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Abstract 

 

Surface net radiation (Rn) is crucial for climate modeling and agricultural management but is often not readily available, especially in 

regions like Thailand. Accurate prediction of Rn is essential for estimating evapotranspiration, which is vital for irrigation planning and 

agricultural productivity. This study develops a hybrid machine learning framework that incorporates K-Nearest Neighbors (KNN) for 

missing data imputation, Random Forest-Recursive Feature Elimination (RF-RFE) for feature selection, and machine learning models 

(Multi-layer Perceptron, K-Nearest Neighbors, and Random Forest) for prediction. The research evaluates various data partitioning 

methods, including hold-out split, K-fold cross-validation, and growing-window forward-validation (gwFV), alongside hyperparameter 

tuning using GridSearch to enhance model robustness and prevent overfitting. The primary objectives are to develop and evaluate the 

hybrid ML models for daily Rn estimation using basic meteorological inputs (temperature, relative humidity, and sunshine duration), 

assess the impact of different input combinations on prediction accuracy in Sawi, Chumphon, Thailand, and compare data partitioning 

techniques to determine the optimal model performance. Utilizing FAO56PM-calculated Rn as a reference, this study finds that the 

Random Forest model, with average temperature and sunshine duration (M2) as inputs evaluated under the gwFV method, achieves 

the highest stability and high accuracy (R² of 0.972, RMSE of 0.457 MJ m-2 day-1, and MAPE of 3.50%). The Random Forest 

demonstrates strong generalization capabilities, making it a reliable choice. Even models using only sunshine duration (M3) perform 

adequately, offering a solution when data availability is scarce. This study concludes that hybrid machine learning models, combined 

with careful data partitioning, significantly improve Rn estimation. These advancements provide valuable insights for climate modeling, 

agricultural management, and irrigation scheduling, particularly in data-scarce regions. 
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1. Introduction 

 

Solar radiation is the primary energy driver of Earth's climate system and surface dynamics, playing a crucial role in agriculture by 

influencing plant growth, regulating temperature, and controlling evapotranspiration (ET) [1, 2]. While solar incident radiation also 

known as global solar radiation (Rs) is directly measured or modeled in many studies, it undergoes complex interactions with the 

atmosphere and the Earth’s surface, leading to surface net radiation (Rn) [3]. Rn plays a pivotal role in various Earth system processes. 

In agriculture, it is fundamental to estimate reference evapotranspiration (ETo), a key parameter for determining crop water 

requirements and optimizing irrigation schedules. [4]. Accurate Rn measurements are also crucial for understanding and predicting 

weather patterns, assessing water resources, and modeling climate change impacts [5, 6]. Rn represents the balance between incoming 

and outgoing energy at the Earth's surface, encompassing solar and longwave radiation. However, despite its significance, Rn is not 

readily available in most locations, especially in Thailand [7]. Standard weather stations primarily measure Rs, while Rn measurements 

are less common. Its direct or physical measurement requires specialized instruments such as net radiometers, which are costly to 

acquire and maintain, making them inaccessible for many regions or studies [8]. This limitation hinders the widespread use of standard 

meteorological data for studying soil-atmosphere interactions. 

In response to this challenge, researchers have explored indirect methods to estimate Rn, leveraging various approaches to overcome 

the limitations of direct measurement. Empirical equations, which rely on commonly available meteorological data, have been widely 

used to approximate Rn  [ 9-1 2 ] . However, these methods often struggle to maintain accuracy across diverse climatic and surface 

conditions due to their simplified assumptions and limited adaptability [13]. Another promising avenue involves using satellite data, 

which provides extensive spatial and temporal coverage of radiative and meteorological parameters [14, 15]. Satellite-based approaches 

can complement ground-based observations by offering insights into surface albedo, cloud cover, and atmospheric properties, which 

are crucial for Rn estimation [6]. However, such methods may face challenges related to resolution, data availability, and pre-processing 

complexities [15-17]. The limitations of existing methods underscore the need for more accurate and accessible approaches to estimate 

Rn. 
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In recent years, machine learning (ML) has emerged as a powerful tool for estimating environmental variables, offering advantages 

over traditional empirical equations by effectively capturing complex, nonlinear relationships among variables. Numerous studies have 

assessed the performance of ML models for predicting Rs, each demonstrating distinct strengths and limitations [18-22]. Artificial 

neural networks (ANN) have shown great potential among these models. For instance, Puga-Gil et al. [23] examined the performance 

of various ML models—Random Forest (RF), Support Vector Machine (SVM), and ANN—in predicting global solar irradiation in 

Rias Baixas, Spain, using meteorological data. Their findings indicated that ANN achieved the highest accuracy during model 

development and extrapolating to other locations. Chen and Kartini [24] introduced a hybrid k-Nearest Neighbors-ANN (KNN-ANN) 

model for global solar irradiance (GSI) forecasting, incorporating meteorological data from a PV station and nearby sites. Using KNN 

pre-processing enhanced ANN performance, enabling more precise short-term GSI predictions.  

