), S(6,6), S(6,0), and S(5,2) equivalent 23.43-25.39 

Hz, 11.71-13.67 Hz, 0-1.95 Hz, and 7.8-11.71 Hz. The appropriate band of C4 is 

S(4,1), S(6,12), S(6,0), and S(6,14) equivalent 7.81-15.62 Hz, 23.43-25.39 Hz, 0-1.95 

Hz, and 27.34-29.29 Hz. 
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Table 11  The remaining bands of C3 and C4 (A02). 

 

The remaining bands for C3 Frequency range (Hz) 

S(6,12) 23.43-25.39 

S(6,6) 11.71-13.67 

S(6,0) 0-1.95 

S(5,2) 7.8-11.71 

 

The remaining bands for C4 Frequency range (Hz) 

S(4,1) 7.81-15.62 

S(6,12) 23.43-25.39 

S(6,0) 0-1.95 

S(6,14) 27.34-29.29 
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4.3  Subject A04 

 

For person 3, ―A04‖, we make this experiment to test our proposed filter 

by varying the number of remaining bands. While Kaiser filtering produces the best 

result in static filters, the adaptive filter using the highest-valued bands can improve 

the result of the pervious method from 54.96 % to 60.83 %. Classification accuracy of 

the improvement is shown in Table 12.   

 

Table 12  Classification accuracy of the proposed method (A04). 

 

The number of band reconstruction Accuracy (%) 

Left Right All 

10 27.11 85.96 56.54 

9 27.11 89.47 58.29 

8 23.72 82.45 53.09 

7 3.38 85.96 44.67 

6 3.38 85.96 44.67 

5 18.64 80.70 49.67 

4 22.03 73.68 47.85 

3 18.64 89.47 54.05 

2 32.20 89.47 60.83 

1 20.33 89.47 54.90 

The Kaiser filter (8-30 Hz) 16.94 92.98 54.96 

 

Table 13 shows the remaining bands of C3 and C4. In this person, the 

appropriate band of C3 is S(5,7) and S(6,12) equivalent 27.34-31.25 Hz and 23.43-

25.39 Hz. The appropriate band of C4 is S(6,5) and S(4,3) equivalent 9.76-11.71 Hz 

and 23.43-31.25 Hz. 
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Table 13  The remaining bands of C3 and C4 (A04). 

 

The remaining bands for C3 Frequency range (Hz) 

S(5,7) 27.34-31.25 

S(6,12) 23.43-25.39 

 

The remaining bands for C4 Frequency range (Hz) 

S(6,5) 9.76-11.71 

S(4,3) 23.43-31.25 
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4.4  Subject A05 

 

For person 4, ―A05‖, we make this experiment to test our proposed filter 

by varying the number of remaining bands. While Kaiser filtering produces the best 

result in static filters, the adaptive filter using the highest-valued bands can improve 

the result of the pervious method from 55.54 % to 58.35 %. Classification accuracy of 

the improvement is shown in Table 14.   

 

Table 14  Classification accuracy of the proposed method (A05). 

 

The number of band reconstruction Accuracy (%) 

Left Right All 

10 17.41 86.15 51.64 

9 15.71 86.15 50.93 

8 15.71 84.61 50.16 

7 18.57 78.46 48.51 

6 97.14 3.07 50.10 

5 87.14 18.46 52.80 

4 64.28 49.23 56.75 

3 62.85 53.84 58.35 

2 100 9.23 54.61 

1 67.14 27.69 47.41 

The Kaiser filter (8-30 Hz) 55.71 55.38 55.54 

 

Table 15 shows the remaining bands of C3 and C4. In this person, the 

appropriate band of C3 is S(6,6), S(6,7), and S(6,0) equivalent 11.71-13.67 Hz, 13.67-

15.62 Hz, and 0-1.95 Hz. The appropriate band of C4 is S(6,6), S(6,2), and S(6,7) 

equivalent 11.71-13.67 Hz, 3.9-5.85 Hz, and 13.67-15.62 Hz. 
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Table 15  The remaining bands of C3 and C4 (A05). 

 

The remaining bands for C3 Frequency range (Hz) 

S(6,6) 11.71-13.67 

S(6,7) 13.67-15.62 

S(6,0) 0-1.95 

 

The remaining bands for C4 Frequency range (Hz) 

S(6,6) 11.71-13.67 

S(6,2) 3.9-5.85 

S(6,7) 13.67-15.62 
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 4.5  Subject A07 

 

For person 5, ―A07‖, we make this experiment to test our proposed 

filter by varying the number of remaining bands. This is a case that Kaiser filtering 

produces the best result, whereas the adaptive filter using the highest-valued band(s) 

cannot improve the result of the pervious method shown in Table 16.   

