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Abstract 

 

This research focuses on enhancing the performance of magnesium oxide (MgO) particle-reinforced aluminum matrix composites 

(AMCs) using friction stir processing (FSP). The study addresses the limitations of traditional methods, such as response surface 

methodology (RSM), which often cannot accurately capture the nonlinear relationships between critical parameters. A hybrid model 

that integrates artificial neural network (ANN) and grey relational analysis (GRA) approaches is developed to improve prediction 

accuracy and optimize mechanical properties, particularly tensile strength and hardness. MgO particles offer significant advantages by 

refining the grain structure, enhancing hardness, and improving tensile strength due to their large surface area and thermal stability, 

thereby increasing the durability and wear resistance of the composites. The ANN model effectively analyzes complex nonlinear 

relationships, while the GRA technique identifies optimal production parameters. The results demonstrate that the ANN-GRA model 

outperforms RSM, showing lower mean squared error values and more accurate predictions closely aligned with experimental 

outcomes. The novelty of this research lies in integration of ANN and GRA to simultaneously optimize multiple FSP parameters, 

addressing a research gap in composite material improvement. This approach significantly enhances the mechanical properties of the 

composites while minimizing material and energy use during the production process. The findings of this study hold substantial 

implications for the aerospace and automotive industries, which require lightweight materials with superior properties. Additionally, 

this research serves as a foundation for future applications of hybrid machine learning techniques to efficiently and sustainably optimize 

composite material production.  

 

Keywords: Aluminum Matrix Composites (AMCs), Friction Stir Processing (FSP), Artificial Neural Network (ANN), Grey Relational 
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1. Introduction 

 

Aluminum matrix composites (AMCs) have garnered significant attention due to their exceptional combination of lightweight 

properties, high strength, and superior corrosion resistance. They are important in the automotive and aerospace industries as well as 

in electrical manufacturing [1-3]. These composites exhibit enhanced performance in structural applications where weight reduction 

and mechanical integrity are essential. However, achieving optimal mechanical properties in AMCs necessitates innovative processing 

techniques that refine their microstructure and enhance their durability. Among these techniques, friction stir processing (FSP) has 

emerged as a transformative method owing to its homogenized reinforcement phases, refined grain structures, improved overall 

strength, and composite toughness [4-6 ]. Nevertheless, the effectiveness of FSP is highly sensitive to process parameters, including 

rotational speed, traverse speed, and the volume fraction of reinforcing particles. When these parameters are improperly controlled, 

suboptimal mechanical properties result. This necessitates development of advanced approaches for process optimization. 

Incorporation of nanoparticle reinforcements has further expanded the potential of AMCs. Specifically, magnesium oxide (MgO) 

nanoparticles can significantly enhance the wear resistance, tensile strength, and stiffness of aluminum-based composites due to their 

high hardness, thermal stability, and fine dispersion potential [1 , 7-9]. This observation aligns with recent studies indicating that Mg-

based and hybrid reinforcements contribute to superior wear and strength characteristics [2]. However, successful integration of MgO 

nanoparticles into the aluminum matrix via FSP presents notable challenges, such as achieving uniform dispersion while maintaining 

structural integrity throughout the process [10]. The inherent complexity of the multi-variable interactions in the FSP process, further 

compounded by non-linear relationships between input parameters and mechanical properties, poses significant hurdles for 

optimization [3, 6]. Traditional optimization techniques, such as the Taguchi method and response surface methodology (RSM), have 

provided useful insights for process improvement [3]. However, these methods often fail when applied to highly non-linear and 

complex data sets, limiting their effectiveness in multi-response optimization. 

Recent advancements in machine learning, especially in artificial neural networks (ANNs), have demonstrated significant promise 

in modeling and predicting complex process outcomes. This is due to their capacity to capture intricate, non-linear dependencies [4] . 
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Nevertheless, few studies have explored the integration of ANNs with grey relational analysis (GRA) for comprehensive multi-response 

optimization of AMCs reinforced with MgO nanoparticles [5]. Combining GRA with machine learning approaches, such as ANNs and 

grey-fuzzy methods, has shown substantial improvements in multi-response optimization [6 -8]. Despite this, the ANN-GRA hybrid 

approach remains an underexplored yet promising avenue for addressing the challenges of process parameter control and performance 

enhancement in FSP. The current study aims to address this research gap by developing a robust ANN model capable of predicting the 

mechanical properties of MgO-reinforced AMCs produced through FSP. Key objectives include optimizing FSP parameters using an 

ANN-GRA framework to achieve simultaneous improvements in strength and stiffness. Additionally, the study seeks to compare the 

predictive accuracy and optimization efficiency of the ANN-GRA method with traditional approaches [7 ]. This research proposes a 

novel methodology that enhances the precision of multi-response optimization and enables a comprehensive improvement in 

mechanical properties by integrating deep learning-based predictions with grey relational analysis. The study findings have significant 

implications for the automotive and aerospace industries, where enhanced material performance is critical for development of 

lightweight, high-strength structural components. 

 

2. Literature review 

 

2.1 Aluminum Matrix Composites (AMCs) reinforced with nanoparticles 

 

Aluminum matrix composites (AMCs) reinforced with nanoparticles have garnered significant attention. This is due to their 

exceptional mechanical properties, wear resistance, and lightweight characteristics. Substantial progress has been made in improving 

fabrication techniques, reinforcement materials, and mechanical performance, broadening their applications across various industries. 

The synthesis methods used in AMC production are crucial in determining their final properties. Recent studies highlight the 

effectiveness of mechanical milling for achieving uniform nanoparticle dispersion and enhancing mechanical strength. For example, 

Kumar et al. [11] emphasized that fabrication routes directly influence the microstructure and overall performance of AMCs, while 

Elsayd et al. [12] demonstrated that optimizing milling times significantly improves nanoparticle distribution and composite strength. 

