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Abstract 

 

A design for a twisted oval tube (TOT) heat exchanger using a surrogate-assisted metaheuristic (MH) optimization 

technique is proposed in this work. The heat transfer characteristic in the TOTs is presented using the 

computational fluid dynamic (CFD) method, considering parameters such as pitch ratios (PR), cross-sectional 

ratios (DR), and Reynolds number (Re) ranging from 0.6 to 1.4, 0.02 to 0.1, and 100 to 2,000, respectively. The 

fitness functions were considered as multi-objective, including the Nusselt number (Nu) and the Poiseuille number 

(fRe) [1]. To reduce the time consumed in the design procedure, surrogate-assisted optimization was applied in 

the optimum design search phase. Well-known surrogate models (SuMo), including the Kriging (KRG), radial 

basis function interpolation (RBF), and k-nearest neighborhood method (KNN), were investigated and compared 

when applied with metaheuristic algorithms. The results show that the most acceptable prediction model is the 

RBF-Inverse Multiquadric kernel with the multi-objective meta‑heuristic with iterative parameter distribution 

estimation (MMIPDE), with average errors of 20.9731 and 15.6011 for Nu and fRe, respectively. 

    
Keywords: Twisted oval tube, Heat transfer, Surrogate model, Kriging, Surrogate-assisted design optimization 

 

1. Introduction 

 

Heat exchangers are utilized in various industries, including the petroleum, chemical, food, power plant, and 

food processing industries for processes such as heat treatment for control of bacteria. To improve overall thermal 

efficiency and heat transfer rates, heat exchangers can be improved through various techniques, such as passive 

heat transfer enhancement methods that do not require external energy input. The passive method involves 

modification of the internal flow structure of heat exchanger tubes using devices, also called turbulators or vortex 

generators [2], for example baffles [3, 4], fins [2, 5, 6], twisted tapes [7–10], grooved [11] and roughened surfaces 

[12] etc. Among the various techniques of the passivation method, using a tube with a rough surface is most 

commonly employed to enhance heat transfer rates [13, 14]. This is achieved by inducing a swirling flow pattern 

and increasing the mixing of the fluid between the center and near-wall regions of the tube. As a result, the heat 

transfer rate at the tube wall is significantly increased. 

Numerous researchers have conducted studies on improving heat transfer rates in heat exchangers through 

various techniques, including modifications to the internal flow structure. Among these techniques, the use of heat 

exchanger tubes with roughened surfaces such as ribbed tubes, micro-finned tubes, helically grooved tubes [11], 

and twisted tubes have been investigated extensively in the field of heat transfer enhancement. For example, 

Naphon and Wiriyasart [15] studied the effect of micro-finned tubes on laminar pulsating flow and heat transfer 

with magnetic fields. They reported that the micro-finned tubes provided superior heat transfer compared with 

smooth tubes. Jianfeng et al. [16] reported turbulent convective heat transfer in a spirally grooved tube. They 

found that the spirally grooved tubes gave heat transfer higher than that of smooth tubes due to the effect of the 

spiral groove. Increasing the groove height can increase the heat transfer. Razzaghi et al. [17] reported the thermo-

hydraulic performance evaluation of a twisted flat tube in turbulent flow. They found that the twisted flat tube 

provided thermo-hydraulic performance 70% higher than the smooth tube. Promthaisong et al. [18] investigated 
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the effect of twisting ratio of the twisted square duct for heat transfer enhancement. They found that the maximum 

thermal enhancement factor of 1.42 was at the twist ratio of 3.5. In the range studied, the heat transfer was found 

to be in the range 31 - 52%. Recently in 2023, Eiamsa-ard et al. [19] investigated ribbed twisted-oval tubes for 

heat transfer enhancement, and found that the ribbed twisted-oval tubes provided higher heat transfer than that of 

both twisted-oval tubes and smooth circular tubes alone. Moreover, studies on nanofluid flow have been conducted 

since the early 2000s [9, 20–22]. Both numerical [9] and experimental [21] approaches have been used, and 

improvements have been made in optimization methods [20, 22]. 