Benali et al. [25]  compared the performance of Smart Persistence, Multi-Layer Perceptron Neural Network (MLP-NN), and RF 

models in predicting global, beam, and diffuse solar irradiance at Odeillo, France, using a three-year dataset. Despite minimal data pre-

processing, RF outperformed the other models, reaffirming its effectiveness as an ensemble learning algorithm for short-term solar 

irradiance estimation. Vaz et al. [18] compared methods such as Ordinary Least Squares (OLS), Ridge, Lasso, KNN,  SVM, Decision 

Trees, and RF. Among these, RF achieved superior accuracy, demonstrating its robustness in handling nonlinear data patterns while 

maintaining interpretability. Other researchers, such as Azad et al. [22], have estimated daily Rs in Bangladesh using machine learning 

models, comparing ensemble models (Bagging-REPT, RF, Bagging-RF) with standalone models (GPR, ANN, SVM). Satellite-derived 

data from ERA5 reanalysis and NASA POWER project datasets, including meteorological variables, were used as inputs. Results 

showed that RF outperformed standalone models in RMSE, with Bagging-RF also performing better than conventional models.  

Beyond model selection, data pre-processing plays a crucial role in determining the accuracy of ML-based estimations. Key pre-

processing steps include selecting relevant features and effectively partitioning the dataset. Feature selection is essential for reducing 

data dimensionality and improving the performance of proposed frameworks. Numerous methods for feature selection are widely 

discussed in the literature [26]. A comparative analysis by Ramírez-Rivera and Guerrero-Rodríguez [27] identified Recursive Feature 

Elimination (RFE) with RF as the most effective method for selecting input variables for Rs prediction, outperforming Pearson 

correlation, SelectKBest, and Sequential Feature Selection (SFS). 

Effective data partitioning is also crucial in ML to ensure model generalization and prevent overfitting. The hold-out method is a 

commonly used approach, particularly in time series analysis, due to its straightforward implementation. It typically allocates 70–80% 

of the dataset for training while reserving the remainder for testing, with performance assessed based on test error metrics. Its main 

drawback is the failure to capture evolutionary trends, leading to unreliable assessments [28].  

Alternatively, the standard K-Fold cross-validation split enhances model evaluation by dividing the data into k folds, training on 

k-1 folds, and validating on the remaining folds. Most studies using k-fold cross-validation recommend a minimum test duration of 

one year for practical evaluation [29, 30]. Hossein Kazemi et al. [29] investigated various k-fold cross-validation methods and the use 

of temporally distinct hold-out data for predicting reference evapotranspiration (ETo) with a Gene Expression Programming (GEP) 

model.  

Other studies have incorporated a validation set for hyperparameter tuning before testing. This practice helps prevent overfitting 

the model to the training data and ensures better generalization performance on unseen data. Ramírez-Rivera and Guerrero-Rodríguez 

[ 2 7 ]  employed a time series cross-validation (tscv), stratified by chronological order, to partition the dataset into training and testing 

sets (80:20 split). A five k-fold cross-validation was then applied to the training set to create a validation set for model evaluation and 

tuning. Tejada et al. [31] applied four-fold growing window-forward validation (gwFV) to validate the ETo model. Schnaubelt’s [32] 

study mentioned that even small changes to the data can lead standard cross-validation techniques to produce highly biased and variable 

error estimates. In contrast, forward-validation methods provide more reliable estimates of a model's performance on unseen data. 

Despite extensive research on Rs estimation using machine learning, Rn remains relatively underexplored, creating a gap in data-

driven approaches for its prediction. To address this, we propose a novel hybrid ML framework that integrates KNN imputation for 

handling missing data, RF-RFE for feature selection, and ML models (MLP, KNN, and RF) to enhance prediction accuracy. A key 

innovation of this study is the systematic evaluation of multiple data partitioning techniques—hold-out split, K-fold cross-validation, 

and growing-window forward-validation (gwFV)—where gwFV is incorporated into hyper-parameter tuning via GridSearch to 

improve model robustness and reduce overfitting. The study aims to develop and assess ML models for estimating daily Rn using 

minimal meteorological inputs (temperature, relative humidity, and sunshine duration), implement a pre-processing approach that 

enhances model accuracy and efficiency, examine the impact of different meteorological variable combinations on Rn prediction 

accuracy in Sawi, Chumphon, Thailand, and compare three data partitioning techniques to evaluate model performance and 

generalization. 