The choice of reinforcement materials also plays a pivotal role in the performance of AMCs. Graphene and carbide nanoparticles, 

known for their exceptional tensile strength and thermal conductivity, have become popular reinforcement options. Alam et al. [13] 

reported significant improvements in mechanical strength with these reinforcements, while Barot et al. [14] underscored the cost-

effectiveness and compatibility of silicon carbide (SiC) and alumina (Al₂O₃) nanoparticles with aluminum matrices. Additionally, high-

entropy alloy nanoparticles have been studied for their ability to enhance bonding strength at the matrix-reinforcement interface. Liu 

and Zheng [15] showed that they limit crack propagation and improve composite reliability. Hybrid reinforcement strategies have also 

shown great potential. Research by Sha et al. [16] revealed that incorporating SiC nanoparticles and carbon fibers within the matrix 

improved stiffness and load-bearing capacity. This combination of ceramic and carbon-based reinforcements is especially promising 

for aerospace and automotive applications requiring multifunctional properties. 

Despite these advancements, challenges remain in scaling up the production of nanoparticle-reinforced AMCs, particularly in 

maintaining microstructural consistency. Uniform nanoparticle dispersion and preventing agglomeration during synthesis are persistent 

obstacles. Al-Salihi et al. [17] emphasized the importance of optimizing processing routes to balance strength and ductility. 

Additionally, Sharma et al. [18] findings on boron carbide (B₄C) reinforcement highlighted notable improvements in hardness, 

reinforcing its potential for wear-resistant applications. Addressing these challenges is critical for the widespread adoption of AMCs 

in industrial applications. Future research should prioritize scalable and reliable manufacturing processes to ensure uniformity and 

maintain the superior properties that make these composites valuable in advanced engineering fields. 

 

2.2 Friction Stir Processing (FSP) for composite fabrication 

 

Friction stir processing (FSP) is an effective technique for fabricating composite materials, particularly for surface strengthening. 

This solid-state process refines microstructure and enhances mechanical properties by optimizing key parameters. Butola et al. [19] 

highlighted FSP's adaptability in creating metal matrix composites under controlled thermal and mechanical conditions, demonstrating 

its potential in both ex-situ and in-situ surface composites. This adaptability reinforces FSP’s use for composite fabrication. 

Recent studies have explored the relationship between FSP process parameters and composite properties. Rathee et al. [20] analyzed 

how tool geometry, rotational speed, and traverse rate influence material flow and reinforcement dispersion, crucial for achieving 

composite homogeneity. Gangil et al. [21] focused on in-situ composites, such as aluminum-oxide and aluminum-transition metal 

systems, which exhibit exceptional mechanical performance due to uniform reinforcement distribution. Hybrid composites have also 

garnered attention—Rana et al. [22] reported enhanced wear resistance in Al7075/B₄C composites, while Du et al. [23] demonstrated 

improved strength and ductility in aluminum matrices reinforced with alumina (Al₂O₃) and carbon nanotubes (CNTs).  

However, challenges remain, particularly in processing high-melting-point materials. Sharma et al. [24] noted tool wear and defect 

formation during fabrication, emphasizing the need for optimized tool materials and geometries. Sahraeinejad et al. [25] proposed 

novel tool designs to improve reinforcement dispersion and reduce defects, highlighting the importance of continuous innovation. 

FSP's potential extends to the fabrication of bulk composites. Arora et al. [26] emphasized its sustainability and energy efficiency, 

making it suitable for green manufacturing. Adi and Malik [27] discussed the scalability of FSP for bulk composite production with 

superior mechanical properties. These studies illustrate that FSP is effective for surface modification and transformative in composite 

engineering. With ongoing advancements in tool design, reinforcement materials, and process optimization, FSP will likely play a 

significant role in future material science and engineering developments. 

 

2.3 Hybrid machine learning models for material property prediction and optimization 

 

Recent advancements in hybrid machine learning (ML) models have shown significant potential in predicting and optimizing 

material properties across various domains, including polymers, composites, and concrete structures. Champa-Bujaico et al. [28] 

demonstrated that integrating experimental data with ML-based regression models allows for accurate prediction and iterative 

optimization of mechanical properties in hybrid polymer nanocomposites, significantly enhancing their performance. Similarly, Miao 

et al. [29] applied hybrid ML algorithms to predict the mechanical behavior of low-carbon recycled aggregate concrete, illustrating the 

superior predictive accuracy of data-driven models over traditional empirical methods. 
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Integration of hybrid models, which merge physical modeling with data-driven approaches, has expanded material property 

prediction capabilities. Stergiou et al. [30] reviewed the use of optimization algorithms, such as Particle Swarm Optimization (PSO) 

and the Grey Wolf Optimizer (GWO), within support vector regression (SVR) frameworks, improving predictions for complex building 

materials. Okafor et al. [31] emphasized that ML-aided design of reinforced composites enables the identification of optimal material 

factor combinations, resulting in more efficient material systems. Peng and Unluer [32] reinforced this by developing PSO-SVR models 

capable of capturing nonlinear relationships in recycled concrete, demonstrating the robustness of hybrid approaches in handling 

multivariable optimization problems. 

Hybrid ML models have also found applications in nanocomposite systems. Champa-Bujaico et al. [33] used optimization 

techniques to model epoxy-based nanocomposites, highlighting the enhanced predictive reliability of hybrid methods in polymeric 

materials. Hameed et al. [34] applied hybrid models to predict the compressive strength of concrete containing industrial waste, 

demonstrating the potential for sustainability-driven optimizations. Additionally, Shireen et al. [35] combined deep neural networks 

(DNN) with coarse-grained models to improve polymer structure-property correlations. Integration of evolutionary algorithms with 

neural networks has further advanced composite material optimization. Lu et al. [36] demonstrated a robust multi-objective hybrid 

approach for predicting composite properties using diverse datasets. Similarly, Mairpady et al. [37] implemented an artificial neural 

network-genetic algorithm (ANN-GA) hybrid to optimize HDPE nanobiocomposite properties that outperformed traditional response 

surface methodologies. Collectively, these studies underscore the versatility and precision of hybrid ML models in advancing material 

design, optimization, and performance prediction, driving sustainable innovations in material science. 