 

Table 16  Classification accuracy of the proposed method (A07). 

 

The number of band reconstruction Accuracy (%) 

Left Right All 

10 43.66 88.40 66.03 

9 42.25 88.40 65.32 

8 67.60 75.36 71.48 

7 63.38 76.81 70.09 

6 60.56 73.91 67.23 

5 78.87 40.57 59.72 

4 66.19 17.39 41.79 

3 50.70 23.18 36.94 

2 97.18 4.34 50.76 

1 57.74 39.13 48.43 

The Kaiser filter (8-30 Hz) 59.15 95.65 77.40 
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4.6  Subject A09 

 

For person 6, ―A09‖, we make this experiment to test our proposed filter by 

varying the number of remaining bands. While Kaiser filtering produces the best 

result in static filters, the adaptive filter using the highest-valued band can improve 

the result of the pervious method from 53.84 % to 62.30 %. Classification accuracy of 

the improvement is shown in Table 17.   

 

Table 17  Classification accuracy of the proposed method (A09). 

 

The number of band reconstruction Accuracy (%) 

Left Right All 

10 15.38 98.46 56.92 

9 20 98.46 59.23 

8 20 98.46 59.23 

7 16.92 98.46 57.69 

6 15.38 98.46 56.92 

5 15.38 98.46 56.92 

4 15.38 98.46 56.92 

3 20 98.46 59.23 

2 16.92 98.46 57.69 

1 26.15 98.46 62.30 

The Kaiser filter (8-30 Hz) 18.46 89.23 53.84 

 

Table 18 shows the remaining band of C3 and C4. In this person, the 

appropriate band of C3 is S(6,7) equivalent 13.67-15.62 Hz. The appropriate band of 

C4 is S(6,7) equivalent 13.67-15.62 Hz. 
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Table 18  The remaining bands of C3 and C4 (A09). 

 

The remaining band for C3 Frequency range (Hz) 

S(6,7) 13.67-15.62 

 

The remaining band for C4 Frequency range (Hz) 

S(6,7) 13.67-15.62 

 

 

5.  Overall results 

 

The proposed method improves the classification accuracy comparing with 

the benchmark method (the best static filter). Our adaptive filter produce results more 

accurate than that of Kaiser filter (the benchmark). Comparison between the 

benchmark and the proposed method is shown in Table 19-21. The improvement of 

using the proposed method is approximately 3.5 %. 

  

Table 19  The improvement of using the proposed method (Left hand task). 

 

 

Filters 

Person 

A01 A02 A04 A05 A07 A09 AVG 

Kaiser 90.14% 61.97% 16.94% 55.71% 59.15% 18.46% 50.39% 

Proposed 56.33% 83.09% 32.20% 62.85% 67.60% 26.15% 54.70% 

 

Table 20  The improvement of using the proposed method (Right hand task). 

 

 

Filters 

Person 

A01 A02 A04 A05 A07 A09 AVG 

Kaiser 40% 47.88% 92.98% 55.38% 95.65% 89.23% 70.18% 

Proposed 80% 40.84% 89.47% 53.84% 75.36% 98.46% 72.99% 
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Table 21  The improvement of using the proposed method (Both hand task). 

 

 

Filters 

Person 

A01 A02 A04 A05 A07 A09 AVG 

Kaiser 65.07% 54.92% 54.96% 55.54% 77.04% 53.84% 60.22% 

Proposed 68.16% 61.97% 60.83% 58.35% 71.48% 62.30% 63.84% 
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Discussion 

 

BCI competition 2008 provides data set for motor imagery. While they were 

recording, the experts marked trails that should not use in experiments because of 

subject mistake or artifacts. Therefore, we need to cut some unusable trails out 

following the provider suggestion. 

 

In the training process, the raw signal needs to be filtered by an 8-30Hz 

band-pass filter because the signal must be sure that it will contain only activities 

related to hand motor imagery. On the other hand, the test process doesn’t need the 

filter as the adaptive filter which is trained by the proposed method should select 

appropriate bands already. 

 

 Before selecting the bands the decomposed tree should be reduced 

dimensions. We use Local Discriminant Bases (LDB) to find the optimum tree. Now, 

we have reduced dimensions from 2
level 

subbands to appropriate bands, but there is no 

loss after this process. In the reduction and selection the appropriate band, it also uses 

a discriminative value. The values can be found by several functions, but in this 

experiment, we use energy of wavelet coefficients using Daubichies4 mother wavelet. 

