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Abstract 

 

 The zero-truncated count data is of primary interest in several areas such as biological science, medical science, 
demography, ecology, etc. Recently, the zero-truncated Poisson-Amarendra distribution has been proposed for 
such data. However, the confidence interval estimation of the index of dispersion has not yet been examined. This 
paper examined confidence interval estimation based on percentile, simple, biased-corrected, and accelerated 
bootstrap methods in terms of coverage probability and average interval length via Monte Carlo simulation. The 
results indicate that attaining the nominal confidence level using the bootstrap methods was not possible for small 
sample sizes regardless of the other settings. Moreover, when the sample size was large, the performances of the 
methods were not substantially different. However, the percentile bootstrap and the simple bootstrap methods 
provided the shortest average lengths for small sample sizes. Last, the bootstrap methods were used to calculate 
the confidence intervals for the index of dispersion of the zero-truncated Poisson-Amarendra distribution via two 
numerical examples, the results of which match those from the simulation study. 
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1. Introduction 
  The Poisson distribution is a discrete probability 
distribution that measures the probability of an event 
occurring a certain number of times within a given 
interval of time or space [1-2]. Data such as the number 
of orders a firm will receive tomorrow, the number of 
defects in a finished product, the number of customers 
arriving at a checkout counter in a supermarket from 9 
to 11 AM., the number of births per day, etc. [3], follow 
a Poisson distribution. 
 The probability mass function (pmf) of a Poisson 
distribution is defined as 
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     where e  is a constant approximately equal to 
2.71828 and  is the shape parameter which 
indicates the mean number of events within a 
given interval of time or space. This probability 
model can be used to analyze data containing 
zeros and positive values that have low 
occurrence probabilities within a predefined time 
or area range [4]. However, probability models 

can become truncated when a range of possible 
values for the variables is either disregarded or 
impossible to observe. Indeed, zero truncation is 
often enforced when one wants to analyze count 
data without zeros. David and Johnson [5] 
developed the zero-truncated (ZT) Poisson (ZTP) 
distribution, which has been applied to datasets of 
the length of stay in hospitals, the number of 
fertile mothers who have experienced at least one 
child death, the number of children ever born to a 
sample of mothers over 40 years old, and the 
number of passengers in cars [6]. A ZT 
distribution’s pmf can be derived as 
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where 0 ( ; )p x  and 0 (0; )p  are the pmf of the 
un- truncated distribution for any value of x  
and 0,x   respectively.  Shanker [7]  defined 
the pmf of the Poisson- Amarendra ( PA) 
distribution as 
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The mathematical and statistical properties of the PA distribution for modeling biological science data were 
established by Shanker [ 7] .  The PA distribution arises from the Poisson distribution when parameter  follows 
the Amarendra distribution proposed by Shanker [8] with probability density function (pdf) 
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Shanker [8] showed that the pdf in (3) is a more suitable 
model than the exponential, Lindley [9] and Sujatha 
distributions [10] for modeling lifetime data from 
biomedical sciences and engineering. Several 
distributions have been introduced as an alternative to 
the ZTP distribution for handling over-dispersion in 
data, such as ZT Poisson-Lindley (ZTPL) [11], ZT 
Poisson-Sujatha (ZTPS) [12] and ZT Poisson-Akash 
(ZTPAk) distributions [13]. 

Shanker [14] proposed the ZT Poisson-
Amarendra (ZTPA) distribution and its properties, 
such as the moment, coefficient of variation, 
skewness, kurtosis, and the index of dispersion. 
The method of moments and the maximum 
likelihood have also been derived for estimating 
its parameter. Furthermore, when the ZTPA 
distribution was applied to real data, it was more 
suitable than the ZTP, ZTPL, and ZTPS 
distributions. 

The index of dispersion [15], like the 
coefficient of variation, is a normalized measure 
of the dispersion of a probability distribution. It is 
a measure used to quantify whether a set of 
observed occurrences are clustered or dispersed 
compared to a standard statistical model. It is 
defined as the ratio of the population variance 2

to the population mean ;  2 / .  This index 
should typically only be used for data measured 
on a ratio scale. It is sometimes used for count 
data. If the count data follows a Poisson 
distribution, then the mean and variance should be 
equal and the index of dispersion is 1. If the counts 
follow a geometric or negative binomial, then the 
index of dispersion should be greater than 1. If the 
counts follow a binomial distribution, the index of 
dispersion should be less than 1 [16]. 