 

2.4 Multi-Response optimization techniques in composite material production 

 

Recent research on multi-response optimization techniques in composite material production has demonstrated significant progress 

in enhancing mechanical, thermal, and wear properties through data-driven and experimental approaches. Rajeswari and Punna [38] 

applied response surface methodology (RSM)-based grey relational analysis (GRA) with an advanced optimization algorithm to 

improve the mechanical properties of multi-walled carbon nanotube (MWCNT)-reinforced glass and fiber-reinforced polymer (GFRP) 

composites. This highlighted the enhanced strength and durability provided by carbon nanotube (CNT) integration [38]. Similarly, 

Bellairu et al. [39] employed a mixture design approach for multi-response optimization of agave cantala natural fiber-reinforced 

polymer nanocomposites, contributing to cleaner and more sustainable composite manufacturing. 

Green composites have also benefited from multi-response optimization frameworks. Akinwande et al. [40] studied metal 

composites derived from municipal waste and found that material agglomeration significantly affects composite strength under varying 

load conditions. Equbal et al. [41] demonstrated the efficacy of an artificial neural network (ANN) and genetic algorithm (GA) model 

in optimizing machining parameters for GFRP composites. They achieved enhanced precision and improved material removal rates 

[41]. Similarly, Gupta et al. [42] optimized hybrid filler composition in pultruded jute fiber-reinforced polymer composites, resulting 

in improved material strength and fatigue resistance. 

In machining applications, Deepak and Davim [43] optimized abrasive water jet (AWJ) machining parameters for hybrid GFRP 

composites using a grey relational method (GRM), emphasizing the importance of process parameter control in minimizing surface 

defects and achieving superior finishes. Shunmugesh and Panneerselvam [44] demonstrated the integration of ANN with meta-heuristic 

algorithms for optimizing drilling performance in carbon fiber-reinforced polymers (CFRPs), improving hole quality and reducing 

delamination. Verma et al. [45] employed GRA for optimizing drilling parameters in GFRP composites to balance performance metrics 

such as surface roughness and tool wear, while Raveendran and Marimuthu [46] applied multi-response optimization to refine turning 

parameters for GFRP rods, enhancing dimensional accuracy and surface integrity. Collectively, these studies underscore the critical 

role of multi-response optimization in composite production, enabling manufacturers to balance competing performance criteria and 

improve overall product quality. 

 

3. Materials and methods 

 

3.1 Matrix materials 

 

In this study, AA6061-T6 was used as the matrix material. AA6061-T6 is a versatile aluminum alloy with excellent mechanical 

and chemical properties, making it suitable for a wide range of industrial applications. Its high strength, corrosion resistance, and good 

machinability enable its use in the aerospace, automotive, construction, marine, sports equipment, and consumer goods industries. The 

“T6” designation refers to the tempering process, indicating that the alloy has been solution heat-treated and artificially aged to achieve 

optimal mechanical properties with increased strength and hardness. Its mechanical and chemical properties are shown in Tables 1 and 

2, respectively. 

 

Table 1 Chemical composition of AA6061-T6. 

 

Materials 
Element (wt%) 

Al Mg Si Fe Cu Zn Ti Mn 

AA6061-T6 Bal. 0.82 0.47 0.27 0.07 0.18 0.05 0.12 

 

Table 2 Mechanical properties of AA6061-T6. 

 

Materials 
Mechanical properties 

Fu Fy HV 

AA6061-T6 285 237 91 

 



Engineering and Applied Science Research 2025;52(3)                                                                                                                                                  285 

 
 

Figure 1 MgO Reinforcement materials 

 

3.2 Reinforcement materials 

 

In this study, the reinforcing material used is MgO, with a chemical composition consisting of 50.67 wt% Mg and 49.33 wt% O. 

The characteristics of MgO are illustrated in Figure 1. This SEM image of MgO particles shows its irregular and thin plate-like 

structures, indicating a high surface area and potential for applications in various industrial and scientific fields. The magnification and 

detailed observation provide a clear understanding of the MgO particle structure, which is beneficial in assessing the suitability of MgO 

for specific applications. The mechanical properties of MgO include a hardness of 5 .5 –6  Mohs, compressive strength ranging from 

1 ,0 0 0  to 3 ,0 0 0  MPa, and an elastic modulus of approximately 2 9 0  GPa. This indicates its potential to withstand high compressive 

loads while remaining brittle. Additionally, MgO has a high melting point, 2 ,8 5 2  °C, and a thermal conductivity between 4 5  and 60 

W/m·K, making it suitable for high-temperature applications. 

 

3.3 FSP processes and investigations 

 

Aluminum AA6061-T6 plates with a thickness of 10 mm were prepared with 150 x 200 mm (width x length) dimensions. The 

surfaces of these plates were drilled with straight line holes having a 2 mm diameter, with 6, 7, and 8 mm hole spacings. These holes 

were used for introduction of MgO reinforcement particles in volumes ranging from 320 to 456 mm³ into the pre-drilled holes of the 

AA6061-T6 aluminum plates. MgO nanoparticles were uniformly distributed to completely fill the holes. The FSP setup involved 

clamping the AA6061-T6 aluminum plates onto a CNC machine table (Model: VMC MACHINE CYCLONE-610), which ensured 

stable control of the operational parameters. The production parameters for the aluminum matrix composites (AMCs) were set 

according to Table 3, which includes tool rotational speed, tool traverse speed, and the volume of MgO. Fabrication of AMCs was 

done following a central composite design (CCD) matrix, providing a structured approach for varying different parameters. During the 

FSP process, the rotating tool traversed along the surface of the prepared aluminum plates. The tool facilitated the mixing and uniform 

dispersion of MgO nanoparticles within the aluminum matrix. Throughout the FSP operation, a downward force was applied by the 

tool onto the workpiece, combined with tool rotation and linear movement from the advancing side to the retreating side, thus creating 

a stir zone as depicted in Figure 2. This process ensures the effective integration and uniform distribution of the MgO nanoparticles 

within the aluminum base material. The fabricated AMCs were then subjected to tensile strength testing according to ASTM-E8 

standards. The hardness of the stir zone was measured using a micro-Vickers hardness tester, with an indenter dwell time of 15 seconds 

and an applied force of 0.98 kgf, according to ASTM-E384 standards. Samples were cut and prepared to the specified dimensions 

shown in Figure 3. 

