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Abstract
Dengue fever remains a pressing health issue in many tropical and subtropical regions, 
with Lao People’s Democratic Republic (Lao PDR) facing recurring outbreaks that signifi cantly 
impact public health. Dengue shock syndrome (DSS), a life-threatening complication, is of 
particular concern due to its severe symptoms and potential fatality. This study investigated 
the spatial patterns and environmental determinants of DSS incidence in southern Lao PDR 
from 2015 to 2020. Spatial autocorrelation analysis and regression models were employed to 
examine the relationships between DSS incidence and environmental factors, including altitude, 
vegetation cover, water content, precipitation, temperature, and nighttime light intensity. A total 
of 588 DSS cases were reported, with an incidence rate of 6.87 per 100,000 inhabitants. Strong 
positive spatial autocorrelation (Moran’s I = 0.675) indicated signifi cant clustering of DSS 
cases. High-risk clusters were identifi ed in southwestern Lao PDR, particularly in Champasak 
Province, while low-risk clusters were observed in the northern areas. Spatial regression models 
revealed that temperature was positively associated with DSS incidence (coeffi  cient: 3.36, 
95%CI: 0.42 – 6.30, p < 0.05), while normalized diff erence vegetation index (NDVI) showed 
a signifi cant negative association (coeffi  cient: -43.09, 95%CI: -81.55 – 4.63, p < 0.05). Areas 
with lower NDVI values, typically indicating urban environments with less dense vegetation, 
were associated with higher DSS incidence. The study highlights the complex spatial dynamics 
of DSS in the region and the signifi cant roles of temperature and vegetation cover in shaping 
its distribution. These fi ndings can inform targeted interventions, urban planning strategies, 
and climate change adaptation measures to mitigate the burden of dengue in southern Laos.
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1. Introduction
Dengue fever, a mosquito-borne viral 

infection, is a significant global health 
challenge, with annual incidence estimates 
ranging from 50 to 100 million new cases 
worldwide. The number of dengue cases 
reported to the World Health Organization has 
surged dramatically over the past two decades. 
In 2000, there were 505,430 reported cases, 
which increased to over 2.4 million by 2010, 
and further escalated to 4.2 million in 2019. 
The year 2024 has seen the highest number 
of dengue cases ever recorded. By July 23, 
over 10 million cases have been reported 
from 176 countries in all WHO regions, with 
the majority occurring in the Americas. More 
than 24,000 of these cases were severe, and 
6,508 people have died. This total has already 
exceeded the case count for 2023, which had 
previously set the record (Cogan, 2020; Lancet, 
2024) Among these, approximately 500,000 
cases progress to severe dengue, requiring 
hospitalization and carrying a mortality rate 
of about 2.5% (Cogan, 2020). The disease’s 
impact is particularly pronounced in Asia, 
where a substantial portion of the estimated 
two billion people at risk of infection reside, 
including populations in the Lao People’s 
Democratic Republic (Lao PDR) (Guo 
et al., 2017). In Southeast Asian region bore 
a considerable burden of dengue between 
2001 and 2010. During this period, an average 
of 816,000 dengue-related hospitalizations 
occurred annually, resulting in around 5,900 
deaths (Shepard et al., 2013). Within this 
regional context, Dengue has since become 
a major and urgent public health issue in the 
Lao PDR (Louangpradith et al., 2020). Lao 
PDR is a landlocked country in Southeast 
Asia, characterized by diverse geography. The 
country is divided into three distinct regions: 
the mountainous north, the central plains 
along the Mekong River, and the southern 
lowlands (Bureau Lao Statistics, 2018). 

In Lao PDR, dengue is endemic, with 
recurring outbreaks causing substantial 
morbidity and mortality (Phommanivong 
et al., 2016). National surveillance data 
from 2015 to 2020 have highlighted the 
persistent burden of dengue in the country 
(Soukavong et al., 2024). Of particular 
concern is dengue shock syndrome (DSS), 

a severe form of dengue infection characterized 
by plasma leakage, severe bleeding, and organ 
impairment (World Health Organization, 
2009). DSS, as the most critical manifestation 
of severe dengue, carries a mortality rate 
reportedly 50 times higher than that of dengue 
patients without DSS (Anders et al., 2011). 
A higher incidence of 44,171 cases along 
with 95 deaths recorded in 2013 (Ministry 
of Health National center for Laboratory 
and Epidemiology, 2019). In the southern 
region of the country alone, there were 4,638 
reported cases and 32 deaths (Ministry of 
Health National center for Laboratory and 
Epidemiology, 2019).