The relevance of the index of dispersion is that 
it has a value of 1 when the probability 
distribution of the number of occurrences in an 
interval is a Poisson distribution. Thus, the 
measure can be used to assess whether observed 
data can be modeled using a Poisson process. 
When the index of dispersion is less than 1, a 

dataset is said to be under-dispersed, this 
condition can relate to patterns of occurrence that 
are more regular than the randomness associated 
with a Poisson process. For example, regular, 
periodic events will be under-dispersed. If the 
index of dispersion is larger than 1, a dataset is 
said to be over-dispersed [16]. 

To the best of our knowledge, no research has 
been conducted on estimating the confidence 
interval for the index of dispersion of the ZTPA 
distribution. It is essential to note that the score 
function of ZTPA distribution is complicated, and 
the maximum likelihood estimator has no closed 
form. Therefore, likelihood-based, score, and 
Wald-type confidence intervals have no closed 
forms. In such cases, finding these confidence 
intervals can be challenging; alternative methods, 
such as numerical techniques or resampling 
methods like the bootstrap method, can be 
utilized. Bootstrap methods for estimating 
confidence intervals provide a way of quantifying 
the uncertainties in statistical inference based on a 
sample of data. The concept is to run a simulation 
study based on the actual data for estimating the 
likely extent of sampling error [17]. Therefore, the 
objective of the current study is to assess the 
efficiencies of three bootstrap methods, namely, 
the percentile bootstrap (PB), the simple bootstrap 
(SB), and the bias-corrected and accelerated 
bootstrap (BCa) methods, to estimate the 
confidence interval for the index of dispersion of 
the ZTPA distribution. In addition, none of the 
bootstrap confidence intervals will be exact 
(i.e., the actual confidence level is exactly 
equal to the nominal confidence level 1 )  
but they will all be consistent, meaning that 
the confidence level approaches 1  as the 
sample size gets large [18]. In light of the 
impossibility of a theoretical comparison of 
these bootstrap confidence intervals, we 
conduct a simulated study to evaluate their 
relative merits. 
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2. Theoretical Background 

To obtain novel probability distributions, 
compounding of probability distributions is an 
innovative approach to fit data sets inadequately 
fit by common distributions. As there is a need to 
find more suitable model for analyzing statistical 
data, Shanker [7] proposed a new compounding 

distribution by compounding Poisson distribution 
with Amarendra distribution [8]. The pmf of the 
PA distribution is given in Eq. (3). 

 
Let X  be a random variable which follows the 

ZTPA distribution with parameter ,  it is denoted 
as ZTPA( ).X   Using Eqs. (2) and (3), the pmf 
of ZTPA distribution can be obtained as 
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The plots of the pmf of the ZTPA distribution with some specified parameter values  as shown in 
Figure 1. 

 
Figure 1. The plots of the pmf of the ZTPA distribution with 0.5,  1,  1.5  and 2. 

 
The expected value, variance and index of dispersion of X  are as follows: 
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The point estimator of  is obtained by 

maximizing the log-likelihood function 
log ( ; )iL x  or the logarithm of joint pmf of 

1,..., .nX X  Thus, the maximum likelihood (ML) 
estimator for  of the ZTPA distribution is 
derived by the following processes: 
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Solving the equation log ( ; ) 0iL x



 for ,  we have the non-linear equation 
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   denotes the sample mean. 

Since the ML estimator for  does not provide the 
closed-form solution, the non-linear equation can 
be solved by the numerical iteration methods such 
as Newton-Raphson method, Ragula-Falsi 
method, and bisection method. In this paper, we 
use maxLik package [19] with  Newton-Raphson 

method for ML estimation in the statistical 
software R. 

The point estimator of the index of dispersion 
 can be estimated by replacing the parameter  

with the ML estimator for  shown in Eq. (4). 
Therefore, the point estimator of the index of 
dispersion  is given by
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where ˆ  is the ML estimator for .  
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3. Bootstrap Methods 

In this paper, we focus on three most common 
bootstrap methods for estimating the confidence 
interval for the index of dispersion that are most 
popular in practice: percentile bootstrap, simple 
bootstrap, and bias-corrected and accelerated 
bootstrap methods. The computer-intensive 
bootstrap methods described in this study provide 
alternative for constructing approximate 
confidence intervals for the index of dispersion 
without having to make an assumption about the 
underlying distribution [20]. 
 