The initial computational study on the subject of fluid dynamics and heat transfer was conducted in 1970 [23], 

while a calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows was 

conducted in 1972 [24]. These numerical studies have been widely popular and disseminated compared to the 

earlier work, as they can help reduce experimental and computational resources [3]. In the context of heat 

exchanger optimization research, the typical design objectives are centered around the heat transfer performance 

and pressure loss. The evaluation of these objective functions traditionally involves the use of computational fluid 

dynamics (CFD) simulations, which are notorious for their time-consuming nature. Considering this challenge, 

surrogate-assisted optimization has been proposed as a means of addressing the optimization of heat exchangers 

[3]. For example, an oscillating fluid’s effect on the temperature distribution throughout the pipe was predicted 

using the surrogate model, and could be extended to an optimum design in future works [25]. High-temperature 

polymer electrolyte membrane fuel cells (HT-PEMFCs) were designed by machine learning-based optimization 

[26]. The design of fixed-type packed bed reactors for chemical heat storage was conducted using a 

hyperparameter optimization framework technique called Optuna, coupling with evolutionary multi-objective 

optimization algorithms such as nondominated sorting genetic algorithm II (NSGA-II) [1, 27], Finally, Fawaz et 

al. [28] presented a literature review on the topology optimization of heat exchangers. The trend of heat exchanger 

design is focused on high heat transfer performance. The focus of the study was on conjugate heat transfer in heat 

exchangers. Topology optimization was applied. 

As mentioned in the literature review above, direct optimization methods consume a significant amount of 

computing time. Reducing computational time is necessary. Therefore, the aim of this paper is to investigate the 

application of surrogate models with metaheuristic optimization for designing the twisted oval tube heat 

exchanger. The mathematical model of conjugate heat transfer and the surrogate model are detailed in Section 2. 

The numerical experiment setup, including objective function definition and parameter settings, is defined in 

Section 3. The results and discussion are detailed in Section 4, and the conclusion is presented in the final section. 

  

2. Materials and methods 

 

2.1 Conjugate heat transfer data reduction 

 

This study investigates a twisted oval tube with a reference diameter (D), in which a surface tube is twisted 

with a length controlled by the twist length (p), representing the length of the twist over 360 degrees. The study 

explored various pitch ratios (PR, p/D) and cross-sectional ratios (DR, a/b) ranging from 0.6 to 1.4 and 0.02 to 

0.1, respectively. Figure 1 provides a detailed illustration of the geometry. The numerical computation used air as 

the working fluid at a pressure of one atmosphere and a temperature of 300 K (Pr = 0.707) and computed with 

Reynolds numbers (Re) ranging from 100 to 2,000. The wall of the test section was assumed to be in a no-slip 

condition and a constant temperature of 310 K. The inlet and outlet were applied with the periodic condition  

[3, 7, 8, 10, 18, 29–31]. 

In this paper, the flow is described by three equations: continuity, Navier-Stokes equations, and the energy 

equation. These equations were developed under the following assumptions: 

- The flow is three-dimensional, steady, laminar and incompressible. 

- The fluid properties are constant. 

- Body forces and viscous dissipation are negligible. 

- Radiation heat transfer can be ignored. 

Based on these assumptions, the governing equations in the Cartesian tensor system can be expressed as: 

 

Continuity equation:
𝜕(𝑢𝑖)

𝜕𝑥𝑖
= 0 (1) 

Momentum equation:
𝜕(𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
= −

𝜕𝑃

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
[𝜇 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)] (2) 

Energy equation:
𝜕

𝜕𝑥𝑖
(𝑢𝑗𝑇) =

𝜕

𝜕𝑥𝑗
(ᴦ

𝜕𝑇

𝜕𝑥𝑗
) (3) 

were ᴦ is the thermal diffusivity and is defined as: ᴦ =
𝜇

𝑃𝑟
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Figure 1 The schematic diagram of twisted oval tube. 

 

The quadratic upstream interpolation for convective kinetics differencing scheme (QUICK) was used to 

discretize the energy equation, while the governing equations were discretized by the second-order upwind 

differencing scheme and decoupled with the semi–implicit method for pressure–linked equations algorithm 

(SIMPLE). The finite volume method was employed as a solver, following Patankar's method [23, 24]. 