The transmission dynamics of dengue 
virus are complex, influenced by various 
environmental factors that affect both the vector 
mosquito population and viral replication. 
Climate variables such as temperature and 
precipitation have been shown to play crucial 
roles in dengue transmission (Xu et al., 2020). 
Additionally, urbanization, population density, 
and socioeconomic factors contribute to the 
spatial heterogeneity of dengue incidence 
(Banu et al., 2011). Recent advancements in 
geospatial technologies and the availability of 
open-source geographic information system 
(GIS) software have provided powerful 
tools for spatial epidemiological analysis of 
vector-borne diseases like dengue (Hay et al., 
2013). These tools allow for the integration 
and analysis of multiple environmental 
factors that are known to influence dengue 
transmission. For instance, the normalized 
difference vegetation index (NDVI) and 
the normalized difference water index 
(NDWI) derived from satellite imagery have 
been used to assess vegetation cover and 
surface water, respectively, which are linked 
to mosquito breeding habitats (Machault 
et al., 2014). Mean temperature (TEMP) and 
precipitation (PREC) data, obtainable from 
climate databases, directly affect mosquito 
survival, development, and virus replication 
rates (Butterworth et al., 2017). Nighttime 
light intensity (NTL), often used as a proxy for 
urbanization and human activity, can provide 
insights into the human-vector interface in 
dengue transmission (Elvidge et al., 1997). 
Altitude (ALT), which influences temperature 
and mosquito habitat suitability, is another 
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Figure 1. Map of Southern part of Lao PDR and neighboring countries

crucial factor in dengue epidemiology 
(Dhimal et al., 2015). The integration of these 
diverse environmental factors through GIS 
allows for comprehensive spatial analysis, 
helping to identify high-risk areas and 
potential environmental drivers of dengue 
transmission (Khormi & Kumar, 2012).

In Lao PDR, where resources for dengue 
control are limited, understanding the spatial 
association between these environmental 
factors and DSS is critical for targeted 
intervention strategies. Previous studies 
have highlighted the importance of spatial 
analysis in identifying high-risk areas and 
potential environmental drivers of dengue 
transmission (Lowe et al., 2018). However, 
research specifically focusing on the spatial 
patterns of DSS in Lao PDR remains 
scarce. DSS represents the most severe and 
life-threatening form of dengue infection, 
with a mortality rate significantly higher than 
milder forms, it warrants special attention in 
spatial analyses (Huy et al., 2013). Moreover, 
the southern region has reported a significant 
number of cases and deaths, indicating a 
potentially higher disease burden. Therefore, 
understanding the spatial distribution of DSS 
cases can inform critical resource allocation 
decisions, such as the placement of intensive 
care units or the distribution of specialized 
medical supplies needed for DSS treatment.

Previous research has highlighted significant 
gaps in community knowledge, attitudes, and 

practices regarding dengue prevention in 
peri-urban areas of Lao PDR (Mayxay et al.,
2013). To address these gaps, we utilized 
advanced spatial analysis techniques with 
open-source GIS software to identify 
environmental and climatic predictors of 
dengue shock syndrome (DSS) and map 
high-risk areas throughout Lao PDR. The 
findings of this research will contribute to 
evidence-based decision-making for dengue 
prevention and control efforts in Lao PDR, 
potentially reducing the burden of this severe 
form of dengue infection.

2. Methodology

2.1 Study Location

The research was conducted in the southern 
region of Lao PDR, encompassing four main 
provinces: Champasak, Salavan, Sekong, 
and Attapeu. These provinces are located 
approximately between 13°55’ and 16°30’ 
North latitude, and 105°30’ and 107°30’ East 
longitude (Figure 1). This southern region covers 
a total area of approximately 47,200 square 
kilometers, representing about 20% of Laos’ 
total land area (Bureau Lao Statistics, 2018). 
This area account for 21% (1.5 million) of the 
country’s population and most are endemic for 
dengue with year-round transmission. Peak 
transmission occurs during the rainy season, 
from May to October (Zafar et al., 2022).
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2.2 Population, Source of Information, and 
Study Variables

