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Abstract 

 

Krepek tette is one of the popular cassava chips, which has become a signature snack from Pamekasan, Indonesia. 

Several studies have shown that its production process is significantly different from other chips, leading to 

distinct tastes and textures. One critical step in the process is drying, which largely depends on the open sun drying 

method. This method has been reported to produce better product quality but causes contamination and consumes 

more energy. To overcome the challenges, intermittent drying has been introduced as a novel technology that 

maintains product quality and consumes less energy. Therefore, this study aimed to determine drying kinetics of 

K. tette based on the thin layer drying model using 2 different methods, continuous and intermittent. Experiments 

were conducted with continuous and intermittent drying with an oven dryer at 50°C and 60°C. Intermittent drying 

was conducted by leaving the product out of the oven and placing it in a desiccator. The duration was 10 and 20 

min, while the resting time was 20 and 40 min, respectively. The result showed that drying kinetics of K. tette 

provided a good fitting curve model based on the Midilli and Kucuk model for continuous and intermittent 

methods. In addition, intermittent drying at a resting time of 10 min provided a shorter effective drying time of 

34% compared to the continuous method. The intermittent drying condition also had lower effective moisture 

diffusivity. These results confirmed that intermittent drying reduced energy consumption by shortening the 

effective drying time. 
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Nomenclature    

𝑎, 𝑏, 𝑘 

 

coefficient of drying model  𝑀𝑡+𝑑𝑡 moisture content at 𝑡 + 𝑑𝑡 

𝐷𝑅 drying rate (g water/g solid) min-1 𝑀𝑡 moisture content at t 

𝐷𝑒𝑓𝑓  

 

effective moisture diffusivity, 𝑚2/𝑆 𝑀𝑅𝑝𝑟𝑒,𝑡 the 𝑖𝑡ℎ predicted moisture ratio by 

model  

𝑘𝑠𝑙𝑜𝑝𝑒  estimated slope of straight line of 

equation 4 
𝑀𝑅𝑒𝑥𝑝,𝑡 

 

the 𝑖𝑡ℎ experimental moisture ratio  

𝐿 thickness, m  𝑁 Number of observations 

MR Dimensionless Moisture Ratio  𝑛 Number of constants in the model  

M Moisture content of krepek (% d.b) 𝑡 time, s 

𝑀𝑖 Initial moisture content (% d.b)  𝜒2 reduced chi-square 

𝑀𝑒 equilibrium moisture content (% d.b)   

 

1. Introduction 

 

Cassava is a major part of Indonesia’s cuisine which is widely used as the main ingredient for the production 

of various snacks, including thiwul, gethuk, lemet, tape, and chips. Among these snacks, chips have been reported 

to be the most consumed due to their taste, cooking procedure, and ability to complement other foods. In 
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Pamekasan, cassava is often processed differently into chips by steaming, flattening, dying, and frying, rather than 

the conventional method of slicing and frying after peeling [1]. This different process gives the product a different 

taste and texture as well as a different name, Krepek tette.  

Although K. tette has a potential market in Indonesia, its quality largely varies because the production process 

still relies on microenterprises. Several studies have shown that microenterprises are known for the use of 

traditional/manual processes, aged machines, or manual, and market orientation is mostly local [2]. One of the 

essential steps in the production of K. tette is drying, which is often conducted using open sun drying. However, 

this method has a high potential for contamination, proves difficult in controlling the parameters [3,4], and cannot 

be applied everywhere at any time.  

Drying is a preservation method comprising the use of heat and mass transfer mechanisms, which can lead to 

changes in the nutritional quality, color, flavor, and texture of the product. Moreover, the use of heat has a 

significant correlation with higher energy consumption. According to previous studies, there are 2 types of drying 

methods, namely continuous and intermittent. These methods have different durations of heat exposure, where 

continuous drying (CD) exposes the product during the process, while intermittent drying (ID) only exposes 

periodically [5]. Several studies have shown that ID has more benefits than CD [6–9], such as reduced drying time 

[5,9], energy consumption [10], and improved quality of dried material [11–13]. Mathematical modeling is often 

used to determine the moisture content of the product during the drying process to obtain the most appropriate 

condition [8] and to describe drying kinetics, which is essential for determining quality. The thin-layer drying 

model is the most widely used and is categorized as theoretical, semi-theoretical, and experimental [14]. 