Convergence was considered achieved when the normal residual values for all equations were less than 10-5, 

except for the energy equation, which was set to less than 10-9 

The parameters of interest for the numerical method are Reynolds number, friction factor, average Nusselt 

number and the thermal enhancement factor, which are expressed in Equations (4), (5), (6), and Equation (7), 

respectively. 

The Reynolds number was defined as 

 

𝑅𝑒 =  
𝜌𝑢𝐷ℎ

µ
  (4) 

while the friction factor, 𝑓, was calculated from the pressure drop (𝛥𝑃) along the length of the flow tube using 

the equation 

𝑓 = 2(−
𝑑𝑃

𝑑𝑥
)(

𝐷ℎ

𝜌𝑢2)  (5) 

The average Nusslet number can be calculated from 

𝑁𝑢 =  
1

𝐴
∫ 𝑁𝑢𝑥𝑑𝐴  (6) 

The thermal enhancement factor (TEF), a performance indicator that accounts for both heat transfer and 

pressure loss under equal pumping power, can be expressed as: 

𝑇𝐸𝐹 = (
𝑁𝑢

𝑁𝑢0
)/(

𝑓

𝑓0
)1/3  (7) 

where 𝑁𝑢0 and 𝑓0 are the Nusselt number and friction factor for a straight smooth circular tube, respectively. 

 

2.2 Surrogate model 

 

In the field of engineering, when it is difficult to measure or compute an outcome of interest, a surrogate model 

is used as a prediction method to evaluate the correlation between input and outcome. Well-known models in 

engineering design include the Kriging model (KRG) [32, 33], radial basis function interpolation (RBF) [34], 

support vector machine (SVM), polynomial response surface (PRS) [3], and k-nearest neighborhood method 

(KNN) [35]. Detailed information on the surrogate models is provided in the following sections. 

 

2.2.1 Kriging model 

 

KRG, also called Gaussian process regression, is a predictive technique using Wiener–Kolmogorov prediction 

developed by Norbert Wiener and Andrey Kolmogorov in 1960 [33]. This model has been continuously developed 

over time, and several popular models have used meta-heuristic algorithms to estimate the model's matrix 

coefficients, a process known as parameter estimation via meta-heuristics for Kriging [36, 37]. The equation for 

this model is presented below. 
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𝑦̂ = 𝜇 + ∅𝑇(𝐔\(𝐔𝐓\𝑦 − {1} × 𝜇)) (8) 

where 

 ∅ = exp(− ∑ (𝜃 × 𝑎𝑏𝑠(𝐱𝑖 − 𝐱)1.99)𝑛
𝑖=1 ) 

 𝜇 =
{1}×𝐔(𝐔𝐓\𝑦)

{1}×𝐔(𝐔𝐓\{1})
 

 𝜃 = 10𝜗  

where 𝐔 and 𝜗 can be estimated by the hybrid grey wolf-adaptive differential evolution (GWADE) [37]. 

2.2.2 Radial basis function interpolation 

 

Radial basis function (RBF) interpolation is a commonly used method in engineering design, similar to the 

Kriging model. The RBF model can also modify its kernel function by using various function types based on the 

governing equation [34], following: 

𝑦̂ = ∑ 𝛼𝑖𝐾(‖𝐱 − 𝐱𝑖‖)𝑛
𝑖=1  (9) 

where 𝛼𝑖  is a predicted coefficient matric 

  ‖𝐱 − 𝐱𝑖‖ is an absolute radial distance of input parameter 

  𝐾 is a kernel function 

where the kernel functions are detailed in the literature [38–42]. 

2.2.3 K-nearest neighbor method 

 

KNN serves as the final competitor. KNN is a prediction technique based on the average value of the training 

set using input design vectors and their distances [35], as shown in Equation (10).  

𝐷𝑖 = ∑(𝐱𝑖 − 𝐱)
2
 (10) 

Then the outcome can be predicted from the average value of the training set with the distance input design 

vector 

𝑦̂ = 𝑚𝑒𝑎𝑛({𝑦𝑘})  

were {𝑦𝑘} represents the outcome parameter population from the training points, and 𝑘 is the population size 

of the training inputs. Generally, the total size of 𝑘 can be set manually, with the maximum number being the total 

size of the training inputs. 