 

Table 3 Experimental factors for fabrication of AMCs using the FSP process. 

 

Parameter Unit (-) Low High (+) 

Rotation speeds (S) rpm 659 800 1400 1541 

Travel speeds (F) mm/min 11 20 60 69 

Particle valume (P) mm3 320 346 456 482 

 

 
 

Figure 2 The tool configuration employed in the fabrication of AMC in the FSP process [7]. 
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Figure 3 Specimen for tensile testing and hardness testing. Dimensions are in mm. 

 

3.4 Pridiction and optimization 

 

3.4.1 Artificial neural network (ANN) modeling 

 

In this work, artificial neural network (ANN) modeling is employed to predict the outcomes of friction stir processing (FSP) in the 

production of aluminum matrix composites (AMCs). This material is reinforced with MgO particles using an AA6061-T6 aluminum 

alloy. The ANN architecture consists of three main layers. The input layer includes three neurons, which receive the welding process 

parameters (rotation speed, travel speed, and MgO volume). The hidden layer contains several neurons. Their quantity affects the 

performance of the ANN system. The output layer consists of two neurons that predict the tensile strength and hardness of the stir zone, 

as illustrated in Figure 4. Feed-forward backpropagation is employed to construct the ANN model, utilizing the Levenberg-Marquardt 

learning rule. The computed values of the neurons in the layers are determined using Equations (1)–(5), as follows [47]. 

 

Calculation of the neuron outputs in the input layer is described by Equation (1). 

 

 𝐶𝐼𝑖 =
𝑒𝑎1(𝐼𝐼𝑖+𝑏) − 𝑒−𝑎1(𝐼𝐼𝑖+𝑏)

𝑒𝑎1(𝐼𝐼𝑖+𝑏) + 𝑒−𝑎1(𝐼𝐼𝑖+𝑏)
 

(1) 

 

Here, 𝐶𝐼𝑖 is the calculated output of neuron i in the input layer, 𝑎1 is the constant of the transfer function in the input layer, 𝐼𝐼𝑖 is the 

input to neuron i in the input layer, and b is the bias value. 

 

Calculation of the input to the neurons in the hidden layer is given by Equation (2). 

 

 𝐼𝐻𝑘 = ∑ 𝐶𝐼𝑖𝜐𝑖𝑘 + 𝑏

𝐼

𝑖=1

 
(2) 

         

where 𝐼𝐻𝑘 is the input to neuron k in the hidden layer, and 𝜐𝑖𝑘 is the weight of the connection between neuron i in the input layer and 

neuron k in the hidden layer.  

 

Calculation of the neuron outputs in the hidden layer is described by Equation (3). 

 

 𝐶𝐻𝑘 =
𝑒𝑎2(𝐼𝐻𝑘+𝑏) − 𝑒−𝑎2(𝐼𝐻𝑘+𝑏)

𝑒𝑎2(𝐼𝐻𝑘+𝑏) − 𝑒−𝑎2(𝐼𝐻𝑘+𝑏)
 

(3) 

      

Here, 𝐶𝐻𝑘 is the calculated output of neuron k in the hidden layer, and 𝑎2 is the constant of the transfer function in the hidden layer. 

 

Calculation of the input to the neurons in the output layer is given by Equation (4). 

 

 𝐼𝑂𝑗 = ∑ 𝐶𝐻𝑘𝑤𝑘𝑖 + 𝑏

𝐾

𝑘=1

 

(4) 

        

where 𝐼𝑂𝑗 is the input to neuron j in the output layer, and 𝑤𝑘𝑗 is the weight of the connection between neuron k in the hidden layer and 

neuron j in the output layer. 

 

Calculation of the neuron outputs in the output layer is described by Equation (5). 

 

 𝐶𝑂𝑗 =
𝑒𝑎3(𝐼𝑂𝑗+𝑏) − 𝑒−𝑎3(𝐼𝑂𝑗+𝑏)

𝑒𝑎3(𝐼𝑂𝑗+𝑏) + 𝑒−𝑎3(𝐼𝑂𝑗+𝑏)
 

(5) 

                 

Here, 𝐶𝑂𝑗 is the calculated output of neuron j in the output layer, and 𝑎3 is the constant of the transfer function in the output layer. 

The optimal ANN parameters developed for the current work include a neural network designed as a feed-forward backpropagation 

model. It consists of 3 neurons in the input layer, 5 neurons in the hidden layer, and 2 neurons in the output layer. The network is 

trained using Levenberg-Marquardt's rule, with a learning rate of 0.5 and a momentum constant of 0.4. The transfer function coefficients 
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are 0.6 for the input neurons, 1.4 for the hidden neurons, and 0.6 for the output neurons. Additionally, the network includes a bias value 

of 0.0005 to adjust the output calculations. 

 

 
 

Figure 4 The optimal ANN structural system 

 

3.4.2 Grey Relational Analysis (GRA) 

 

Grey relational analysis (GRA) was employed to determine the optimal values of tensile strength and hardness predicted by the 

artificial neural network (ANN) model in the production of aluminum matrix composites reinforced with MgO nanoparticles produced 

via friction stir processing (FSP). The first step involved normalizing the predicted values from the ANN to a comparable scale using 

the "larger-the-better" criterion for both tensile strength and hardness. The normalization process was performed following Equation 

(6). 