In line with these findings, several studies have modeled drying kinetics of cassava chips [15–18], but none 

has focused on the use of ID, particularly in Indonesia. Therefore, this study aimed to obtain drying kinetics of  

K. tette based on the thin layer drying model using 2 different methods, continuous and intermittent. 

  

2. Materials and methods 

 

2.1 Material 

This study was carried out from October until November 2022 in the laboratory of agro-industrial product 

quality analysis (University of Trunojoyo Madura, Bangkalan). Krepek tette was made from cassava obtained 

from the fresh market at Kamal, Bangkalan. The cassava was washed, peeled, and steamed, then the steamed 

cassava was flattened with a thickness of 0.83 ± 0.01 mm. Each sample weighed 3 ± 0.001 g and was placed on 

the aluminum tray, which was produced by imitating the recipe from the K. tette enterprise at Pamekasan.  

 

2.2 Experimental procedures 

The drying experiment was conducted using an oven dryer (UNB 400, Memmert GmbH, Schwabach. 

Germany). The temperature was designed for 50 ± 0.1°C and 60 ± 0.1°C for all conditions (continuous and 

intermittent). In the intermittent procedure, resting times were used for 10 min (R10) and 20 min (R20), and all 

conditions were performed in triplicate. Before the drying experiment, cassava-steamed and dried chips from 

enterprise were dried in the oven at 105°C for 6 h to estimate initial and final moisture content. The moisture of 

these products was shown in Table 1, and the morphology of the chips in Figure 1. The content of cassava-steamed 

was used as the initial moisture content (𝑀𝑖) and that of dried chips was used as the equilibrium moisture content 

(𝑀𝑒) to determine the ratio. 

 

Table 1 Initial and final moisture content of samples taken from Krepek tette enterprise. 

 Initial moisture content Final moisture content 

Sample number A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 

Moisture Content (w.b) 54.4% 56.4% 57.7% 56.8% 55.5% 9.7% 9.8% 10.2% 9.6% 9.9% 

Average moisture content (w.b) 56% 10% 

The standard deviation of moisture content 

(w.b) 

0.011598 0.001953 

Coefficient variation of moisture content 

(Standard deviation/Average) 

0.020652 0.019872 

 

The experimental procedure for ID was followed by Pereira et al. [9] with modification, and 3 trays were 

required namely tray 1 which was placed in the dryer, and the remaining sample remained outside the oven. After 

the resting period, tray 2 was placed in the dryer, the first one was moved to the desiccator without silica, and tray 

3 remained outside the dryer and desiccator. Subsequently, After the resting time was over, tray 3 was placed in 

the dryer, and tray 1 was moved to desiccator 2 respectively. The cycle ended when the moisture content reached 

about 10% (w.b). Contrarily, all trays were placed and taken simultaneously for CD until the moisture content 
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reached about 10% (w.b). Mass measurements were periodically performed in all experiments at 10, 30, and 60 

min. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Morphology of chips before drying (A) and after drying (B). 

 

2.3 Mathematical modeling 

This study used 8 thin layer models presented in Table 2 to simulate the drying kinetics of the K. tette. 

Equations (1) and (2) showed the moisture ratio and drying rate calculation. 

 

𝑀𝑅 =
𝑀 − 𝑀𝑒

𝑀𝑖 − 𝑀𝑒

 
(1) 

𝐷𝑅 =
𝑀𝑡+𝑑𝑡 − 𝑀𝑡

𝑑𝑡
 

(2) 

Table 2 Thin layer mathematical models. 
No Model Name Equation  Reference(s) 

1 Henderson and Pabis 𝑀𝑅 = 𝑎 𝑒𝑥𝑝(−𝑏𝑡) [14] 

2 Lewis  𝑀𝑅 = 𝑒𝑥𝑝 𝑏𝑡 [19] 

3  Page 𝑀𝑅 = 𝑒𝑥𝑝(−𝑎𝑡𝑏) [20] 

4 Peleg 𝑀𝑅 = 1 − 𝑡/(𝑎 + 𝑏𝑡) [9] 

5 Silva et alii 𝑀𝑅 = 𝑒𝑥𝑝(−𝑎𝑡 − 𝑏𝑡1/2) [21] 

6 Wang and Singh  𝑀𝑅 = 1 + 𝑎𝑡 + 𝑏𝑡2 [8] 

7 Midilli and Kucuk  𝑀𝑅 = 𝑎 𝑒𝑥𝑝(−𝑏𝑡𝑛) + 𝑘𝑡 [5] 

8  Logarithmic 𝑀𝑅 = 𝑎 𝑒𝑥𝑝(−𝑏𝑡) + 𝑘 [22] 

The MR and drying time curve were fitted with all thin-layer mathematical models in Table 2. SOLVER in 