 

In the present study, all the surrogate models mentioned above were employed to predict the twisted oval tube 

heat exchanger tube's design, and their performances were compared. The design training set and validation set 

were computed by the finite volume method [23, 24] and formed into groups by the k-means clustering method 

[43, 44]. To solve the problem, several multi-objective evolutionary algorithms (MOEAs) were employed, namely 

multi-objective meta‑heuristic with iterative parameter distribution estimation (MMIPDE) [45], hybrid real-code 

population-based incremental learning and differential evolution (RPBILDE) [46], multi-objective cuckoo Search 

(MOCS) [47]. multi-objective grey wolf optimizer (MOGWO) [48] and non-dominated sorting genetic algorithm 

II (NSGA-II) [49] 

 

2.3 Laboratory testing  

 

All the tests were performed at the DPWH-accredited materials testing laboratory and in accordance with 

international standards. These include Los Angeles abrasion, sieve analysis, hygroscopic moisture content, density, 

liquid and plastic limits, compaction, CBR, and UCS. 

 

3. Numerical experiment setup 

 

This study is a comparison of metaheuristic (MH) optimization algorithms. The design vector ( 𝐱𝑖 ) is 

constructed by the cross-sectional ratios (DR), PR, and 𝑅𝑒 , respectively. Negligible inequality and equality 

constraints were present, while the design variable was bound-constrained. The objective function of this work 

was set as a multi-objective optimization problem. The investigation aimed to simultaneously optimize the 

Poiseuille number (𝑓𝑅𝑒), and Nusselt number values, which present two conflicting goals [1]. To achieve this, a 
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multi-objective optimization problem was formulated considering the design variables of Re, DR and PR 

following: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∶ 𝑓1(𝐱) = 𝑁𝑢 (11) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∶ 𝑓2(𝐱) = 𝑓𝑅𝑒 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ 𝐱𝑙 ≤ 𝐱𝑖 ≤ 𝐱𝑢 

It is important to mention that the relationship between the friction factor (𝑓) and the Re does not behave in 

the same way as that of the pressure drop (ΔP). In fact, an increase in Re can cause a decrease in the 𝑓, but an 

increase in ΔP, illustrating a non-similar pattern between the two variables [1]. All the objective functions were 

predicted by the surrogate models above, while the k-mean clustering is applied for selecting the training points 

and validating points. The parameter setting of the competitive surrogate model is detailed in Table 1. 

Table 1 The surrogate model parameter setup. 
Surrogate model Parameter name Values or method 

Kriging model (KRG) 

model's matrix 

coefficients 𝐔 and 

𝜗 algorithm solver 

hybrid grey wolf-adaptive differential evolution (GWADE) 

Radial basis function (RBF) kernel functions 

Linear spline  :𝐾 = ‖𝐱 − 𝐱𝑖‖ 

Cubic spline  :𝐾 = ‖𝐱 − 𝐱𝑖‖3 

Gaussian technique: 𝐾 = 𝑒𝑥 𝑝(𝜀 × ‖𝐱 − 𝐱𝑖‖) ∶  𝜀 = 1𝑒 − 5 

Multiquadric technique: 𝐾 = 𝑠𝑞𝑟𝑡(1 + (𝜀 × ‖𝐱 − 𝐱𝑖‖2)) ∶  𝜀 = 1𝑒 − 5 

Inverse Quadric technique: 𝐾 =
1

1+(𝜀×‖𝐱−𝐱𝑖‖2)
∶  𝜀 = 1𝑒 − 5 

Inverse Multiquadric technique: 𝐾 =
1

𝑠𝑞𝑟𝑡(1+(𝜀×‖𝐱−𝐱𝑖‖2))
∶  𝜀 = 1𝑒 − 5 

K-nearest neighbor method (KNN) 
population size of 

training inputs (𝑘) 
{2, 3, 5, 10} 

 

The optimization procedure used in this study is called a MH. Five recent metaheuristic algorithms were 

utilized to construct the surrogate-assisted optimization approach for the TOT heat exchanger. The setup of 

optimization parameters is outlined in Table 2. The total number of function evaluations (FEs) is set to 20,000 

FEs, and the population size is 50. The performance of the metaheuristic algorithms was evaluated using the 

hypervolume indicator [50] with the statistical tests including average (Mean), standard deviation (Std), maximum 

(Max) and minimum values (Min). 