DSS data were obtained from case reports 
provided by the National Center for Laboratory 
and Epidemiology (NCLE) in Lao PDR. The 
data covers monthly dengue cases recorded 
in 27 districts across southern Lao PDR from 
January 2015 to December 2020. These cases 
are categorized according to the spectrum of 
dengue severity, ranging from dengue fever 
(DF) to more severe and potentially fatal 
conditions such as dengue hemorrhagic fever 
(DHF) and DSS. Since 1998, dengue has been 
classified as a nationally reportable disease 
in Lao PDR, under a reporting system where 
district hospital epidemiologists collect and 
submit aggregated data daily to the Department 
of Health. The Department of Health then 
compiles this information and sends it to the 
NCLE on a weekly basis (Khampapongpane 
et al., 2014).

District population data from 2015 to 2020 
were estimated by adjusting figures from the 
national and provincial population projections 
provided by the Lao Statistics Bureau, which 
are updated yearly (Ministry of Planning 
and Investment, 2015). The study obtained 
administrative boundaries corresponding to 
the district level in Lao PDR and neighboring 
countries from the DIVA-GIS website (www.
diva-gis.org). The administrative boundary 
map included 27 district-level areas. The maps 
were created using ArcGIS Pro version 3.2 
software (ESRI, Redlands, CA, USA).

The study analyzed environmental and 
climatic data for 27 districts from January 
2015 to December 2020 focused on six key 
variables: altitude (ALT): elevation above 
sea level; normalized difference vegetation 
index (NDVI): a measure of vegetation 
density and health; normalized difference 
water index (NDWI): an indicator of surface 
water presence; precipitation (PREC): amount 
of rainfall; temperature (TEMP): average air 
temperature; nighttime light intensity (NTL): 
a proxy for urbanization and human activity. 

Environmental and climatic data were 
obtained from various sources at monthly 
intervals. ALT data were sourced from the 
WorldClim database (https://www.worldclim.
org/). For NDVI, monthly averages were 

processed using Google Earth Engine (GEE) from 
LANDSAT/LC08/C01/T1 and COPERNICUS/
S2 datasets, with spatial resolutions of 30 
and 10 meters, respectively. Monthly NDWI 
data were extracted from GEE’s MODIS/
MOD09GA_006_NDWI dataset, which has 
a resolution of 500 meters. PREC data were 
provided by the Center for Hydrometeorology 
and Remote Sensing. For monthly TEMP, 
GEE’s ECMWF/ERA5_LAND/MONTHLY 
dataset was utilized, offering a resolution of 
9 square kilometers. Monthly NTL data were 
derived from GEE’s NOAA/VIIRS/DNB/
MONTHLY_V1/VCMSLCFG dataset, with a 
500-meter resolution.

2.3 Data Analysis

The average annual DSS incidence per 
100,000 residents in each district in southern 
Lao PDR for the years 2015 to 2020 was 
calculated by dividing the average number 
of reported DSS cases over this period by the 
mean population of the respective districts.

2.3.1 Crude standardized morbidity ratios

To initiate descriptive analysis of DSS 
incidence, crude standardized morbidity ratios 
(SMR) were calculated for each district. The 
SMR was computed using the following 
approach:

Within this framework, Yi denotes the 
comprehensive SMR within ith district. The 
collective count of documented DSS cases 
within the district is designated as Oi, whereas 
Ei represents the expected number of DSS cases 
in the ith district. The expected number of cases 
was computed by multiplying the southern part 
DSS incidence rate by the mean population of 
each district during the study period.

This calculation allows for a standardized 
comparison of DSS incidence across districts, 
accounting for differences in population size 
and providing a relative measure of disease 
burden. The SMR values offer an initial 
insight into the spatial distribution of DSS 
cases, highlighting areas with higher or lower 
than expected incidence rates.



M. Soukavong et al. / EnvironmentAsia 18(1) (2025) 174-187

178

2.3.2 Spatial autocorrelation

To examine the geographical patterns of 
DSS incidence, spatial statistical techniques, 
specifically Global Moran’s I and Local 
Indicators of Spatial Association (LISA) were 
employed. These analyses were conducted 
using GeoDa (version 1.14.0) software 
(Steiniger & Hunter, 2013).