Microsoft Excel (2016) was used to perform regression analysis. Non-linear regression was performed to evaluate 

the best fit of the thin layer model based on the correlation of determination (𝑅2) and reduced chi-square (χ2). The 

nearest value of 𝑅2 to 1 and the value of χ2 was lower than 0.005, which was the criteria for the selection model. 

The reduced chi-square was calculated as equation (3). 

𝜒2 =
∑ (𝑀𝑅𝑝𝑟𝑒,𝑡 − 𝑀𝑅𝑒𝑥𝑝,𝑡)

2𝑁
𝑖=1

𝑁 − 𝑛
 

(3) 

The effective moisture diffusivity coefficients during the drying of the thin layer were calculated at different 

temperatures and experiments. The calculation was based on Fick’s second law of moisture diffusion and was 

expressed by equation (4) for the thin slab model. 

 

𝑀𝑅 =
8

𝜋2
𝑒𝑥𝑝 (

−𝜋2𝐷𝑒𝑓𝑓𝑡

4𝐿2
) 

(4) 

The effective moisture diffusivity was calculated by plotting in MR and drying time, the slope of the graph 

(𝑘𝑠𝑙𝑜𝑝𝑒) was used to determine Deff as:  

𝑘𝑠𝑙𝑜𝑝𝑒 =
𝜋2𝐷𝑒𝑓𝑓

4𝐿2
 

(5) 

(A) (B) 
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Equation (5) was also used to determine Deff at ID, although this equation was frequently used in CD. This 

was performed well when comparing CD and ID by Mishra et al. [23] who compared CD and ID utilization for 

potatoes. 

  

3. Results and discussion 

3.1 Mathematical Models for Fitting Drying Curves 

All drying kinetics models were applied in every experiment, and all parameters of the proposed model and 

the result of statistical analysis were presented in Table 3. Based on the statistical result, 𝑅2 had more than 0.9 

which indicated that all models agreed to represent the drying kinetics of the product. Moreover, to obtain the best 

model for all experiments, the selection was based on criteria of the highest 𝑅2 and the least 𝜒2. For continuous 

(resting time = 0) experiments at drying conditions at 50°C, Page, Midilli, and Kucuk models showed a good 

fitting model. These authors produced a good-fitting model at a drying condition of 60°C, and for the intermittent 

experiment, more than 2 succeeded in representing the drying kinetics of K. tette. At drying conditions of 50°C 

and resting time of 10 min, Page, Silva et alii, and Midilli and Kucuk representatives were the best-fitted models 

to describe experimental data. 

Silva et alii and Middli and Kucuk model were the best fit at a resting time of 20 min. A total of 3 mathematical 

models, namely Midilli and Kucuk, Silva et alii, and Wang and Singh, fitted to the experimental data at a drying 

condition of 60°C and resting time of 10 min. In the same temperature condition and resting time of 20 min, only 

the Midilli and Kucuk models were best fitted. In the overall experiment, these models were the best-fitted models 

to represent the drying kinetics of the K. tette. Moreover, for validation, plotting between the experimental values 

was shown in Figure 1, and it showed good agreement between experimental and predicted values. 

Midilli and Kucuk's presented the best-fit models to express the thin-layer drying kinetics of K. tette in CD 

and ID. These results were analogous to several authors who also reported the accomplishment of this model for 

CD of dill and parsley leaves [23], rough rice grain [24], onion [8], and spring leaves [14]. In ID, these results 

were a good agreement, which reported that the patterns were the best for the drying characteristics of soybean 

[5] and Camellia oleifera seeds [25]. These results proved that the models reasonably depicted moisture changes 

in food products during drying [26]. In addition, the results were also supported by the physical properties of  

K. tette, which had low porosity and density, and the materials dominated diffusion in transfer phenomena [25]. 

This was relevant because these models were modified from Fick’s second law of diffusion [26]. 