3.1 Percentile Bootstrap (PB) Method 

The percentile bootstrap confidence interval is 
the interval between the ( / 2) 100  and 
(1 ( / 2)) 100   percentiles of the distribution of 

 estimates obtained from resampling or the 
distribution of *ˆ ,  where  represents a 
parameter of interest and  is the level of 
significance (e.g., =0.05 for 95% confidence 
intervals) [21]. A percentile bootstrap confidence 
interval for  can be obtained as follows:  

1) B  random bootstrap samples are generated, 
2) a parameter estimate *ˆ  is calculated from 

each bootstrap sample, 
3) all B  bootstrap parameter estimates are 

ordered from the lowest to highest, and 
4) the (1 )100%  percentile bootstrap 

confidence interval is constructed as follows: 
 

* *
( ) ( )ˆ ˆ, ,PB r sCI       

  
         
(5) 
where *

( )ˆ  denotes the th  percentile of the 

distribution of *ˆ  and 0 100.r s    For 
example, a 95% percentile bootstrap confidence 
interval with 2,000 bootstrap samples is the 
interval between the 2.5 percentile value and the 
97.5 percentile value of the 2,000 bootstrap 
parameter estimates. 
 
3.2 Simple Bootstrap (SB) Method 

The simple bootstrap method is a method as 
easy to apply as the percentile bootstrap method. 
It is sometimes called the basic bootstrap method. 
Suppose that the quantity of interest is  and that 

the estimator of  is ˆ.  The simple bootstrap 
method assumes that the distributions of ˆ   
and  *ˆ ˆ  are approximately the same [20]. The 
(1 )100%  simple bootstrap confidence interval 
for  is 

* *
( ) ( )ˆ ˆ ˆ ˆ2 , 2 ,SB s rCI       

where the quantiles *
( )ˆ r  and  *

( )ˆ s  are the same 
percentile of empirical distribution of bootstrap 
estimates *ˆ  used in Eq. (5) for the percentile 
bootstrap method. 
 
3.3 Bias-Corrected and Accelerated (BCa) 
Bootstrap Method 

The BCa bootstrap method corrects for both 
bias and skewness of the bootstrap parameter 
estimates by incorporating a bias-correction factor 
and an acceleration factor [22-23] to overpower 
the over coverage cases in percentile bootstrap 
confidence intervals [22]. The bias-correction 
factor 0ẑ  is estimated as the proportion of the 
bootstrap estimates less than the original 
parameter estimate ˆ,  

*
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where 1  is the inverse of the standard normal 
cumulative distribution function (e.g., 

1(0.975) 1.96).   The acceleration factor â  is 
computed through jackknife resampling (i.e., 
“leave one out” resampling), which associates 
generating n  replicates of the original sample, 
where n is the number of observations in the 
sample. Firstly, we obtain the first jackknife 
replicate by leaving out the first case ( 1)i   of the 
original sample. Secondly, the second jackknife 
replicate is obtained by leaving out the second 
case ( 2),i   and so on, until n  samples of size 

1n   are obtained. ( )ˆ i  is obtained for each of the 
jackknife resamples. The average of these 
estimates is 
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Then, the acceleration factor â  is estimated as 
follow, 
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With the values of 0ẑ  and ˆ,a  the values 1  and 

2  are computed, 
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where /2z  is the / 2  quantile of the standard 
normal distribution (e.g. 0.05/2 1.96).z    Then, 
the (1 )100%  BCa bootstrap confidence 
interval for  is as follows 

1 2

* *
( ) ( )ˆ ˆ, ,BCaCI      

where *
( )ˆ  denotes the th  percentile of the 

distribution of *ˆ .   
 
4. Simulation Study 

The confidence interval for the index of 
dispersion of a ZTPA distribution estimated via 
various bootstrap methods was considered in this 
study. Because a theoretical comparison is not 
possible, a Monte Carlo simulation study was 
designed using R version 4.2.2 [24] to cover cases 
with different sample sizes (n  10, 30, 50, 100 
and 500). To observe the effect of small and large 
variances, the true parameter ( )  was set as 0.25, 
0.5, 1, 1.5, 2, and 2.5, then the index of dispersion 
( )  were 5.083, 3.004, 1.780, 1.245, 0.923, and 
0.709, respectively. The number of bootstrap 
replications ( B ) was set as 2,000 because 
Ukoumunne and Davison [25] claimed that 2,000 
bootstrap samples are sufficient to estimate the 

coverage probability for the 95% confidence 
intervals with a standard error of just under 0.5%. 
Bootstrap samples of size n  were generated from 
the original sample and each simulation was 
repeated 1,000 times. Without loss of generality, 
the nominal confidence level (1 )  was set at 
0.95. The performances of the bootstrap methods 
were compared in terms of their coverage 
probabilities and average lengths. The one with a 
coverage probability greater than or close to the 
nominal confidence level means that it contains 
the true value and can be used to precisely 
estimate the confidence interval for the index of 
dispersion. 