 

 𝑋𝑖 =
𝑋𝑖 − 𝑋min

𝑋max − 𝑋min
 

(6) 

         

where Xi is the normalized value, Xmin and Xmax are the minimum and maximum values for each response, respectively. Following 

normalization, the grey relational coefficient (GRC) is calculated using Equation (7). 

 

 𝜆𝑖 =
𝛥min − 𝜆𝛥max

𝛥𝑖 − 𝜆𝛥max
 

(7) 

        

where Δ𝑖 is the absolute difference between the predicted value and the ideal value (1 for the "larger-the-better" criterion), Δmin and 

Δmax are the minimum and maximum absolute differences, respectively, and 𝜆 is the distinguishing coefficient, typically set at 0.5. 

The next step is calculating the grey relational grade (GRG), which provides a comprehensive measure of the performance for each 

experimental trial. It is an average of the GRC values of tensile strength and hardness, using Equation (8). 

 

 𝛾𝑖 =
1

𝑛
∑ 𝜆𝑖

𝑛

𝑖=1

 
(8) 

         

Where 𝛾𝑖 is the GRG for the ith trial, 𝜆𝑖 is the GRC for each response, and n is the number of responses (in this case, 2: tensile strength 

and hardness). The GRG values are then ranked, with the highest value indicating the optimal parameter setting for the FSP process. 

Finally, a confirmation experiment is conducted using the parameter set with the highest GRG to validate the predicted tensile strength 

and hardness, ensuring that the ANN model's optimization aligns with the experimental results. 

 

4. Experimental result 

 

Table 4 presents the design matrix and experimental results for production of aluminum matrix composites (AMCs) reinforced 

with MgO nanoparticles via friction stir processing (FSP). The table details the input parameters, including tool rotation speed, tool 

travel speed, and particle volume, as well as the corresponding output responses, which are tensile strength (Ts) and hardness (HV). 

The rotation speed ranged from 659 to 1541 rpm, while the travel speed varied between 11 and 69 mm/min, and the particle volume 

ranged from 320 to 482 mm³. The tensile strength and hardness of the produced AMC samples fluctuated based on these process 

parameters. These tensile strength values ranged from 258.22 to 317.34 MPa with hardness values from 110.26 to 149.35 HV. The 

experimental results highlight that Run 8, with a rotation speed of 1100 rpm, travel speed of 40 mm/min, and particle volume of 

401 mm³, produced the highest tensile strength, 317.34 MPa. However, Run 13, with a particle volume of 482 mm³, achieved the 

highest hardness, 149.35 HV. These findings underscore the significance of optimizing FSP parameters to enhance the mechanical 

properties of AMC materials. This serves as a basis for further analysis through artificial neural network (ANN) modeling and grey 

relational analysis (GRA) to identify the most suitable process conditions for maximizing tensile strength and hardness. 

 

 

3 Input neurons                      5 Hidden neurons                 2 Output neurons 

Rotation Speeds (S)                  

Travel Speeds (F)                  

Particle Volume (P)                  

Hardness (Hv)                  

Tensile Strength (MPa)                  
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Table 4 Design matrix and experimental results. 

 

Std. Run 
FSP Parameters Responses 

S F P   Ts (Mpa) HV 

7 1 800 60 456 271.05 144.55 

12 2 1100 69 401 279.72 124.75 

1 3 800 20 346 284.42 114.08 

2 4 1400 20 346 274.06 126.74 

11 5 1100 11 401 286.14 127.33 

15 6 1100 40 401 311.21 122.19 

3 7 800 60 346 275.32 112.23 

17 8 1100 40 401 317.34 116.45 

10 9 1541 40 401 292.08 126.76 

16 10 1100 40 401 316.81 128.84 

8 11 1400 60 456 258.22 138.92 

18 12 1100 40 401 304.45 117.56 

14 13 1100 40 482 266.67 149.35 

19 14 1100 40 401 309.35 121.44 

5 15 800 20 456 283.18 147.64 

13 16 1100 40 320 278.62 110.26 

6 17 1400 20 456 275.47 136.32 

4 18 1400 60 346 293.53 114.54 

9 19 659 40 401 291.64 119.61 

 

4.1 ANN and RSM model predictions 

 

Figure 5 shows the loss curve of the 3-3-2 neural network structure, depicting the evolution of mean squared error (MSE) over six 

epochs for the training, validation, and test datasets. The training curve (blue) demonstrates a consistent reduction in error as the epochs 

increase, signifying effective learning from the data. The validation (green) and test (red) curves, however, indicate that optimal 

performance was achieved at epoch 1, where the best validation performance is 467.229 MSE. After this point, the validation and test 

errors remained relatively stable, while the training errors continued to decrease. This suggests that further training could lead to 

overfitting, as the validation and test errors do not improve despite continued optimization of the training data. The graph in Figure 5 

highlights the importance of stopping early to prevent overfitting. This ensures that the network achieves generalization during training. 

 

 
 

Figure 5 The loss curve of the 3-3-2 network structure 

 

Figure 6 presents regression plots of the experimental and predicted data obtained from the artificial neural network (ANN) model, 

showing the correlation between the actual target values and the predicted outputs for different data subsets, (a) training, (b) validation, 

(c) testing, and (d) all data combined. The regression coefficients (R-values) for the training, validation, testing, and overall datasets 

are 0.9975, 0.9954, 0.9965, and 0.997, respectively, indicating a high level of correlation between the predicted and actual values. The 

plots demonstrate that the ANN model provides an accurate prediction across all data sets, with minimal deviation between the 

predicted and target values, as shown by a near-linear fit for each subset. This high degree of fit confirms the model's capability to 

effectively generalize across the training, validation, and test sets. 

 

Best Validation Performance is 467.2292 at epoch 1 

0                   1                   2                   3                   4                   5                  6 
6 Epochs 

100 

 

 

 

 
 

 

10-5 

M
e

an
 S

q
u

ar
e

d
 E

rr
o

r 
(m

se
) 

Train 

Validation 

Test 

Best 

Goal 



Engineering and Applied Science Research 2025;52(3)                                                                                                                                                  289 

 
 

Figure 6 Experimental and prediction (ANN) the data regression plot; (a) the training set; (b) the validation set; (c) the testing set; 

and (d) all data. 