 

Table 2 The optimization parameter set up. 

Algorithm Parameter Values 

MMIPDE 

First scaling factor (F1) 

Second scaling factor (F2) 

Crossover parameter (CR) 

[0.75,1.5] 

[0.1, 0.5] 

[0.75, 1.0] 

RPBILDE 

Learning rate (LR) 

Mutation probability (μprop) 

Mutation shift (μshift) 

Crossover probability 

Scaling factor for differential evolution (DE) operator (F) 

Probability of choosing Element from offspring in crossover (CR) 

0.25 

0.05 

0.20 

0.7 

0.8 

0.5 

MOCS The Levy exponent in Levy flights (β) 1.5 

MOGWO 

Grid Inflation Parameter (α) 

Leader Selection Pressure Parameter (β) 

Extra Repository Member Selection Pressure (γ) 

Number of Grids per each Dimension (Ngrid) 

0.1 

4 

2 

10 

NSGA-II Mutation probability (Pm) 0.1 

 

4. Results and discussion  

 

4.1 Grid independence test 

 

The smooth tube was used to validate by comparing with the exact solution found in the open literature [51]. 

The heat transfer (𝑁𝑢) and 𝑓 were reported as shown in Figure 2. In the figure, under a similar operating condition, 

the Nu and f of the smooth tube by the numerical method were found to be in excellent agreement with the exact 
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solution with deviations less than 0.5%. The results indicate that the numerical method provides strong confidence 

in further studies of the heat transfer and friction factor in the twisted oval tube in the laminar flow region. 

 

 
Figure 2 Verification for the smooth tube. 

 

The grid number for the test section (using the TOT with PR=1.0 and DR=0.06) was used at around 80,000 

elements, because a rise in the grid number from 80,000 to 100,000 changed the Nusselt number and friction 

factor by less than 0.5%, while a rise of the grid number from 40,000 to 60,000 and from 60,000 to 80,000 resulted 

in a significant change in both the Nusselt number and friction factor. 

 

4.2 Surrogate assisted optimization result 

 

A surrogate-assisted optimization of the TOT heat exchanger was conducted. The statistical results of the 

optimum solutions are presented in Table 3, with the convergence history of all MHs shown in Figure 3. The 

hypervolume is computed and applied to statistical tests such as the average, standard deviation (Std), Best 

hypervolume value (Maximum), Worst hypervolume value (Minimum) and rank number of each model as 

presented. The results show that the MMIPDE is an outstanding algorithm for the design of the TOT heat 

exchanger, while the second best is RPBILDE, with average ranking numbers of 1.4545 and 1.5455 respectively. 

The MMIPDE presents the 6-winner prediction model, including RBF-linear, RBF-cubic spline, KNN-k=2, 3, 5 

and 10, while other models are archived with RPBILDE. The third to last ranks are sorted as MOGWO, MOCS 

and NSGA-II with average ranks of 3.0909, 3.9091 and 5 respectively. Although the statistical results of the 

hypervolume from each prediction model cannot definitively determine which model gives the best result due to 

the presence of prediction errors, the optimum results obtained from the surrogate approximation must be 

evaluated for their actual function through CFD analyses. The percentage errors are computed and presented in 

Table 4. The optimum solutions, known as the Pareto front, from MMIPDE and RPBILDE from all prediction 

models, are selected as the sample population. Five selection points from each model are presented and the 

predicted fitness function, actual fitness function, percentage error for each representative population, and the 

average percentage error for each model are presented in Table 4. The fitness function is including Nusselt number 

(𝑁𝑢) and the Poiseuille number (𝑓𝑅𝑒). It can be seen that the RBF-Inverse Multiquadric with the MMIPDE 

algorithm provides acceptable predictions for both the Nusselt number and the Poiseuille number, with average 

errors of 20.9731 and 15.6011, respectively. On the other hand, the RPBILDE cannot find the most accurate model 

with a single approach. Two models that give the minimum error of the fitness function are the RBF-Inverse 