By achieving these objectives, this research offers a cost-effective and data-efficient alternative to traditional methods. The findings 

contribute to improved irrigation planning, water resource management, and environmental modeling by providing a reliable Rn 

estimation approach for data-scarce regions, ultimately supporting sustainable agricultural practices and climate adaptation scenarios. 

 

2. Materials and methods 

 

2.1 Database and study location 

 

This study utilized a 14-year daily meteorological dataset (2008–2021) obtained from the Sawi Agro-Meteorological Station in 

Chumphon, Thailand. The station is situated at 10°20' N latitude and 99°6' E longitude, with an elevation of 13 meters above sea level. 

Sawi, Chumphon, falls under the tropical monsoon climate category (Am) based on the Köppen–Geiger climate classification [33] . 

The dataset includes key meteorological variables necessary for the analysis such as crop modeling, irrigation scheduling, and water 

balance studies. 

The average values and associated standard deviations across the entire dataset were as follows: 23.49 ± 1.49°C for minimum 

temperature (Tmin), 32.14 ± 2.27°C for maximum temperature (Tmax), 27.83 ± 1.56°C for average temperature (Tavg), 92.18 ± 4.71% 

for maximum relative humidity (RHmax), 58.61 ± 10.27% for minimum relative humidity (RHmin), 75.39 ± 6.16% for average relative 

humidity (RHavg), 5.12 ± 3.22 hours for sunshine duration (SSh), and 1.26 ± 1.07 m/s for wind speed (Ws).  
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2.2 Estimation of surface net radiation (Rn) 

 

The FAO-56 Penman-Monteith (PM) technique was applied to compute the daily Rn. This method is recommended to determine 

the reference crop evapotranspiration (ETo) utilizing the FAO Penman-Monteith equation. This served as the standard and point of 

reference for creating and evaluating the models that were being studied. The daily net radiation is determined by subtracting the daily 

long-wave net radiation from the daily short-wave net radiation: 

 

 𝑅𝑛 =  𝑅𝑛𝑠 − 𝑅𝑛𝑙 (Eq. 1) 

 

where 𝑅𝑛𝑠 and 𝑅𝑛𝑙  are the net daily short-wave radiation and net daily long-wave radiation (MJ m-2 day-1), respectively. 

 

where Rs is the solar incident radiation or global solar radiation (MJ m-2 day-1), albedo or canopy reflection coefficient, which is 0.23 

for the hypothetical grass reference crop (dimensionless). 

 

 𝑅𝑛𝑠 = (1 − albedo)𝑅𝑠 (Eq. 2) 

  

 𝑅𝑛𝑙 =σ [
𝑇𝑚𝑎𝑥

4 +𝑇𝑚𝑖𝑛
4

2
] (0.34 − 0.14√𝑒𝑎) (1.35

𝑅𝑠

𝑅𝑠𝑜
− 0.35) 

(Eq. 3) 

 

where σ is the Stefan–Boltzmann constant, which is 4.903 x 10-9 MJ K-4 m-2 day-1; Tmax, Tmin, and 𝑒𝑎 are the maximum temperature 

(K), minimum temperature (K), and the actual water vapor pressure (kPa), and 𝑅𝑠/𝑅𝑠𝑜is relative shortwave radiation (limited to ≤ 1.0). 

The methodology and theoretical background for this calculation are thoroughly covered in the FAO56 publication [11, 12].  

 

2.3 Random Forest 

 

The Random Forest (RF) method, introduced by Breiman [34] , is a supervised ensemble learning algorithm. RF generates 

predictions by combining outputs from multiple decision trees, each trained on a different subset of the data. For each tree in the RF 

model, a random portion of the training data is used to construct and train the trees. RF offers variable importance rankings, resists 

over-fitting and outliers, allows parallelization, and has simple hyperparameter tuning. However, they can be computationally 

expensive with large datasets and many trees [27]. 

 

2.4 Multi-Layer Perceptron (MLP) 

 

Artificial Neural Networks (ANNs) are powerful ML tools that address classification and regression problems. Based on how 

neurons are connected, ANNs come in two distinct architectures. One prevalent type is the feedforward ANN, exemplified by the 

Multi-Layer Perceptron (MLP). An MLP comprises an input layer, one or more hidden layers, and an output layer of neurons. Neurons 

within these layers are interconnected with specific weights, and each neuron computes an output value by applying an activation 

function to the weighted sum of its inputs. MLP has the advantage of being able to learn complex relationships, whereas single-layer 

perceptron can only learn linear patterns [22]. Compared to linear statistical techniques, MLP-based ANN is a nonlinear model that is 

easy to use and understand. 