 

Table 5 Experimental, ANN and RSM model. 

 

Run 
Experimental  Pre.ANN model Pre.RSM model. 

Ts  Hv Ts Hv Ts Hv 

1 271.05 144.55 272.17 144.74 265.01 145.94 

2 279.72 124.75 277.32 123.43 282.58 124.37 

3 284.42 114.08 286.06 114.46 277.65 114.28 

4 274.06 126.74 272.34 126.58 276.93 124.81 

5 286.14 127.33 285.85 128.16 289.31 128.71 

6 311.21 122.19 313.92 122.03 310.82 121.12 

7 275.32 112.23 278.71 113.98 277.09 109.06 

8 317.34 116.45 312.91 114.03 310.82 121.12 

9 292.08 126.76 291.28 128.66 293.36 124.69 

10 316.81 128.84 314.94 127.03 310.82 121.12 

11 258.22 138.92 257.20 136.73 261.82 138.18 

12 304.45 117.56 306.94 115.03 310.82 121.12 

13 266.67 149.35 267.14 147.16 268.76 149.08 

14 309.35 121.44 308.94 124.03 310.82 121.12 

15 283.18 147.64 281.80 147.29 285.45 144.38 

16 278.62 110.26 277.62 110.70 282.37 111.50 

17 275.47 136.32 273.98 135.93 270.53 138.95 

18 293.53 114.54 294.05 114.63 288.09 117.26 

19 291.64 119.61 289.96 121.93 296.23 122.65 

Mean Squared Error (MSE) 3.02 2.48 18.23 8.09 

(a) (b) 

(c) (d) 

Training: R=0.99755 Validation: R=0.99547 
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In Table 5, comparison of the experimental results, ANN model, and RSM model predictions highlight how both models perform 

in predicting tensile strength (Ts) and hardness (Hv) in aluminum matrix composites (AMCs). The data reveals that the ANN model 

outperforms RSM with significantly lower mean squared error (MSE) values for both tensile strength and hardness. The ANN model's 

ability to capture non-linear relationships and complex interactions between input parameters, such as rotation speeds, travel speeds, 

and particle volume, makes it a superior tool for predicting material properties like tensile strength and hardness. This is consistent 

with research findings, where ANN models have been shown to outperform traditional statistical methods like RSM in predicting 

material properties. For instance, studies have demonstrated that ANN can more accurately predict mechanical properties, such as 

tensile strength and hardness, in composites with complex reinforcement interactions [48, 49]. Moreover, while macrohardness testing 

can give qualitative insights into tensile strength, it often struggles with quantitative accuracy, as noted for aluminum composites 

reinforced with silicon carbide particles [50]. Table 5 supports the idea that ANN is a more reliable method for predicting material 

properties in AMCs. It accounts for complex, non-linear dependencies between input parameters and output properties that are often 

missed by RSM models. 

In Figure 7, two comparisons are shown, one for tensile strength (a) and another for hardness (b) between the experimental results, 

ANN predictions, and RSM model predictions for aluminum matrix composites. In Figure 7a, both the ANN and RSM models are 

relatively accurate in predicting tensile strength. However, the ANN model offers slightly more precision, aligning more closely with 

the experimental results across most trials. This demonstrates the ANN's ability to model non-linear tensile strength relationships. This 

observation aligns with research findings where ANN models outperformed RSM in capturing complex interactions between input 

variables, such as reinforcement ratios and processing conditions, especially in aluminum matrix composites [48]. In Figure 7b, the 

ANN model shows a closer fit to the experimental data than the RSM model for hardness. This is consistent with previous studies 

where ANN models more effectively captured the influence of reinforcement volume fraction on hardness, often leading to more 

accurate predictions of material properties, like composite hardness and tensile strength [50]. 

 

     
 

Figure 7 Experimental, RSM model estimated, and ANN predicted values of (a) tensile strength and (b) hardness. 

 

Table 6 Normalization, GRC, GRG and Rank of tensile strength and hardness. 

 

Run 
Parameter Normalization GRC 

GRG Rank 
S F P Ts HV GRC-Ts GRC-Hv 

1 800 60 456 0.2170 0.8772 0.5609 0.8906 0.7257 7 

2 1100 69 401 0.3637 0.3707 0.6111 0.6138 0.6124 15 

3 800 20 346 0.4432 0.0977 0.6423 0.5257 0.5840 17 

4 1400 20 346 0.2679 0.4216 0.5773 0.6335 0.6054 16 

5 1100 11 401 0.4723 0.4367 0.6546 0.6397 0.6471 11 

6 1100 40 401 0.8963 0.3052 0.9061 0.5900 0.7480 5 

7 800 60 346 0.2892 0.0504 0.5845 0.5129 0.5487 19 

8 1100 40 401 1.0000 0.1584 1.0000 0.5430 0.7715 3 

9 1541 40 401 0.5727 0.4221 0.7006 0.6338 0.6672 10 

10 1100 40 401 0.9910 0.4753 0.9911 0.6559 0.8235 1 

11 1400 60 456 0.0000 0.7332 0.5000 0.7894 0.6447 12 

12 1100 40 401 0.7820 0.1867 0.8210 0.5515 0.6862 8 

13 1100 40 482 0.1429 1.0000 0.5385 1.0000 0.7692 4 

14 1100 40 401 0.8649 0.2860 0.8809 0.5834 0.7322 6 

15 800 20 456 0.4222 0.9563 0.6338 0.9581 0.7959 2 

16 1100 40 320 0.3451 0.0000 0.6043 0.5000 0.5521 18 

17 1400 20 456 0.2918 0.6667 0.5854 0.7500 0.6677 9 

18 1400 60 346 0.5973 0.1095 0.7129 0.5290 0.6209 14 

19 659 40 401 0.5653 0.2392 0.6970 0.5679 0.6325 13 
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4.2 Grey Relational Analysis (GRA) optimization 