 

Table 3 Coefficients of thin layer mathematical model. 
Resting  

time  
(min) 

Temp 

(°C) 
No. Model Coefficients 𝑅2 𝜒2 No. Model Coefficients 𝑅2 𝜒2 

0 50 1 a = 1.09878 0.98253 0.00282 6 a = -0.00944 0.99270 0.00175 

   b = 0.01378    b = 0.00002   

  2 b = 0.01248 0.98638 0.00501 7 a = 0.9981255 0.99847 0.00032 

  3 a = 0.00208 0.99819 0.00040  b = 0.001751   

   b = 1.40657    n = 1.45131   

  4 a = 84.62308 0.97748 0.00500  k = 9.36E-05   

   b = 0.58397   8 a = 1.1797152 0.98782 0.00213 

  5 a = 0.01939 0.99556 0.00063  b = 0.011142   

   b = -0.05990    k = -0.10608   

0 60 1 a = 1.10227 0.94787 0.01218 6 a = -0.01226 0.99453 0.00170 

   b = 0.02154    b = 0.00001   

  2 b = 0.01941 0.95795 0.01584 7 
a = 0.9948496 0.99890 0.00023 

  3 a = 0.00118 0.99595 0.00078  
b = 0.001871 

  

   b = 1.71344    n = 1.529983   

  4 a = 81.84761 0.99430 0.00139  
k = -0.00143 

  

   b = 0.09207   8 a = 3.3267265 0.99495 0.00135 
  5 a = 0.03470 0.98022 0.00379  b = 0.004083   

   b = -0.10349    k = -2.296   
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Resting  

time  

(min) 

Temp 

(°C) 
No. Model Coefficients 𝑅2 𝜒2 No. Model Coefficients 𝑅2 𝜒2 

10 50 1 a =1.063332048 0.98700 0.00210 6 a = -0.015360179 0.98863 0.00298 

   b = 0.020826    b = 6.27E-05   

  2 b = 0.019462313 0.98952 0.00309 7 a = 1.004389096 0.99912 0.00019 

  3 a = 0.005894407 0.99859 0.00031  b =0.005148   

   b = 1.303994    n = 1.352886   

  4 a = 55.67904213 0.98740 0.00247  k = 0.000263   

   b = 0.549075   8 a = 1.174611976 0.99207 0.00139 

  5 a = 0.028557947 0.99795 0.00027  b = 0.016243   

   b = -0.06192    k = -0.13337   

10 60 1 a= 1.066305 0.98432 0.00267 6 a =-0.01874 0.99331 0.00176 

   b = 0.025037    b = 9.49E-05   

  2 b = 0.023364  0.98531 0.00382 7 a =1.005074 0.99951 0.00008 

  3 a = 0.007641 0.99457 0.00122  b =0.00477    

   b = 1.298015    n =1.459639   

  4 a=42.8288  0.97611 0.00534  k =0.000727   

   b=0.626404    8 a =1.105283 0.98903 0.00186 

  5 a =0.035873  0.99747 0.00071  b =0.022658   

   b =-0.07778    k =-0.04828   

20 50 1 a =1.033403382 0.99338 0.00121 6 a =-0.010285185 0.99732 0.00044 

   b =0.012797     b =2.99E-05    

  2 b =0.012303264 0.99361 0.00162 7 a = 1.001504282 0.99977 0.00004 

  3 a =0.006534635  0.99648 0.00067  b =0.003862   

   b =1.146227    n =1.29938   

  4 a =78.63162187 0.98881 0.00177  k =0.000451    

   b =0.645124   8 a =1.054879852 0.99362 0.00116 

  5 a =0.015994159  0.99802 0.00039  b =0.012146    

   b =-0.03069    k =-0.0257    

20 60 1 a =1.0306  0.98834 0.00191 6 a =-0.01415 0.99335 0.00164 

   b =0.016412     b =5.98E-05   

  2 b =0.015867  0.98834 0.00221 7 a =0.999197 0.99994 0.00001 

  3 a =0.008236  0.99222 0.00133  b =0.00364   

   b =1.159123    n =1.40626   

  4 a =59.67782  0.98163 0.00316  k =0.000819   

   b =0.663687   8 a =1.037095 0.98837 0.00190 

  5 a =0.021246 0.99432 0.00100  b =0.016155   

   b =-0.04047    k =-0.00761    

 