Multiquadric for the Nusselt number, value 18.3140, and the RBF-Inverse Quadric for the Poiseuille number, 

value 17.6819, respectively. The other models that are usable exhibit errors ranging from 21.8614 to 46.4616 for 

the Nusselt number, and from 19.0646 to 45.8472 for the Poiseuille number. However, the RBF – cubic spline 

model does not accept prediction results with errors of more than 100% for both Nusselt number and Poiseuille 

number.  

The details of the sampling population of optimum solutions from MMIPDE and RPBILDE are presented in 

Table 5. The Nusselt number, friction factor, Nusselt number ratio (𝑁𝑢𝑟𝑎𝑡𝑖𝑜), friction factor ratio (𝑓𝑟𝑎𝑡𝑖𝑜), and 

thermal enhancement factor (𝑇𝐸𝐹) are included. Therefore, the performance of the heat exchanger can be 

evaluated based on the thermal enhancement factor. It can be observed that the optimum solution from MMIPDE 

provides a thermal enhancement factor value between 0.7959 and 3.4262, with the maximum thermal 

enhancement factor computed from CFD data predicted by the KNN model with k=2. Meanwhile, for RPBILDE, 

the values are between 0.7959 and 3.4571, with the maximum thermal enhancement factor using optimum CFD 

data predicted by the RBF-Inverse Quadric model. It is evident that the most accurate prediction model does not 
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necessarily provide the optimal solution. The maximum thermal enhancement factor did not originate from the 

most accurate predictor. This scenario is also known as the blessing and curse of uncertainty in surrogate-assisted 

optimization [30, 52]. 

 
Figure 3 Convergence history of best run from MHs. 

Table 3 Statistical results of optimum solutions for a twisted oval tube heat exchanger. 

Algorithm 

 

Prediction  

Model 

 MMIPDE   RPBILDE   MOCS   MOGWO   NSGA-II  

KRG Average  2,161.5383   2,162.8051   1,895.7890   2,085.6096   1,525.6109  

 Std 7.7210  13.4538  77.5220  63.3562  560.7767  

 Best (Maximum)  2,173.8360   2,172.4594   2,016.4463   2,131.6867   1,964.0729  

 Worst (Minimum)  2,137.4763   2,126.5933   1,608.8110   1,765.3631  0.0923  

  Rank no. 2 1 4 3 5 

RBF-linear Average  2,193.4041   2,189.2226   1,907.6113   2,148.8564   1,396.3344  

 Std  7.3240  13.6899  74.0254  19.4459  671.2188  

 Best (Maximum)  2,200.2801   2,199.4166   2,032.3161   2,177.1703   2,008.9788  

 Worst (Minimum)  2,170.2627   2,151.3992   1,733.5163   2,099.4490  1.4061  

  Rank no. 1 2 4 3 5 

       

RBF- Average 52,855,278.1746  52,698,462.9735  48,199,107.8685  51,913,988.2815  35,384,887.6853  

cubic spline Std 15,177.2364   40,746.0908  1,390,783.4748   434,357.6289  13,054,744.1876  

 Best (Maximum) 52,876,123.9492  52,779,714.8047  50,144,656.2754  52,484,992.8965  50,594,278.0391  

 Worst (Minimum) 52,816,921.5391  52,642,493.6836  45,166,052.4395  51,023,711.1592  2,112,868.2500  

  Rank no. 1 2 4 3 5 

RBF- Average 121.0361  121.1530  95.7549  110.5818  73.3476  

Gaussian Std 0.0320   0.0000  6.2287  3.7242  34.4412  

 Best (Maximum) 121.1128  121.1530  106.7589  114.6780  113.3430  

 Worst (Minimum) 120.9813  121.1530  81.6520  97.4038  5.3853  

  Rank no. 2 1 4 3 5 

* The best algorithm for each model is presented in bold. 
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Table 3 Statistical results of optimum solutions for a twisted oval tube heat exchanger (continued). 
Algorithm 

 