 

Based on Table 5, the predictions from the ANN model were more accurate than those from the RSM model. Therefore, the 

researchers applied the ANN predictions to optimize the results using grey relational analysis (GRA). This was done to identify the 

factors most affecting the tensile strength and hardness of the aluminum matrix composite (AMC). Optimization results using GRA 

are presented in Table 6, which shows the normalization, GRC, GRG, and rank of tensile strength and hardness. This table illustrates 

a comprehensive analysis of various experimental runs conducted to optimize tensile strength (Ts) and hardness (Hv) in a friction stir 

process experiment. The experimental parameters include rotation speed (S), travel speed (F), and particle volume (P). For each run, 

normalized values of tensile strength and hardness were computed, followed by calculation of the grey relational coefficients (GRCs) 

for both responses, tensile strength (GRC-Ts) and hardness (GRC-Hv). The grey relational grade (GRG), which aggregates these GRC 

values, provides an overall ranking for each experimental trial. In this table, run 10 demonstrates the highest performance with a GRG 

value, 0.8235, indicating the most favorable combination of input parameters for achieving both high tensile strength and hardness. 

Conversely, run 7, with the lowest GRG value, 0.5487, reflects suboptimal performance in terms of the desired mechanical properties. 

 

Table 7 Grey relational analysis (GRA) and confirmation test for tensile strength and hardness. 

 

Optimized parameter Responses Inappropriate parameters Responses 

S F P  Ts Hv S F P Ts Hv 

1100 40 401 ANN 314.94 127.03 800 60 346 278.71 113.98 

   Exp. 310.27 118.76    275.32 109.56 

   Error -1.51% -6.96%    -1.22% -3.88% 

GRG = 0.8235  GRG = 0.7886 GRG = 0.5487 GRG = 0.5347 

 

Table 7 presents the results of grey relational analysis (GRA) and a confirmation test for tensile strength (Ts) and hardness (Hv). 

The analysis is divided into two sections, optimized parameters and inappropriate parameter values. For the optimized parameters (S 

= 1100 rpm, F = 40 mm/min, P = 401 mm³), the predicted values from the artificial neural network (ANN) for Ts and Hv are 314.94 

MPa and 127.03 HV, respectively, which are in close agreement with the experimental values of 310.27 MPa for Ts and 118.76 HV 

for Hv. The percentage errors for Ts and Hv are -1.51% and -6.96%, respectively. The grey relational grade (GRG) for this set of 

parameters is 0.8235 for Ts and 0.7886 for Hv, indicating that these optimized parameters result in excellent mechanical properties. 

Conversely, for the inappropriate parameter values (S = 800 rpm, F = 60 mm/min, P = 346 mm³), the predicted ANN values are 278.71 

MPa for Ts and 113.98 HV for Hv, which closely match the experimental results of 275.32 MPa for Ts and 109.56 HV for Hv, with 

errors of -1.22% and -3.88%, respectively. However, the GRG values for Ts and Hv are significantly lower, at 0.5487 and 0.5347, 

indicating that these parameters are unsuitable for optimizing the material properties. This study demonstrates the capability of ANN 

to predict mechanical properties with a high degree of accuracy, closely aligning with experimental results. The optimized parameters 

yield significantly improved mechanical properties, confirmed by the experimental data, underscoring the efficacy of GRA in 

identifying optimal process parameters for this application. 

Table 8 presents a comparative analysis of various methods employed to enhance the mechanical properties of aluminum matrix 

composites (AMCs). The study demonstrates that the proposed hybrid approach combining artificial neural network (ANN) and grey 

relational analysis (GRA) yields a superior tensile strength (Ts), 317.34 MPa, and a hardness value (HV) of 149.35 for AA6061-T6 

reinforced with MgO nanoparticles. Notably, the ANN + CuO reinforcement method in Al6 0 6 1 -CuO composites achieved a tensile 

strength close to 3 1 0  MPa, although no hardness value was reported. In contrast, techniques such as response surface methodology 

(RSM) integrated with GRA, with B4C reinforcement through friction stir processing (FSP), have shown significant improvements in 

tensile strength or hardness, though specific values were often omitted. Additionally, advancements through hybrid reinforcements 

(e.g., Al-SiC, carbon fibers, and nano-Al2O3) consistently indicate enhanced mechanical properties across various studies. 

The present work stands out by providing a balanced and quantitative enhancement of both strength and hardness, which 

underscores the efficacy of using MgO nanoparticles and a data-driven optimization framework. Compared to prior research, this dual 

optimization not only outperforms conventional reinforcement techniques, but also highlights the benefits of integrating ANN and 

GRA to achieve robust property improvements in AMCs. 

 

Table 8 Comparison of methods for mechanical property improvement in AMCs. 

 

Reference Method Material Ts (Mpa) HV 

This Work ANN + GRA AA6061-T6 + MgO nanoparticles 317.34 149.35 

[1] MgO-reinforced AMCs (review) Magnesium Metal Matrix Composites N/A Improved 

[2] ANN + CuO Reinforcement Al6061-CuO composites ~310 N/A 

[6] GRA + Grey-Fuzzy Model Al-TiB₂ reinforced AMCs N/A Improved 

[7] RSM + GRA Al-SiC composite N/A Increased 

[16] Hybrid Reinforcement Al Matrix + SiC & Carbon fibers N/A Increased 

[17] Nano-Al₂O₃ Reinforcement AA7075 + Al₂O₃ Nanoparticles N/A High 

[19] FSP (Ex-situ Composite) Metal Matrix Composite (MMC) N/A Increased 

[22] FSP + B₄C Reinforcement Al7075/B₄C composite ~310 N/A 

[23] FSP + CNT/Al₂O₃ Reinforcement Al-Al₂O₃-CNT composite N/A Increased 

[24] FSP + B₄C Reinforcement Surface Composites 300+ N/A 

[26] Bulk FSP Composite Production Metal Matrix Composite ~280 N/A 

 