3.2 Drying kinetics 

Figure 2 presented the drying kinetics for CD and ID, and effective drying time was used to depict the drying 

kinetics of ID rather than the total drying time to compare the drying kinetics between these kinetics. Effective 

drying time was determined when the product remained inside the dryer, and because of this, ID was called a 

pseudo-CD process [9]. The total drying time of CD at 50°C to reach moisture equilibrium was 240 min, and that 

of 60°C was close to 90 min. In addition, that of 10 min and temperature conditions of 50°C and 60°C, 

respectively, were 340 min and 310 min. Simultaneously, the total drying time at a resting time of 20 min was 

longer, 500 min and 380 min for temperatures 50°C and 60°C, respectively. These results showed that higher 

temperatures affected a reduction of drying time, and raising the temperature by 10°C reduced approximately 60% 

of drying time at CD. The ID was reduced by 8.8% and 24% for resting time, 10 min and 20 min, respectively. 

This phenomenon confirmed that drying time was inversely proportional to air temperature increment, as reported 

by several authors [14,23,27]. The relationship between air temperature and drying time happened due to an 

increase in the product’s thermal gradient. An increase in the rate of mass transfer of water [29,30], was 

comparable to results from different studies on drying of various food and non-food products [28–31]. However, 

the use of higher temperatures to shorten drying time provided drawbacks to the qualitative properties of the 



6 

 

product and required high specific energy consumption [32]. These were typical of the hot-air drying method, 

which was dominant in convective heat transfer [33].  

The drying rate for all experiments decreased along with moisture content, as presented in Figure 3. All 

experiments demonstrated a falling rate period, except ID at a resting time of 10 min and a temperature of 50°C. 

This showed a constant drying period ranging from approximately 90% to almost 60%. Moreover, the slope at 

CD was gentler than both intermittent dryings. 

All drying conditions encountered a falling-rate period for both ID and CD, and it happened that the ratio of 

the surface area to the volume of the K. tette was sizable. However, the decrease of moisture content was higher 

than in the center at the initiation of the drying period [5], and it also proved that internal moisture diffusion 

dominated [19], particularly in CD which affected ID obliquely through resting time. During this period, internal 

moisture diffused to the surface area of the product due to the lack of driving force created by the air temperature. 

Subsequently, when a form of activeness was applied, moisture removal increased as well as the drying rate [7,34]. 

Based on Figure 4 drying kinetics was described by the established model, Midilli and Kucuk. This was limited 

to effective drying time at 160 min and 90 min to compare fairly between CD and ID about effective time-saving. 

The criteria to determine the limit of this function was an experiment that reached MR value at 0.10 first. 

Observation of drying kinetics from Figure 4 showed significant differences between ID and CD at the same 

temperature study, which was shown by the value of MR dropping more in ID than CD at the same periodic time. 

The result was linear, with Pereira et al. [9] observing that rice grain lost more moisture in ID than in the CD. For 

instance, at 50°C, the time required to reach MR 0.20 for CD, ID (R10), and ID (R20) was 113min, 74min, and 

120min, respectively. ID at a resting time of 10 min reduced drying time to 34% lower than CD. However, the 

increase in resting time did not shorten the effective drying time. A similar result was obtained at 60°C. The ID 

(R10) had a less effective drying time than the continuous, about 13% lower, and to reach a similar MR at 0.20, 

CD took 69 min. 

 

Figure 2 Comparison of experimental and predicted moisture ratio for continuous drying (A), intermittent drying 

with resting time 10min (B), and resting time 20 min (C).  

(a) (b) 

  
(c) 
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Figure 3 Drying rate as a function of moisture content at different drying conditions (A) 50°C, (B) 60°C. 

ID at a resting time of 10 min and 20 min accomplished 60 and 90 min. Figure 4(b) showed a thoughtful result 

of the CD experiment, and when the effective drying time was over 70 min, the MR value declined steeper than 

ID at resting times of 10 min and 20 min. This result was confirmed by Figure 3(b), that the drying rate of CD 

tended to exceed equilibrium moisture content (𝑀𝑒 = 10%) which led to the exclusion of the experiment 60°C 

from further discussion. 