 

2.5 K-Nearest Neighbors (KNN)  

 

Cover and Hart introduced the K-Nearest Neighbors (KNN) algorithm in 1967 [35], which is utilized in this study for regression 

analysis. KNN is also utilized for data mining and imputation techniques [36] . As a non-parametric, instance-based learning method, 

KNN estimates the target variable by identifying and analyzing the nearest data points within the feature space. Unlike conventional 

regression models, KNN does not rely on a predefined functional form. Instead, it derives predictions by computing the average of the 

target values associated with the nearest neighbors, using either a simple means or an inverse distance-weight approach. 

 

2.6 Pre-processing and temporal analysis 

 

Forecasting models can be biased by missing data, and outliers in datasets may skew the analysis. To address these issues, the 

dataset underwent pre-processing. Missing values were imputed using the K-Nearest Neighbors (KNN) method from Scikit-learn, a 

robust approach to ensuring data completeness [37]. Outliers were identified using Z-score and Interquartile Range (IQR) methods. 

KNN imputation was subsequently applied to fill these gaps. Additionally, the RHavg and Tavg columns were recalculated using the 

imputed values, ensuring the dataset's integrity and suitability for further analysis. 

The stationarity of the target variable (Rn) was evaluated using the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) [38] and Dickey-

Fuller (ADF) [39] tests. For the ADF test, the null hypothesis (H₀) of non-stationarity was rejected (p-value < 0.05), indicating that the 

data were stationary. Similarly, for the KPSS test, the null hypothesis (H₀) of stationarity was not rejected (p-value > 0.05), further 

confirming that the Rn data was stationary. Additionally, the presence of seasonality in the data was assessed using a Seasonal-Trend 

decomposition using LOESS (STL) and the autocorrelation function (ACF). The analysis concluded that the dataset was not strongly 

seasonal, with an autocorrelation at lag 12 of 0.27 (below the threshold of 0.90). STL decomposition was applied to better understand 

the trend and residual components, using a periodicity of 365 days for the series. 

 

2.7 Dataset partitioning (splitting) scenarios 

 

Three data partitioning techniques were implemented to ensure robust model evaluation, as shown in Figure 1 and summarized in 

Table 1. First, a simple hold-out split was applied, with 80% of the data used for training and 20% for testing. This method provides a 

quick performance estimate but may not fully capture the variability in the dataset. Second, standard K-fold cross-validation with seven 

folds was utilized, ensuring that each fold used a two-year test set while the remaining data was used for training. This technique helps 
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reduce bias and variance by allowing all data points to be used for both training and testing at different stages. Lastly, a growing-

window forward-validation split was employed, where the training set expands over time while maintaining a fixed two-year test set 

across seven folds. This approach is particularly useful for time-series data, as it simulates real-world forecasting scenarios by 

progressively increasing the amount of historical data available for training [32]. 
 

 
 

 

Figure 1 Different data partitioning (Scenario) techniques applied in the study 

 

Table 1 Comparison of data partitioning scenarios  

 

Scenario Partition technique Train description Test description 

S1 Hold Out (80/20% split) The first 10 years were used as 

training set  

The last 4 years were reserved for 

testing set 

S2 Standard K-fold (k=7) Randomly split into 7 folds Each fold is used as a test once (2 

years) 

S3 Growing-window forward-validation 

(k=7) 

Expanding training window every 

fold 

Fixed test window  

(2 years) 

 

2.8 Feature selection 

 

In this study, feature selection was carried out using Recursive Feature Elimination (RFE), a wrapper-based method combined with 

an RF (RF-RFE), which progressively eliminated the least important features to retain an optimal subset for enhanced Rn prediction 

accuracy [2]. RF-RFE was configured to identify the top three features most relevant to Rn estimation. Starting from an initial set, RF-

RFE iteratively removed the least important features, producing subsets of five, four, three, two, and one feature(s). This approach 

allowed the testing of multiple feature combinations to determine the optimal input set for the model. The RF-RFE technique identified 

the most relevant features for training the machine learning models, as shown in Table 2. 

 

Table 2 Selected features based on RF-RFE feature selection used in ML models 

 

Feature set Selected features ML models 

M1 (3 features) Tmax, Tavg, SSh MLP1    KNN1    RF1 

M2 (2 features) Tavg, SSh MLP2    KNN2    RF2 

M3 (1 feature) SSh MLP3    KNN3    RF3 

 

2.9 Hyperparameter tuning and model development 

 

MLP, KNN, and RF models’ hyper-parameters were fine-tuned through GridSearch (GS), a widely used optimization method for 

machine learning models [30, 40] . GS with 10-fold time-series cross-validation was used for hyperparameter tuning to optimize the 

model's performance. 

 MLP: Various hidden layer configurations, including (64, 64), (64, 128), and (128, 128), were assessed. Different learning rate 

strategies (constant, invscaling, and adaptive) were explored, with early stopping applied after 20 iterations to mitigate 

overfitting. The ReLU activation function was used, and Adam served as the optimizer. 