4.3 Morphology of the stirred zone 

 

Confirmation of experimental results, presented in Table 7, compares the optimized parameters affecting the tensile strength and 

hardness of the stir zone. The specimens prepared with optimized parameters (1100S-40F-401P) and inappropriate parameter values 

(800S-60F-346P) were subjected to a morphological analysis of the stir zone. Their chemical composition was examined using 



292                                                                                                                                                  Engineering and Applied Science Research 2025;52(3)  

SEM/EDS techniques. The results are illustrated in Figures 8(a-b), which compare the microstructure and elemental distribution 

obtained through energy dispersive spectroscopy (EDS) of the specimens fabricated via friction stir processing (FSP) under two 

different experimental conditions, optimized and inappropriate. Figure 8(a) shows the optimized parameters (rotation speed of 1100 

rpm, travel speed of 40 mm/min, and MgO particle volume of 401 mm³). MgO particles were evenly distributed within the AA6061-

T6 aluminum matrix. This indicates that the MgO particles were effectively integrated into the base metal, leading to increased tensile 

strength and hardness. This is supported by the EDS results, which show a clear presence of Mg (magnesium) and O (oxygen), in 

addition to the predominant element Al (aluminum). Conversely, in Figure 8(b), which corresponds to the inappropriate parameter 

values (rotation speed of 800 rpm, travel speed of 60 mm/min, and MgO particle volume of 346 mm³), the MgO particles were unevenly 

distributed and agglomerated. This resulted in lower tensile strength and hardness, as evidenced by the reduced distribution of Mg and 

O in the EDS results. This comparative analysis is consistent with the data presented in Table 7, which shows that the optimized 

parameters (1100S-40F-401P) yield higher tensile strength and hardness than the inappropriate parameter values (800S-60F-346P). 

Additionally, the prediction errors from the ANN model for the optimized condition were significantly lower than those for the 

inappropriate condition. Therefore, optimization of process parameters in the production of composite materials has a direct impact on 

improving the mechanical properties of the specimens. 

 

 
(a) 1100S-40F-401P 

 

  
(b) 800S-60F-346P 

 

Figure 8 Microstructure and EDS of specimens with optimized and inappropriate parameter values. 

 

5. Discussion 

 

Optimizing aluminum matrix composites (AMCs) reinforced with MgO nanoparticles via friction stir processing (FSP) reveals the 

significant advantages of employing hybrid artificial neural network (ANN) and grey relational analysis (GRA) modeling. This hybrid 

approach excels in predicting and optimizing tensile strength and hardness, compared to traditional methods like response surface 

methodology (RSM). The ANN model, with its ability to capture non-linear interactions between process parameters such as rotation 

speed, travel speed, and MgO particle volume, offers superior predictive performance. This flexibility in modeling complex 

relationships allows ANN to accurately predict outcomes that are often missed by RSM. This is further validated by high regression 

coefficients that indicate the model's reliability and generalization across different data sets [51, 52]. 

GRA also plays a crucial role in refining these predictions by identifying the most favorable combinations of process parameters 

that optimize both tensile strength and hardness. The GRA method simplifies the multi-response optimization process through its 

ranking system and the use of normalized values. This makes it an efficient tool for determining the best mechanical performance from 

various experimental conditions. The GRA approach ensures that optimal outcomes are achieved more effectively than traditional 

statistical models like RSM, which are often limited in handling complex, multi-variable interactions [52]. Combining GRA with ANN, 
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enabled researchers to confirm that the hybrid model is accurate and robust, with low prediction errors when evaluated against 

experimental data. 

When comparing the ANN-GRA hybrid model with traditional methods like RSM, the former offers a more precise and 

comprehensive approach to optimizing mechanical properties in AMCs. The mean squared error (MSE) values for both tensile strength 

and hardness were significantly lower with ANN predictions, showcasing its ability to model intricate non-linearities that RSM tends 

to oversimplify. While RSM can be effective in linear or moderately non-linear processes, its limitations become clear in more complex 

scenarios like AMC production. In contrast, the ANN-GRA model captures a full range of parameter interactions, leading to more 

precise and reliable optimization results, marking a significant advancement in material property optimization [51, 53]. 

 

6. Conclusions 

 

This research addresses the critical need for optimizing the production of aluminum matrix composites (AMCs) reinforced with 

MgO nanoparticles using friction stir processing (FSP). Traditional methods, such as response surface methodology (RSM), have 

limitations in capturing the non-linear interactions between critical process parameters like rotation speed, travel speed, and particle 

volume. The complexity of optimizing these parameters to achieve enhanced mechanical properties, such as tensile strength and 

hardness, requires a more sophisticated approach. This study employs a hybrid model that combines artificial neural networks (ANNs) 

and grey relational analysis (GRA) to improve prediction accuracy and more effectively optimize the FSP process than traditional 

methods. The computational results of the study show that the ANN-GRA hybrid model outperforms RSM in terms of prediction 

accuracy. ANN's strength lies in its capability to capture complex non-linear relationships, providing more accurate predictions of 

tensile strength and hardness of AMCs. GRA complements this by refining the ANN predictions, enabling optimal parameter selection 

for the FSP process. The hybrid approach significantly reduced the mean squared errors in the predictions, confirming its robustness 

in multi-response optimization scenarios. The results demonstrate the method's effectiveness in identifying the best combination of 

process parameters, contributing to the production of AMCs with superior mechanical properties. The implications of this research are 

broad, particularly for industries such as aerospace, automotive, and advanced manufacturing, where material performance is crucial. 

This hybrid ANN-GRA model offers a powerful tool for optimizing the mechanical properties of composite materials, paving the way 

for more efficient and sustainable manufacturing practices. Future research could explore extending this model to other composite 

systems, incorporating additional parameters, or applying it in large-scale industrial settings to validate its effectiveness. The continued 

development of such models has the potential to further enhance the precision and efficiency of materials engineering, driving 

innovation in manufacturing technology. 
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