 

 The classification uses Bayes classifier related to probabilities. Because the 

classifier has no a random function, results of the classification every training must be 

the same. 
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CONCLUSION AND RECOMMENDATIONS 

 

Conclusion 

 

In hand motor imagery, the two-channel (C3 and C4) Laplacian reference 

with Kaiser filtering is selected because the reference produces the best result in the 

experiment. A main problem of EEG signal is that brain activity of each person has 

different frequency components. Therefore, significant information of each person 

lies on different frequency bands. We have to select highly information bands for each 

person by using an adaptive filter. The proposed adaptive filter implemented by 

Wavelet Transform is able to select the most informative bands using a discriminative 

value in order to eliminate undesirable frequency components. The proposed method 

can improve classification accuracy from the benchmark. In summary, every BCI 

system should be designed for each person because the specific system can produce 

the best result. If the BCI system can better communicate between a brain and 

computers, we will utilize abundant benefices from the system. 
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Recommendations 

 

Each subject has not only different informative bands but also various 

activated areas. For this reasons, we have to design a system specific for each user. In 

this thesis, we design the adaptive filter based on band selection using the 

discriminative value. The value plays an important role in measuring difference of 

patterns. For the first aspect, the further research should study about cost functions 

which are the most appropriate for hand motor imagery. 

 

In addition, the second aspect is that positions of electrodes producing 

informative patterns represent by a pair of electrodes (C3 and C4 for this thesis). The 

subsequent research should find out the best pair of electrodes for each person in 

motor imagery tasks. 
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Appendix A 

The cost function (energy of wavelet coefficients) 
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A function that computes the values is called a cost function. Therefore, the 

high discriminative value means high difference of patterns between the two classes. 

We consider the cost function based on WPT and Euclidean Distance following 

Equation (A-C) [8]. Let’s denote ( )

, , ( )c

i j l iW x  as the decomposition coefficients of signal 

c

ix  at the subband ( , )S j k , where l  is the index of the location of the decomposition 

coefficients. Let 
CN be the number of signals belonging to class c . ( , )ce j k  is the 

normalized energy vector of class  c , D  is Euclidean Distance, and ( ( , ))H S j k  is the 

discriminant power of the subband. As a consequence, the highest-valued bands are 

selected as appropriate bands. 
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Abstract— The electroencephalogram (EEG) 

signal is one of the most well-known signals 

widely used in Brain Computer Interface system. 
This paper presents the new method of frequency 

decomposition in classification. Discrete Wavelet 

Packet Transform (DWPT) allows adjustable 

resolution of frequencies instead of Discrete 

Wavelet Transform (DWT), which decomposes 

the signal into a logarithmic frequency 

resolution. Subsequently, the Multilayer 

Percepton Neural Network (MLPNN) is used as a 

classifier in order to classify two of Motor 

Imagery (MI) tasks based on EEG signal. The 

results demonstrate the best accuracy of two-

class (left and right hand motor imagery) 

classification is 65.56%.   

 

Keywords— BCIs, EEG, Motor Imagery, DWT, 

DWPT, MLPNNs 

 

I. INTRODUCTION 

The classification of EEG patterns plays an 

important role in Brian-Computer Interface 

system (BCIs), which is an alternative channel 

to communicate between a human brain and 

computers. There are many applications for 

BCIs such as a computer cursor, computer 

graphic or a robotic limb. 

Electroencephalogram (EEG) is a non-invasive 

system, which records the signal from a human 

scalp. The system is easy to implement, but it 

has low signal-to-noise ratio. The brain waves 

recorded from a human scalp have small 

amplitude of approximately 100 µV. The 

frequency range of these brain waves from 0.5 

to 100 Hz, and their characteristics are highly 

dependent on the degree of activity of the 

cerebral [1].  

To increase performance of the BCIs, 

researchers have to understand the dynamics of 

brain oscillations better. In Motor Imagery, 

which is an imagination of movement, primary 

sensory and motor areas are activated [2]. The 

brain activity can be interpreted because brain 

activity associated with actual and imagined 

hand movement has similar topographies [3]. 

During motor imagery, sensorimotor activity 

changes the oscillatory patterns resulting in 

amplitude suppression called Event Related 

Desynchronization (ERD) or amplitude 

enhancement called Event Related 

Synchronization (ERS) on MU rhythm (7-13 

Hz) and Beta rhythm (18-25 Hz) [1].  