 KNN: Tuned n_neighbors (3, 5, 7, 9) with uniform and distance weighting. Explored Manhattan (p=1) and Euclidean (p=2) 

distance metrics. 
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 RF: Tested n_estimators (100, 200, 300, 400), max_depth (10, 20, 30), min_samples_leaf (5, 10, 20), and feature selection 

methods (sqrt, log2). 

The best hyperparameter settings selected based on GS cross-validation for S1-S3 are presented in Table 3-5. 

 

Table 3 Tuned hyperparameters by GS for S1 (Hold-out) 

  

Models Tuned parameters 

MLP1 'hidden_layer_sizes': (128, 128), 'learning_rate': 'adaptive', 'max_iter': 140,  

KNN1 'n_neighbors': 9, 'p': 2, 'weights': 'uniform' 

RF1 'max_depth': 30, 'max_features': 'auto', 'min_samples_leaf': 10, 'n_estimators': 400 

MLP2 'hidden_layer_sizes': (128, 128), 'learning_rate': 'adaptive', 'max_iter': 180,  

KNN2 'n_neighbors': 9, 'p': 1, 'weights': 'uniform' 

RF2 max_depth': 20, 'max_features': 'auto', 'min_samples_leaf': 10, 'n_estimators': 400 

MLP3 'hidden_layer_sizes': (64, 128), 'learning_rate': 'adaptive', 'max_iter': 180,  

KNN3 'n_neighbors': 9, 'p': 1, 'weights': 'uniform' 

RF3 'max_depth': 20, 'max_features': 'sqrt', 'min_samples_leaf': 20, 'n_estimators': 100 

 

Table 4 Tuned hyperparameters by GS for S2 (K-Fold) 

  

 

Table 5 Tuned hyperparameters by GS for S3 (gwFV) 

 

Models Tuned parameters 

MLP1 'hidden_layer_sizes': (64, 64), 'learning_rate': constant, 'max_iter': 200,  

KNN1 'n_neighbors': 9, 'p': 1, 'weights': 'uniform' 

RF1 'max_depth': 20, 'max_features': sqrt, 'min_samples_leaf': 5, 'n_estimators': 200 

MLP2 'hidden_layer_sizes': (128, 128), 'learning_rate': constant, 'max_iter': 180,  

KNN2 'n_neighbors': 9, 'p': 1, 'weights': 'uniform' 

RF2 max_depth': 20, 'max_features': log2, 'min_samples_leaf': 5, 'n_estimators': 100 

MLP3 'hidden_layer_sizes': (64, 64), 'learning_rate': constant, 'max_iter': 180,  

KNN3 'n_neighbors': 9, 'p': 1, 'weights': 'uniform' 

RF3 'max_depth': 10, 'max_features': sqrt, 'min_samples_leaf': 20, 'n_estimators': 300 

 

2.10 Performance metrics 

 

The accuracy of the trained, validated, and predicted net radiation (Rn) data from three ML models (MLP, KNN, RF) were compared 

to the FAO-56 PM Rn standard using root mean square error (RMSE), the coefficient of determination (R²), and mean absolute 

percentage error (MAPE). Higher R² values, ideally approaching 1, indicate superior model performance, reflecting a regression line 

that closely aligns with the data. Conversely, lower RMSE and MAPE values reflect better model accuracy. 

 

3. Results and discussion 

 

3.1 Performance of different models and input features in estimating Rn 

 

This study evaluates the performance of MLP, KNN, and RF models in estimating Rn using three input feature sets: M1 (Tmax, Tavg, 

SSh), M2 (Tavg, SSh), and M3 (SSh only). The models were assessed using three scenarios: Hold-out (S1), K-Fold Cross-Validation 

(S2), and Growing-Window Forward-Validation (S3). Figure 2 illustrates the model performance comparison for Rn estimation across 

different input feature sets and scenarios. M1 (MLP1, KNN1, and RF1) consistently performed best. M2 (MLP2, KNN2, and RF2) 

exhibited similar accuracy, while M3 (MLP3, KNN3, and RF3), which relies solely on sunshine duration, showed the weakest 

performance across all scenarios. 

Table 6 presents key performance metrics, including training and testing R², RMSE, and MAPE, while Figure 3 shows the R² 

scatter plot for each ML model across three scenarios. For instance, in S3, the best-performing model, MLP1, achieved the highest 

testing R² (0.974), lowest RMSE (0.443 MJ m-2 day-1), and lowest MAPE (3.44%), reinforcing the importance of Tmax. KNN1 and RF1 

followed similar trends, with KNN1 attaining an R² of 0.969 and RMSE of 0.479 MJ m-2 day-1, while RF1 had an R² of 0.966 and 

RMSE of 0.506 MJ m-2 day-1. M2 models did not show significant declines, with MLP2 achieving an R² of 0.973 and an RMSE of 

0.446 MJ m⁻² day⁻¹, while KNN2 and RF2 maintained strong performance. In contrast, M3 models demonstrated significant accuracy 

loss, with MLP3, KNN3, and RF3 yielding much lower R² values (0.891–0.904) and higher RMSE (0.860–0.901 MJ m⁻² day⁻¹). 