The results of the study are reported in Table 
1. For 10,n   the coverage probabilities of the 
three methods tended to be less than 0.95 and so 
did not reach the nominal confidence level. For 

30,n   all of the methods once again provided 
coverage probabilities that were less than the 
nominal confidence level of 0.95. All bootstrap 
methods had coverage probabilities close to the 
nominal confidence levels for large sample sizes 
( 50).n   Additionally, the coverage probabilities 
of all bootstrap methods were not significantly 
different for these situations. Thus, as the sample 
size was increased, the coverage probabilities of 
the methods tended to increase and approach 0.95. 

Moreover, the average length of the methods 
decreased when the value of  was decreased 
because of the relationship between the variance 
and .  Unsurprisingly, as the sample size was 
increased, the average lengths decreased. For 
small sample sizes ( 30),n   the average lengths 
of the PB and SB methods were shorter than those 
of BCa method. For large sample sizes ( 50),n   
the average lengths of all bootstrap methods were 
not significantly different. 
 

 
Table 1. Coverage probability and average length of the 95% bootstrap confidence intervals for the index of 
dispersion of the ZTPA distribution 

n    
Coverage probability  Average length 

PB SB BCa  PB SB BCa 

10 0.25 5.083 0.916 0.912 0.908  2.5321 2.5340 2.6197 

 0.5 3.004 0.910 0.918 0.909  1.5674 1.5654 1.6075 

 1 1.780 0.891 0.926 0.900  1.1912 1.1934 1.2079 
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n    
Coverage probability  Average length 

PB SB BCa  PB SB BCa 

 1.5 1.245 0.886 0.882 0.913  1.0738 1.0727 1.0853 

 2 0.923 0.870 0.856 0.910  0.9787 0.9763 0.9980 

 2.5 0.709 0.874 0.830 0.923  0.8916 0.8946 0.9338 

30 0.25 5.083 0.937 0.930 0.936  1.5667 1.5663 1.5893 

 0.5 3.004 0.950 0.953 0.941  0.9352 0.9360 0.9450 

 1 1.780 0.941 0.946 0.952  0.7144 0.7146 0.7190 

 1.5 1.245 0.937 0.942 0.942  0.6582 0.6585 0.6617 

 2 0.923 0.916 0.924 0.938  0.6208 0.6206 0.6260 

 2.5 0.709 0.924 0.911 0.943  0.5792 0.5798 0.5890 

50 0.25 5.083 0.942 0.938 0.947  1.2280 1.2297 1.2385 

 0.5 3.004 0.931 0.933 0.934  0.7336 0.7328 0.7375 

 1 1.780 0.946 0.955 0.950  0.5567 0.5564 0.5586 

 1.5 1.245 0.944 0.949 0.948  0.5166 0.5172 0.5183 

 2 0.923 0.940 0.940 0.947  0.4893 0.4892 0.4913 

 2.5 0.709 0.943 0.936 0.946  0.4568 0.4569 0.4619 

100 0.25 5.083 0.943 0.945 0.942  0.8728 0.8728 0.8767 

 0.5 3.004 0.947 0.947 0.940  0.5220 0.5223 0.5234 

 1 1.780 0.948 0.952 0.953  0.3950 0.3952 0.3963 

 1.5 1.245 0.942 0.942 0.944  0.3697 0.3695 0.3701 

 2 0.923 0.949 0.952 0.952  0.3523 0.3517 0.3530 

 2.5 0.709 0.942 0.937 0.947  0.3283 0.3287 0.3306 

500 0.25 5.083 0.938 0.940 0.939  0.3945 0.3949 0.3948 

 0.5 3.004 0.967 0.966 0.965  0.2352 0.2352 0.2352 

 1 1.780 0.944 0.948 0.944  0.1779 0.1777 0.1780 

 1.5 1.245 0.947 0.946 0.949  0.1658 0.1658 0.1657 

 2 0.923 0.937 0.930 0.938  0.1584 0.1587 0.1586 
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n    
Coverage probability  Average length 

PB SB BCa  PB SB BCa 

 2.5 0.709 0.943 0.942 0.943  0.1485 0.1487 0.1488 

5. Numerical Example 

We used two real-world examples to 
demonstrate the applicability of the bootstrap 
methods for estimating confidence interval for the 
index of dispersion of the ZTPA distribution. 