In this paper, we consider the time-

frequency transform adjustable frequency 

resolutions. Although Discrete Wavelet 

Transform (DWT) has been used in many 

applications of Bio-signal processing [4] 

sometimes, it doesn’t provide suitable 

frequency range. Owning to DWT, which 

produces good frequency localization at low 

frequencies and good time localization at high 

frequencies [5], the decomposed signals locate 

in sub-octave band. For solving this problem, 

Discrete Wavelet Packet Transform (DWPT) is 

used to extract wavelet coefficients from 

adaptable band. In DWPT [6], frequency range 

of each sub-band will be more specific than 

that of DWT. In the part of classification, The 

Multilayer Percepton Neural Network 

(MLPNN) is used as classifier, which is a 

powerful tool for pattern recognition [7]. 

In the second chapter, we explain EEG pre-

processing, how to use DWPT to decompose 

the signal, and statistical models of feature 

extraction. Also, MLPNN is used as classifier 

trained by the Levenberg-Marquardt training 

algorithm. The third section presents results of 

the classification. Conclusions are given in the 

fourth section. 
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II. MATERIAL AND METHODS 

A. Data description 

The data of BCI competition 2003 is used 
to test our algorithm provided by Graz 
University of technology [8]. This data include 
three subjects: k3b, k6b, 11b. The recording 
was made with a 64-channel EEG amplifier 
from Neuroscan, using the left mastoid for 
reference and the right mastoid as ground. The 
EEG was sampled with 250 Hz, it was filter 
between 1 and 50 Hz with Notchfilter on. The 
subject sat in a comfortable chair with armrests. 
After trial begins, the first 2s were quite. t=2s 
an acoustic stimulus indicated the beginning of 
the trial, and a cross ―+‖ is displayed. then from 
t=3s an arrow to the left, right, up or down was 
displayed for 1s; at the same time the subject 
was asked to imagine a left hand, right hand, 
tongue or foot movement, respectively, until 
the cross disappeared at t=7s. 

B. Surface Laplacian Filtering 

The raw EEG signals are spatially 

contaminated by the head volume conductor 

effect. The surface laplacian can be considered 

as a spatial high pass filter [9], which is 

necessary before further signal processing and 

feature extraction. It’s similar to 

neighbourhood activity suppression by 

subtracting average adjacent channels. The 

finite difference implementation of surface 

laplacian was used, with the assumption that 

the distances from the channel of interest to its 

neighbouring channels are approximately 

equal. 

 

 
 

(1) 

 

Where Vj is the scalp potential EEG of the 

j
th
 channel and Sj is an index set of the 

neighbouring channels. 

C. Discrete Wavelet Transform (DWT) 

The wavelet transform decomposes a signal 

into a set of function obtained by shifting and 

dilating one signal function called mother 

wavelet. The decomposition of the signal leads 

to a set of coefficients called wavelet. All 

wavelet transform can be specified in terms of 

a low-pass filtering g. 

 

  
(2

) 
 

Where G(z) denotes the z-transform of the 

filtering g. It complementary high-pass filter 

can be defined as. 

 

 
 (3) 

 

A sequence of filters with increasing length 

(indexed by i) can be obtained. 

 

 
 

(4) 

 
 

(5) 

 
 

The normalized wavelet and scale basis 

functions φi,l(k), ψi,l(k) can be defined as 

 

  (6) 

 
 

(7) 

 

where the factor 2
i/2

 is an inner product 

normalization, i and l are scale parameter and 

the translation parameter, respectively. Each 

stage consists of two down-samplers by two. 

h[.] is the discrete mother, high-pass filter. g[.] 

is its mirror version, low-pass filter. The down-

sampled outputs of first high-pass and low-

pass filters provide the detail, D and the 

approximation, A respectively. Other stages 

will be iteratively processed. 

 

 
Figure 1. The structure of DWPT and the selected bands. 

 

D. Discrete Wavelet Packet Transform 

(DWPT) 

The classic wavelet transform will 

iteratively compute only approximation of a 

previous level. It means n levels of DWT 

performs n+1 sub-band signals (D1, D2, …, Dn, 

An). DWT has implemented by half cut off 

low-pass and high-pass filter, therefore DWT 

results in a logarithmic frequency resolution. 

DWPT allows a finer and adjustable resolution 

of frequencies. It gives a rich structure since 

DWPT iteratively processes both 

approximation and detail of a previous level 

shown in figure 1. The full DWPT n levels 

perform 2
n
 sub-band signals. For this reason, 



76 

 

DWPT has high frequency resolution. 

However, there is a computational complexity 

higher than that of classic DWT. 