However, their performance remains within an acceptable range for practical applications, highlighting their potential for simplified 

modeling approaches where data availability is limited.  

Models Tuned parameters 

MLP1 'hidden_layer_sizes': (128, 128), 'learning_rate': 'adaptive', 'max_iter': 180,  

KNN1 'n_neighbors': 9, 'p': 2, 'weights': 'uniform' 

RF1 'max_depth': 30, 'max_features': log2, 'min_samples_leaf': 5, 'n_estimators': 100 

MLP2 'hidden_layer_sizes': (128, 128), 'learning_rate': invscaling, 'max_iter': 160,  

KNN2 'n_neighbors': 9, 'p': 1, 'weights': 'uniform' 

RF2 max_depth': 20, 'max_features': log2, 'min_samples_leaf': 5, 'n_estimators': 100 

MLP3 'hidden_layer_sizes': (128, 128), 'learning_rate': 'adaptive', 'max_iter': 200,  

KNN3 'n_neighbors': 9, 'p': 1, 'weights': 'uniform' 

RF3 'max_depth': 10, 'max_features': log2, 'min_samples_leaf': 20, 'n_estimators': 300 
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Figure 2 Model performance comparison for Rn estimation of different input feature sets and scenarios 

 

Table 6 Training and test statistics of MLP, KNN, and RF models with different inputs across three scenarios 

 

Model 

Scenario 1 (Hold Out) Scenario 2 (K-fold) Scenario 3 (gwFV) 

Training set Test set Training set Test set Training set Test set 

R2 RMSE MAPE R2 RMSE MAPE R2 RMSE MAPE R2 RMSE MAPE R2 RMSE MAPE R2 RMSE MAPE 

MLP1 0.958 0.539 4.03 0.964 0.517 3.78 0.958 0.538 3.68 0.968 0.498 3.97 0.960 0.528 3.92 0.974 0.443 3.44 

KNN1 0.962 0.513 3.79 0.957 0.559 4.05 0.962 0.513 4.06 0.961 0.545 3.75 0.963 0.506 3.71 0.969 0.479 3.68 
RF1 0.967 0.481 3.54 0.961 0.535 3.78 0.965 0.490 4.21 0.960 0.557 3.64 0.968 0.475 3.56 0.966 0.506 3.91 

                   

MLP2 0.957 0.544 4.02 0.962 0.527 3.74 0.956 0.550 3.82 0.966 0.510 4.08 0.960 0.526 3.86 0.973 0.446 3.39 

KNN2 0.962 0.515 3.81 0.962 0.552 4.00 0.962 0.515 3.96 0.962 0.538 3.79 0.964 0.500 3.68 0.970 0.474 3.57 

RF2 0.964 0.501 3.72 0.958 0.545 3.91 0.966 0.483 3.88 0.964 0.523 3.54 0.968 0.471 3.46 0.972 0.457 3.50 

                   

MLP3 0.902 0.826 6.91 0.896 0.875 7.13 0.900 0.834 7.03 0.904 0.860 6.83 0.894 0.859 7.06 0.897 0.874 7.29 

KNN3 0.894 0.860 6.79 0.889 0.901 7.02 0.893 0.860 7.04 0.896 0.891 6.82 0.886 0.889 6.95 0.891 0.891 7.17 

RF3 0.904 0.817 6.76 0.896 0.871 7.00 0.903 0.822 6.96 0.903 0.861 6.76 0.897 0.848 6.93 0.899 0.899 7.14 

Note: RMSE (MJ m-2 day-1) and MAPE (%) 
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Figure 3 Scatter plots of predicted Rn by three ML models in three scenarios: (a) S1-MLP, (b) S2-MLP, (c) S3-MLP, (d) S1-KNN, 

(e) S2-KNN, (f) S3-KNN, (g) S1-RF, (h) S2-RF, (i) S3-RF 

 

These findings align with research by Huang et al. [41], emphasizing the dominant role of sunshine duration (SSh) in Rs estimation. 

Alizamir et al. [21] found a strong correlation between SSh and Rs, with values of 0.91 and 0.86 at the Darbandikhan and Dukan stations 

in Iraq, respectively. These stations are in a hot-summer Mediterranean climate, further underscoring the relevance of SSh. Similarly, 

Yu et al. [42] noted that SSh is the most influential factor in estimating Rn across multiple climate zones, except in the subtropical 

monsoon zone, where its effect was less significant. Since our study is in a tropical monsoon climate, our results align with their 

findings in temperate and continental regions, underscoring SSh’s dominant role in Rn estimation. While incorporating Tmax and Tavg 

improves accuracy, the moderate performance of SSh-based models suggests its sufficiency in many applications. Future research 

should explore its impact in varying climatic conditions, especially where humidity and wind play a greater role. 