Global Moran’s I statistics were employed 
to assess spatial autocorrelation. The 
mathematical definition is:

In this equation, x i represents the 
independent variable, N the number of spatial 
units (i and j), Wij the spatial weight matrix, 
and (xi - x) and (xj - x ) the deviations from the 
mean. This statistic indicates the correlation 
between xi and its neighbors, as defined by the 
Wij (Moran 1950).

However, Global Moran’s I have 
limitations in pinpointing exact correlation 
locations. To address this, Local Moran’s I, 
developed by Anselin (1995), was utilized as 
part of local indicators of spatial association 
(LISA) (Anselin 1995). The formula for Local 
Moran’s I is:

Here, Ii is the Local Moran’s index, Wij 
the spatial weight matrix, and

	          is the number of spatial units.

LISA was applied to identify local 
spatial autocorrelation patterns, producing 
significance maps (p < 0.05) and cluster 
maps categorizing locations by association 
type. The choice of spatial-weight matrix is 
crucial; a distance-based matrix calculated 
was used by GeoDA software, ensuring 
non-zero spatial weights nationwide (Getis 
&Aldstadt, 2004). The resulting cluster 
maps revealed areas of high DSS incidence 
surrounded by similar high-incidence areas 
(High-High or HH clusters, also known 
as hot spots) and areas of low incidence 
surrounded by other low-incidence areas 
(Low-Low or LL clusters, or cold spots). 

Additionally, outliers were identified: high-
incidence areas surrounded by low-incidence 
ones (HL) and vice versa (LH). Moran’s I 
represents autocorrelation, with HH and LL 
indicating positive outcomes, while HL and 
LH represent negative outcomes.

2.3.3 Spatial econometric models

After confirming the presence of spatial 
autocorrelation, regression models were 
developed to assess the relationship between 
various factors and DSS incidence. Initially, 
Ordinary Least Squares (OLS) regression was 
employed as a traditional method to compare 
and validate the spatial models. The OLS 
equation is as follows:

where Y represents the dependent variable, 
β0  is the y-intercept, β is the coefficient of the 
independent variable, X is the independent 
variable, and ε is the error term (Wooldridge 
et al., 2016).

Following this, the spatial lag model 
(SLM) and the spatial error model (SEM) 
were used to address spatial autocorrelation. 
The SLM incorporates a spatially lagged 
dependent variable into the equation, 
represented as follows:

where W is the spatial weight and ρ is the 
spatial lag coefficient (Anselin, 1998). The 
SEM, on the other hand, integrates spatial 
autocorrelation within the error term:

In the analysis, λ denotes the spatial 
error coefficient, while other terms maintain 
their definitions from previous models. 
Distance-based weights were employed 
as spatial weights in the spatial regression 
model (Pacheco & Tyrrell, 2002). To 
evaluate the spatial autocorrelation of DSS 
incidence, Local Moran’s I was utilized. 
When significant spatial dependence was 
detected, SLM and SEM were applied 
instead of OLS (Anselin, 1998).
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Table 1. Distribution of monthly means of climate and environmental variables, Southern Lao 
PDR, 2015–2020

To determine the most suitable model 
between SLM and SEM, the robust Lagrange 
Multiplier (LM) test statistic was used (Ullah 
& Zinde-Walsh, 1984; Anselin, 2001). 
In instances where both models exhibited 
statistically significant LM values, the model 
with the lower value was selected. For final 
model selection, the Akaike Information 
Criterion (AIC) was used. The model with 
the lowest AIC value was considered the 
best fit (Akaike, 1981). This methodological 
approach allowed to account for spatial 
dependencies in data and select the most 
appropriate model for analyzing the spatial 
patterns of DSS incidence.

3. Results and Discussion

3.1 Descriptive analysis
 
During the period from January 2015 

to December 2020, a total of 588 DSS cases 
were reported to the NCLE in the Southern 
part of Lao PDR. The incidence rate of DSS 
was calculated at 6.87 per 100,000 inhabitants. 
The median ALT in Southern Lao PDR was 
299.14 meters above sea level (masl), with an 
interquartile range (IQR) of 204.00 to 650.00 
masl. The ALT ranged from a minimum of 
136.00 to a maximum of 1158.38 masl. The 
NDVI showed a median value of 0.35 units 
(IQR: 0.30 - 0.37), with values spanning from 
0.25 to 0.40 units. The NDWI had a median 
of -0.01 units (IQR: -0.02 - 0.02), ranging 
from -0.03 to 0.03 units. PREC, measured 
in millimeters (mm), displayed a median 
of 147.74 mm (IQR: 141.61 - 154.27 mm), 

with a minimum of 122.60 mm and a 
maximum of 174.58 mm. TEMP, measured 
in degrees Celsius (°C), had a median of 
25.10 °C (IQR: 23.36 - 26.00 °C), ranging 
from 20.43 °C to 27.00 °C. NTL intensity 
showed a median value of 0.15 units (IQR: 
0.13 - 0.18), with a wide range from 0.11 to 
1.90 units (Table 1).