E. Feature extraction 

Now that we have decomposed signals into 

Theta (4-7 Hz), MU (8-12 Hz) and Beta (18-25 

Hz) [10] by retrieving coefficients of DWPT 

following in figure 1, the statistical features of 

each sub-band signal were used to represent 

the time-frequency distribution of EEG signal. 

The below features were extracted from the 

decomposed signals. 

 

 Mean of the wavelet coefficients in 

each sub-band signal. 

 Standard deviation of the wavelet 

coefficients in each sub-band signal. 

 Energy of the wavelet coefficients in 

each sub-band signal. 

 Ratio between wavelet coefficient 

energy and adjacent bands.  

We have three dominant frequency bands 

(Theta, MU and Beta) and there are four 

statistical features of wavelet coefficient in 

each band. For motor imagery, three electrodes 

(C3, Cz and C4) were chosen to analyse EEG 

signal. Therefore, the original EEG signal was 

extracted to 36 dimension data (3×4×3 

extracted feature vectors). 

F. Artificial Neural Networks (ANNs)  

Neural Networks have been successfully 

used in classification tasks. ANNs not only 

model the signal but also make a decision as to 

the class of signal. The advantage of ANN 

analysis over existing methods of biomedical 

signals analysis is that after an ANN has 

trained satisfactorily and the  

 
Figure 2. The structure of a MLPNN classifier with 36 

feature inputs and 36 hidden neurons. 

 

values of the weights and biases have been 

stored, testing and subsequent implementation 

is rapid. Multilayer Percepton Neural 

Networks (MLPNNs) are a nonparametric 

technique for performing a wide variety of 

detection and for estimating tasks. There are an 

input layer, a hidden layer and an output layer 

in MLPNN. In the hidden layer, each input xi 

will be multiplied by adaptable weights wji 

after summing them the value passes though a 

function which can be a simple threshold or a 

sigmoidal function. Each weight wji is adjusted 

in order to reduce error E as rapidly as 

possible. The structure of a MLPNN classifier 

shows in figure 2. 

 

 (8) 

  

 
(9) 

 

The MLPNN was trained by the 

Levenberg-Marquardt training algorithm [11], 

which solves some problems of the back 

propagation training algorithm. 

III. RESULTS 

The EEG signal consists of multi-channel 

electrodes, which might be not relevant with 

motor imagery tasks. Therefore, the electrode 

sites C3, Cz and C4 were chosen as the signal 

and their four neighbourhoods were chosen for 

Surface Laplacian Filtering. The EEG signal is 

decomposed by DWPT, which performs 

specific frequency ranges. We retrieve wavelet 

coefficients from three different bands namely 

Theta (4-7 Hz), Mu (8-12 Hz) and Beta (18-25 

Hz). Then, statistical models (mean, standard 

deviation, energy and ratio of energy with 

adjacent bands) of the coefficients in each sub-

band are used as features to train the MLPNN 

classifier. In two-class classification (left and 

right hand motor imagery), we use ―K3‖ data 

set  which each class has 90 tasks divided into 

45 tasks for training dataset and 45 tasks for 

testing dataset. To compare with previous 

methods DWT, selecting D1, D2, D3 and A3 

sub-bands, and the MLPNN was implemented 

with the single hidden layered (36 hidden 

neurons). The MLPNN was used to classify 

the EEG signal based on a feature vector (36 

inputs). The results show classification 

extracting from DWPT is more accurate than 

DWT and wavelet function Daubechies1 

results in the best performance. Other results 

are shown in table1. 
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TABLE I. ACCURACY RATES OF THE TWO METHODS USING 

VARIOUS WAVELET FUNCTIONS. 

Wavelet  Methods of decomposition 

DWT DWPT 

haar 58.89% 56.67% 

db1 61.11% 65.56% 

db2 54.44% 61.11% 

db4 53.33% 60% 

db6 48.89% 63.33% 

IV. CONCLUSION 

In this paper, the Discrete Wavelet Packet 

Transform (DWPT) is proposed to improve 

accuracy of classification instead of the 

Discrete Wavelet Transform (DWT). For 

brain-computer interface system, we must 

choose the method that is reliable and fast 

enough. The MLPNN used for the 

classification of EEG signals is trained by 

extracted features from the statistical DWPT 

coefficients. It’s found that DWPT with 

Daubechies1 wavelet function give the highest 

accuracy. Therefore, the DWPT technique, 

which provides specific frequency ranges, has 

accuracy and performance of classification 

higher than that of the DWT technique.  
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