The RF-RFE method confirms the significance of Tmax, Tavg, and SSh as input features in estimating Rn. Its effectiveness in this 

study is evident in its ability to identify the most relevant meteorological factors influencing Rn estimation. The method successfully 

selected key features, ensuring that only the most relevant variables were retained while reducing redundancy. This aligns with the 

findings of previous studies [27, 43] that have highlighted the ability of RFE to effectively eliminate highly correlated variables and 

identify the most influential predictors, ultimately leading to improved model accuracy. 

 

3.2 Performance stability of ML models across different data partitioning scenarios and the role of data pre-processing 

 

Figure 4 illustrates RMSE stability measured as the percentage difference between training and testing RMSE values across various 

models and scenarios. This section critically analyzes these findings to assess model robustness and consistency. Under the hold-out 

scenario (S1) for M1 and M2, MLP2 exhibited the highest stability, demonstrating the lowest RMSE percentage change (-3.13%), 

closely followed by MLP1 (-4.08%). This indicates minimal performance degradation between training and test sets. KNN2, RF2, and 

KNN1 showed moderate RMSE variations of 7.18%, 8.78%, and 8.97%, respectively, while RF1 exhibited the largest discrepancy at 

11.23%. For M3, KNN3 demonstrated the highest stability (4.77%), whereas MLP3 (5.93%) and RF3 (6.61%) showed moderate 

stability. In the K-fold validation scenario (S2), KNN2 achieved the highest stability, with the lowest RMSE change (4.47%), followed 

by KNN1 (6.24%). RF2, MLP2, and MLP1 displayed moderate stability levels at 8.28%, -7.27%, and -7.43%, respectively, whereas 

RF1 exhibited the most considerable instability (13.67%). Within M3, MLP3 demonstrated the highest stability (3.12%), followed 

closely by KNN3 (3.60%) and RF3 (4.74%). The growing window-forward validation scenario (S3) further highlighted differences in 

stability trends. For M1 and M2, RF2 exhibited the highest stability (-2.97%), followed by KNN2 (-5.20%) and KNN1 (-5.34%). 
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Conversely, MLP1 and MLP2 experienced the greatest instability, with RMSE variations of -16.10% and -15.21%, respectively. In 

M3, KNN3 demonstrated remarkable stability, with a minimal RMSE change (0.22%), followed by MLP3 (1.75%), while RF3 showed 

a moderate RMSE variation (6.01%). 

Overall, the findings suggest that KNN models generally exhibit superior stability across different validation strategies (S1-S3) 

and model variations (M1-M3), followed by MLP and RF models. However, stability alone does not necessarily imply superior 

predictive performance. For instance, in S3 under M1, KNN1 achieved the highest stability yet yielded a lower test R² (0.969) and 

higher RMSE (0.479) and MAPE (3.68%) compared to MLP1, which, despite lower stability, attained the highest test R² (0.974) 

alongside the lowest RMSE (0.443) and MAPE (3.44%). A similar trend was observed with MLP2, which closely matched MLP1 in 

accuracy and stability. These results highlight the inherent trade-off between model stability and accuracy. 

Notably, RF2 emerged as an exception, delivering high predictive accuracy without significant stability compromise, reinforcing 

the importance of balancing both factors in model selection.  

 

 
 

 
 

Figure 4 Stability of ML models based on RMSE (Train vs Test) across different scenarios 

 

These findings align with prior research on machine learning applications in environmental modeling. For example,  Pagano et al. 

[36]  demonstrated the strong predictive power of both MLP and RF in estimating actual evapotranspiration. Their study found RF to 

be the best-performing model while also demonstrating that reducing the number of input features did not significantly impact 

predictive accuracy. This observation aligns with our findings, particularly in M1 and M2, where accuracy and performance remained 

comparable despite variations in input features, suggesting the feasibility of selectively deploying minimal in-field sensors. 

On the other hand, Puga-Gil et al. [23] reported that MLP consistently outperformed RF and SVM in predicting monthly global 

solar irradiation. This aligns with our observations that MLP models, despite variations in stability, can generalize effectively across 

different datasets when properly trained. Conversely, Yamaç and Todorovic [44] found that KNN performed best when meteorological 

data were limited, whereas MLP achieved the highest accuracy when all variables were available. This aligns with the observed trade-

off in our study, where KNN demonstrated superior stability in several cases but was often outperformed by MLP in terms of test 

accuracy. Santos et al. [45] further support the effectiveness of MLP and RF for environmental modeling, particularly in data-limited 

regions. This reinforces our findings that RF and MLP can achieve strong performance even in challenging environmental conditions 

when appropriately trained and optimized. 