 

Figure 4 Comparison of continuous and intermittent drying described by the Midilli and Kucuk model at 

temperatures of 50°C (A) and 60°C (B). 

As a result of the comparison between CD and ID, the experiment at 50°C showed that ID at a resting time 

of 10 min had more effective time-saving than CD and, consequently, affected lower energy consumption for 

drying. This confirmed similar reports from the different authors, which also reported the effective drying time 

of soybean [5], Ganoderma tsugae Murril [7], and rough rice [9] which were shorter at ID. When the product 

favored a period of no heating, moisture content depleted. Subsequently, when the heating process resumed, the 

moisture removal rate increased [35]. Franco et al. [12] explained that ID enabled control of the surface 

temperature of the product, which led to less damage, such as cracking and fissure [9]. 

ID also presented high thermal efficiency compared to CD by reducing energy utilization during drying [7]. 

This efficiency was attained when the drying rate was lower and vice versa [36]. In addition, the result showed 

that prolonged resting time did not significantly shorten effective drying time. The results supported by different 

studies allowed a longer resting time that caused a reduction [7,19,37]. In addition, to enhance the benefit of ID, 

understanding heat and mass transfer during the drying process, and the properties of the product was crucial to 

selecting an appropriate resting time [38].  

The principle of ID was controlling the supply of thermal energy, and it could be achieved by varying the air 

rate, temperature, humidity, or operating pressure [38]. Kumar et al. [38] classified ID into 4 categories, first, the 

combined drying method, meaning convective and microwave drying [26,32,39,40]. Second, different tempering 

periods were used [9,19,25]. Third, different temperature drying methods [8,10] and varying drying air conditions 

[7] were used. Moreover, this study was classified as ID by varying tempering periods, and all this showed that it 

produced better quality and reduced energy consumption than CD. 
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3.3 Effective moisture diffusivity 

Effective moisture diffusivity (Deff) values at different temperatures and resting times were presented in Table 

4. Significant differences existed in Deff value between CD and ID for both temperature experiments, and the 

Deff for CD was higher than ID at all temperatures. In addition, the resting time of 10 min had a higher value than 

the resting time of 20 min for all temperature conditions. This resulted in the higher value of Deff causing the 

extended period of resting time to result in lower Deff value.  

Table 4 Effective moisture diffusivity of Krepek tette at different conditions. 
Temp (°C) Resting 

time (min) 

𝐷𝑒𝑓𝑓 
(𝑚2/𝑠) 

Temp (°C) 
Resting 

time (min) 

𝐷𝑒𝑓𝑓 
(𝑚2/𝑠) 

50 0 1.56 𝑥10−8 60 0 2.56 𝑥10−8 

 10 1.94 𝑥10−10  10 2.17 𝑥10−10 

 20 6.43 𝑥10−11  20 8.75 𝑥10−11 

 

The Deff value shown in Table 3 indicated that it was within the standard value for food materials between  

10-12 and 10-8 m2/s [41]. These results showed that it strongly depended on drying temperature and supported the 

different studies [14,19]. Moreover, the Deff value of CD was higher than ID for all treatments, and a lower 

prolonged resting time was performed. These contradicted Park et al. [5] and Pereira et al. [9], that the value of 

ID was greater than CD, and longer resting time performed a greater Deff value. During a resting time, the surface 

layer favored decreasing temperature, and lower temperature performed the lower activity of water molecules 

[42]. Consequently, the moisture content changed to tiny and Deff became low. These phenomena implied that 

rather than temperature, moisture content had a significant effect on diffusivity [43]. 

 

4. Conclusion 

 

In conclusion, the Midilli and Kucuk models performed the best fitting thin layer drying kinetics model for 

CD and ID. The result showed that ID provided a shorter effective drying time than CD and, consequently, more 

effective time-saving. However, a prolonged resting time did not shorten the effective drying time, knowing about 

the drying process and properties of the product was recommended to obtain the maximum benefit of ID. The 

result showed that a resting time of 10 min provided the best condition to attain the benefit of ID while drying off 

krepek tette, and was formulated by the Midilli and Kucuk model as 𝑀𝑅𝑇=50 = 1.004 𝑒𝑥𝑝(−0.0051𝑡1.352) +

0.00026𝑡.  
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