3.2 Spatial Distribution

The distribution of DSS incidence 
exhibited variation among districts, with 
incidence rates ranging from zero to 19.42 
per 100,000 population throughout the 
study period. This pattern shows a clear 
concentration of high DSS incidence in the 
western districts, particularly in Champasak 
Province consists of Sanasomboon, Pakse, 
Phonthong, Champasak and Sukhuma districts 
as the top 5 districts with the highest DSS 
incidence with a gradual decrease towards 
the east and north. The easternmost districts 
show very low incidence or no reported cases 
(Figure 2). Significant spatial variation in 
SMR for DSS was observed during the study, 
with notably higher values exceeding 2.01 
concentrated in districts such as Phonthong, 
Pakse, and Sanasomboun (Figure 3).

3.3 Univariate spatial correlation 

The Global Moran’s I statistic of 0.675, 
as shown in (Figure 4a), indicates a strong 
positive spatial autocorrelation in DSS 
incidence across the region, suggesting 
that districts with similar DSS rates tend 
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to be clustered together geographically. 
The LISA map (Figure 4b) reveals specific 
spatial patterns, including a significant 
High-High cluster of high DSS incidence 
identified in the southwestern part of 
the region, corresponding to districts in 
Champasak Province such as Sanasomboon, 
Bachiangchaleunsouk, Pakse, Phonthong, 
and Champasack. These districts show 
significantly higher DSS rates compared 
to the regional average and are surrounded 
by  o ther  d i s t r ic t s  wi th  h igh  ra tes . 

Conversely, a Low-Low cluster of low 
DSS incidence is observed in the northern 
region, likely corresponding to districts 
in Salavan Province, including Ta Oi and 
Saravane district. The southwestern cluster 
shows the highest significance (p = 0.01 and 
p = 0.001), while the northern cluster has a 
weaker but significant clustering (p = 0.05) 
(Figure 4c). This indicates a clear spatial 
pattern, with a hot spot in southwestern 
Champasak and a cold spot in northern 
Salavan.

Figure 2. Dengue shock syndrome incidence by districts, Southern part of Lao PDR,
year 2015 – 2020

Figure 3. Crude standardized morbidity ratios (SMR) of dengue shock syndrome incidence 
by districts, Southern part of Lao PDR, year 2015 – 2020
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3.4 Bivariate spatial relationships

As portrayed in Figure 5 for each factor, 
a bivariate analysis using Moran’s I and 
LISA was employed to illuminate the spatial 
interplay between various influential factors 
and DSS incidence across southern Laos 
districts.

3.4.1 Moran’s I Analysis

Factors such as TEMP (0.594) and 
NTL (0.218) exhibited positive spatial 
autocorrelation with DSS incidence. This 
suggests a concerning trend wherein regions 
with higher TEMP and increased urbanization 
face elevated DSS rates. In contrast, factors like 
ALT (-0.533), NDWI (-0.436), NDVI (-0.349), 
and PREC (-0.182) demonstrated negative 
spatial autocorrelation, suggesting these factors 
might be protective against high DSS incidence 
(Table 2). The strong correlation with TEMP 
implies its substantial influence on DSS risk, 
while the weaker correlation with PREC 
suggests its effect might be indirect or mediated 
by other factors in the Laotian context.

3.4.2 LISA Analysis

On a granular level, regional specificities 
were unearthed by LISA. Predominantly, 
the southwestern Lao PDR, particularly 
districts within Champasak Province such as 
Sanasomboon, Bachiangchaleunsouk, Pakse, 
Phonthong, and Champasak, exhibited a 
concerning synergy of high TEMP, low ALT, 
and increased urbanization with elevated 
DSS incidence. Conversely, the upper part of 
Southern regions, including districts like Ta 
Oi and parts of Saravane in Salavan Province, 
demonstrated a different pattern, with higher 
ALT, lower TEMP, and less urbanization, 
which were associated with decreased DSS 
rates (Figure 5). 