 
5.1 The Number of Unrest Events 

The number of unrest events occurring in the 
southern border area of Thailand from July 2020 
to October 2022 collected by the Southern Border 
Area News Summary was used for this example 
(the sample size was 28). The number of unrest 
events per month during this time period in the 
five southern provinces of Pattani, Yala,  

 

Narathiwat, Songkhla, and Satun is reported in 
Table 2. This study used the chi-square goodness-
of-fit test for checking whether the sample data is 
likely to be from a specific theoretical distribution 
[26]. The chi-square statistic was 3.9112 and the 
p-value was 0.6887. Thus, a ZTPA distribution 
with ˆ =0.5707 is suitable for this dataset. The 
point estimator of the index of dispersion is 
2.7261. Table 3 reported the 95% confidence 
intervals for the index of dispersion of the ZTPA 
distribution. The estimated parameter ˆ  is 
approximately 0.5. The results correspond with 
the simulation results for 30n   because the 
average lengths of the PB and SB methods were 
shorter than those of the BCa method. 

 
 

Table 2. The number of unrest events in the southern border area of Thailand 

Number of unrest events 1 2 3 4 5 6 7  8 
Observed frequency 3 1 3 2 4 3 4 8 
Expected frequency 1.7775 2.4149 2.8174 2.9684 2.9084 2.6987 2.4008 10.0140 

 
Table 3. The 95% confidence intervals and corresponding widths using all intervals for the index of dispersion in 
the unrest events example 

Methods Confidence intervals Widths 
PB (2.2753, 3.1634) 0.8881 
SB (2.2754, 3.1770) 0.9016 

BCa (2.2862, 3.1999) 0.9137 

5.2 Demographic Example 

Table 4 shows the demographic data on the 
number of fertile mothers who have 
experienced at least one child death [27]. The 
total sample size is 135. For chi-square goodness-
of-fit test, the chi-square statistic was 3.5737 and 
the p-value was 0.1675. Thus, a ZTPA 
distribution with ˆ = 2.9563 is suitable for this 

dataset. The point estimator of the index of 
dispersion is 0.5720. The 95% confidence 
intervals for the index of dispersion of the ZTPA 
distribution are reported in Table 5. The results 
correspond with the simulation results for = 
1.245 and n = 100 because the average lengths of 
the PB and SB methods were shorter than those of 
the BCa method. 

 
Table 4. The number of fertile mothers who have experienced at least one child death 

Number of child deaths 1 2 3  4 
Observed frequency 89 25 11 10 
Expected frequency 83.4756 32.3839 12.2451 6.8953 
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Table 5. The 95% confidence intervals and corresponding widths using all intervals for the index of dispersion in 
the demographic example 

Methods Confidence intervals Widths 
PB (0.4279, 0.7125) 0.2846 
SB (0.4323, 0.7121) 0.2798 

BCa (0.4377, 0.7300) 0.2923 
 
6. Conclusions and Discussion 

Herein, we propose three bootstrap methods, 
namely PB, SB, and BCa, to estimate the 
confidence interval of the index of dispersion of 
the ZTPA distribution. When the sample sizes 
were 10 and 30, the coverage probabilities of all 
three were substantially lower than 0.95. When 
the sample size was large enough (i.e., 50),n   
the coverage probabilities and average lengths 
using three bootstrap methods were not markedly 
different. According to our findings, the PB and 
SB methods provided the shortest average length 
for small sample sizes and parameter settings 
tested in both the simulation study and using real 
data sets. Our findings provided the simulation 
results which are correspondent with the study of 
Jung et al. [28]. They compared three bootstrap 
confidence intervals for generalized structured 
component analysis (GSCA) using a Monte Carlo 
Simulation. They found that the PB method 
produced confidence intervals closer to the 
desired level of coverage than the other methods. 
Future research could focus on the other 
approaches to compare with the bootstrap 
methods. 
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