Data partitioning significantly impacts model evaluation. Our findings align with the study of Hossein Kazemi et al. [29], which 

demonstrates that K-Fold (S2) is superior to hold-out (S1). Furthermore, gwFV (S3) emerged as the most effective strategy, minimizing 

look-ahead bias and providing a more realistic out-of-sample error estimate, especially in dynamic datasets [32]. Hyperparameter 

tuning, a crucial yet subjective process, can significantly influence results, highlighting the importance of careful consideration and 

consistent practices [10]. 

Advanced denoising techniques like wavelet transforms could enhance machine learning model performance by effectively 

isolating and removing noise while preserving key features. Shiri [46] demonstrated that integrating wavelet transforms with RF 

significantly improved evapotranspiration estimation accuracy. This suggests potential benefits for net Rn estimation. Future work will 

explore integrating wavelet-based denoising by decomposing meteorological input data (e.g., Tmax, Tavg, SSh), denoising components, 

and reconstructing signals before model input. This approach aims to mitigate noise effects and improve model robustness, especially 

when data quality is suboptimal. 
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To further contextualize our findings, we compare them with recent studies in the field of solar radiation and environmental 

modeling. For instance, Landeras et al. [47] found that neural network-based approaches, particularly MLP, consistently outperformed 

other methods regarding accuracy and robustness. This aligns with our observations, where MLP models demonstrated superior 

performance in estimating Rn, especially when incorporating key input features such as Tmax, Tavg, and SSh. The strong performance of 

MLP in both studies underscores its versatility and effectiveness in solar radiation modeling, even across different geographic and 

climatic contexts. Additionally, Ikram et al. [48] emphasized the importance of optimizing machine learning models through advanced 

algorithms, which resonates with our findings on the impact of hyperparameter tuning and feature selection. For example, using 

GridSearchCV for hyperparameter optimization and RFE-RF for feature selection significantly enhanced model accuracy and stability. 

Their work reinforces that optimization strategies are critical for maximizing model performance in environmental applications. 

In a recent study, Alizamir et al. [49] proposed a hybrid deep learning model combining Long Short-Term Memory (LSTM) 

networks with wavelet transforms to improve daily solar radiation (Rs) prediction. Their approach leverages LSTM’s ability to capture 

temporal dependencies and wavelet transforms’ denoising capabilities, particularly for handling non-stationary and noisy 

environmental data, resulting in superior predictive performance. In contrast, our study focuses on stationary data, as confirmed in the 

methodology, allowing us to optimize traditional machine learning models (MLP, KNN, and RF) for Rn estimation without the need 

for advanced techniques to address non-stationarity. However, their findings suggest that future research could explore hybrid 

approaches, such as integrating wavelet transforms or deep learning architectures, to further enhance model robustness, particularly in 

datasets where non-stationarity is a concern. 

 

4. Conclusion 

 

This study successfully developed and evaluated a novel hybrid machine-learning framework for estimating daily net radiation 

(Rn) using minimal meteorological inputs. The integration of KNN imputation, RF-RFE feature selection, and machine learning models 

(MLP, KNN, and RF) effectively enhanced prediction accuracy. A key contribution was the rigorous evaluation of data partitioning 

techniques, including the hold-out split, K-fold cross-validation, and growing-window forward-validation (gwFV), with time-series 

cross-validation incorporated into hyperparameter tuning for improved robustness. 

Our findings highlight the importance of including average temperature (Tavg) for accurate Rn estimation, as models incorporating 

this variable (M1 and M2) generally outperformed those using only sunshine duration (M3). While M3 (SSh only) exhibited slightly 

lower accuracy, its performance remained acceptable for practical applications, demonstrating the potential for simplified modeling 

approaches in data-limited situations. RF-RFE effectively identified relevant meteorological features, optimizing model efficiency. 

While K-Nearest Neighbors (KNN) demonstrated superior stability in some validation scenarios, RF and MLP emerged as highly 

reliable models due to their robustness and ability to handle complex, nonlinear relationships in the data. 

This research offers a cost-effective and data-efficient approach for Rn estimation, particularly valuable in data-scarce regions, and 

contributes to improved water resource management and sustainable agricultural practices. 

Future research should address the study's limitations, particularly its limited geographic scope, by testing the framework across 

diverse climates and broader datasets. Specifically, evaluating the model’s performance in regions where factors such as humidity and 

wind speed have a more direct impact on Rn estimation (e.g., coastal areas, and humid tropical climates) is essential. This will help 

assess the framework's robustness and generalizability under varying environmental conditions. 
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