Vegetation cover (NDVI) and water 
presence (NDWI) exhibited complex patterns. 
Some low-high clusters were observed in 
southwestern districts, indicating areas where 
low vegetation or water presence coincided 
with high DSS incidence, contrary to the 
overall negative correlation. It is suggested 
by this observation that the influence of these 
environmental variables on DSS risk may be 

Figure 4. Univariate spatial correlation of dengue shock syndrome (DSS) incidence, (a) 
Global Moran’s I scatter plot (b) DSS incidence clusters (c) LISA p-value

Table 2. Bivariate Moran’s I statistics of dengue shock syndrome incidence and satellite-based 
environmental factors (2015 – 2020)
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modulated by local factors in districts like 
Lakhonepheng, Khongxedone, and parts 
of Paksong (Figure 5). The southwestern 
region, particularly Champasak Province, was 
identified as a high-risk area, characterized 
by a combination of environmental factors 
conducive to DSS transmission. In contrast, 
the northern areas in Salavan Province were 
found to be relatively protected.

3.5 Spatial Regression Models

Three models OLS, SLM, and SEM were 
employed in the spatial regression analysis 
to assess the influence of environmental and 
climatic factors on DSS incidence in southern 
Lao PDR. Among the three models, the SLM 
demonstrated the best fit, as indicated by the 
lowest AIC and Bayesian Information Criterion 
(BIC). This finding suggests that consideration 
of spatial dependencies in DSS incidence 
enhances the understanding of the disease’s 
distribution (Table 3).

Across all models, two factors consistently 
emerged as significant predictors of DSS 
incidence: NDVI and TEMP. The negative 
coefficients for NDVI (OLS: -68.95, p < 0.01; 
SLM: -43.09, p < 0.05; SEM: -62.34, 
p < 0.01) suggested that areas with higher 

vegetation cover were associated with lower 
DSS incidence. This relationship remained 
significant even when spatial effects were 
considered. The positive coefficients for 
TEMP (OLS: 5.54, p < 0.01; SLM: 3.36, 
p < 0.05; SEM: 5.28, p < 0.001) indicated 
that higher TEMP was associated with 
increased DSS incidence. This relationship 
was particularly strong in the SEM model 
(Table 3).

ALT showed a slight positive association 
with DSS incidence, reaching statistical 
significance in the SEM model (0.02, p < 0.05). 
PREC consistently showed a negative 
association across all models, though not 
reaching statistical significance. This suggests a 
trend where higher rainfall might be associated 
with lower DSS incidence. The NDWI and 
NTL showed inconsistent and non-significant 
associations across models, indicating their 
effects on DSS incidence may be less direct 
or influenced by other factors. The significant 
spatial autoregressive parameter (ρ) in the 
SLM (0.38, p < 0.01) indicates strong spatial 
dependencies in DSS incidence. This suggests 
that DSS rates in one district are influenced by 
rates in neighboring districts, emphasizing the 
importance of considering spatial relationships 
in understanding DSS distribution (Table 3).

Figure 5. Cluster maps of LISA: Localized associations between influencing factors 
and dengue shock syndrome (DSS) incidence as (a) altitude, (b) normalized difference 

vegetation index, (c) normalized difference water index, (d) precipitation, (e) temperature, 
(f) nighttime lights
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Table 3. Spatial regression model that has an impact on dengue shock syndrome incidence

3.6 Discussion

Signif icant  spat ia l  pat terns  and 
environmental determinants of DSS incidence 
in southern Laos were revealed in this study. 
The strong positive spatial autocorrelation 
indicates that DSS cases are not randomly 
distributed but tend to cluster geographically. 
This finding aligns with previous studies that 
have demonstrated spatial clustering of dengue 
cases in various endemic regions (Phanitchat 
et al., 2019; Xu et al., 2019; Zheng et al., 2019; 
Soukavong et al., 2024) .

The identification of a high-risk cluster 
in southwestern Lao PDR, particularly in 
Champasak Province, provides valuable 
information for targeted intervention strategies. 
This hotspot is characterized by higher 
temperatures, lower altitudes, and increased 

urbanization, factors that have been associated 
with elevated DSS risk in other studies 
(Choi et al., 2016; Li et al., 2019). Champasak, 
one of the most populated provinces in Lao 
PDR, has undergone extensive development, 
including agricultural intensification and dam 
construction, leading to population resettlement 
(Doum et al., 2020). High-density built-up 
areas and elevated development levels correlate 
with increased dengue vulnerability (Tsheten 
et al., 2020). Population density is a crucial 
factor in dengue transmission rates. Changes 
in circulating dengue virus serotypes may 
have increased secondary infections, a risk 
factor for severe cases like DSS (Kanakaratne 
et al., 2009; World Health Organization, 
2009; Rathore et al., 2020; Yuan et al., 2022). 
Additionally, Champasak’s borders with 
Cambodia and Thailand facilitate potential 
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cross-border transmission of dengue through 
increased human movement associated with 
travel and trade activities (Srithongtham 
et al., 2024) .

High NDVI values typically indicate 
sparsely populated areas where the conditions 
for human-mosquito contact, necessary for 
DSS transmission, are less likely to occur. 
Conversely, higher DSS incidence is often 
observed in urban and peri-urban areas 
with greater population density (Araujo 
et al., 2015). These areas tend to have lower 
NDVI values due to urbanization, changes 
in land use, and the replacement of natural 
vegetation with built environments. Such 
urbanized environments are conducive to 
the proliferation of Aedes mosquitoes, the 
primary vectors of the dengue virus (Tsheten 
et al., 2020).

Temperature emerged as a crucial factor 
positively associated with DSS incidence. 
This relationship underscores the potential 
impact of climate change on future dengue 
transmission patterns. Higher temperatures 
can accelerate mosquito development, 
increase biting rates, and shorten the extrinsic 
incubation period of the virus, all of which 
contribute to increased transmission risk 
(Choi et al., 2016; Li et al., 2019; Li et al., 
2020). The identification of a high-risk 
cluster in southwestern Laos, particularly in 
Champasak Province, characterized by higher 
temperatures, provides valuable information 
for targeted intervention strategies and climate 
change adaptation planning. 

The significance of spatial dependencies, 
as indicated by the spatial autoregressive 
parameter in the SLM emphasizes the 
importance of considering neighborhood 
effects in dengue risk assessment and control 
strategies (Hussain-Alkhateeb et al., 2021). 
This spatial dimension is often overlooked 
in traditional epidemiological studies but is 
crucial for understanding disease dynamics 
at a regional level.

A key strength of this study is its 
comprehensive spatial analysis approach, 
combining global and local spatial statistics 
with spatial regression models. This 
multi-faceted methodology provides a robust 
framework for understanding the complex 
interplay between environmental factors 

and DSS incidence. However, the study has 
several limitations. First, the ecological nature 
of the analysis means that inferences cannot 
be drawn at the individual level. Second, the 
use of aggregated data at the district level may 
mask finer-scale variations in DSS incidence 
and environmental factors. Third, the study 
does not account for socio-economic factors or 
healthcare access, which could influence both 
DSS incidence and reporting. Future research 
should aim to incorporate finer-scale data, 
including entomological indices and human 
mobility patterns, to further elucidate the 
drivers of DSS transmission in southern Laos. 
Additionally, longitudinal studies are needed 
to assess the temporal dynamics of these 
spatial patterns and their implications for long-
term dengue control strategies. Moreover, 
this study did not consider the potential 
influence of dengue vaccination programs, 
which may confound the relationship between 
environmental determinants and the incidence 
of DSS. 

4. Conclusion

In conclusion, this study provides 
valuable insights into the spatial patterns 
and environmental determinants of DSS 
in southern Laos. The findings highlight 
the complex interplay between climatic 
factors, vegetation cover and urbanization in 
shaping DSS risk. Temperature was positively 
associated with DSS incidence, underscoring 
the potential impact of climate change on 
future dengue transmission patterns. Areas 
with lower NDVI value, typically urban 
environments, showed higher DSS incidence 
emphasizing the role of urbanization in 
dengue risk. Significant spatial clustering 
of DSS cases was observed, with high-risk 
areas concentrated in southwestern part of 
the region. These insights can inform targeted 
interventions, urban planning strategies, 
and climate change adaptation measures to 
mitigate the burden of dengue in the region.
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