Prediction  

Model 

 MMIPDE   RPBILDE   MOCS   MOGWO   NSGA-II  

RBF- Average 52,855,278.1746  52,698,462.9735  48,199,107.8685  51,913,988.2815  35,384,887.6853  

RBF- Average 846.9963  847.5115  663.7405  776.5637  490.4658  

Multiquadric Std 0.1580   0.0003  34.5933  30.9665  253.5948  

 Best (Maximum) 847.3629  847.5120  724.5400  816.8924  764.1423  

 Worst (Minimum) 846.7677  847.5108  585.5401  701.4754  0.0320  

  Rank no. 2 1 4 3 5 

RBF-Inverse  Average 946.1332  946.4126  738.0541  826.0281  744.0262  

Quadric Std 0.1908   0.0000  52.3473  27.2723  179.1498  

 Best (Maximum) 946.4606  946.4127  849.4730  874.1095  890.4593  

 Worst (Minimum) 945.7166  946.4125  614.6682  765.9834  0.0349  

  Rank no. 2 1 4 3 5 

RBF-Inverse  Average 958.1087  958.7584  743.8548  832.3830  739.5034  

Multiquadric Std 0.1883   0.0000  42.8002  56.5043  219.3364  

 Best (Maximum) 958.4101  958.7585  846.4676  910.7008  912.6811  

 Worst (Minimum) 957.5064  958.7583  640.6597  689.6823  0.0105  

  Rank no. 2 1 4 3 5 

KNN-k2 Average  2,375.0312   2,366.8752   2,035.6154   2,124.8462   2,083.9036  

 Std  0.2732  10.2361  70.0487  80.5061  144.5610  

 Best (Maximum)  2,375.1208   2,375.0483   2,087.3303   2,262.5570   2,258.2292  

 Worst (Minimum)  2,374.2253   2,339.6181   1,847.0471   1,937.3501   1,723.5483  

  Rank no. 1 2 4 3 5 

KNN-k3 Average  2,083.5933   2,071.3691   1,821.0007   1,821.9030   1,856.5623  

 Std  1.0362  9.3166  75.3619  62.3043  96.4820  

 Best (Maximum)  2,084.8318   2,081.8523   2,011.2253   1,940.7358   1,972.1425  

 Worst (Minimum)  2,079.3359   2,042.5067   1,705.0651   1,676.7944   1,623.7411  

  Rank no. 1 2 4 3 5 

KNN-k5 Average  1,816.9582   1,804.5440   1,638.1167   1,729.0349   1,578.6385  

 Std  2.5980  9.5592  58.3791  36.3950  100.4449  

 Best (Maximum)  1,819.6460   1,815.2492   1,772.0307   1,766.7217   1,685.8615  

 Worst (Minimum)  1,807.1827   1,783.1673   1,504.2447   1,630.8056   1,255.6750  

  Rank no. 1 2 4 3 5 

KNN-k10 Average  1,513.4839   1,447.6887   1,434.8322   1,352.5270   1,243.6759  

 Std  1.9708  38.8020  44.1670  83.1579  118.3504  

 Best (Maximum)  1,515.5378   1,512.4316   1,505.9406   1,456.8178   1,353.7882  

 Worst (Minimum)  1,506.9289   1,399.4119   1,339.4072   1,019.9855  832.1377  

  Rank no. 1 2 3 4 5 

  Average Rank 1.4545 1.5455 3.9091 3.0909 5 

* The best algorithm for each model is presented in bold. 
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Table 4 Comparison of surrogate model results and CFD results of MMIPDE and RPBILDE. 

Prediction  

model 

MMIPDE RPBILDE 

Pareto  

point no. 

f prediction f actual % Error 
Avg.  

Error [%] 
Pareto  

point no. 

f prediction f actual % Error 
Avg.  

Error [%] 

Nu fRe Nu fRe Nu fRe Nu fRe Nu fRe Nu fRe Nu fRe Nu fRe 

KRG 1 3.9329 62.9632 4.3084 78.8142 8.7158 20.1118 

32.3597 36.2471 

1 4.0749 71.0841 4.2554 77.9868 4.2409 8.8511 

31.9747 34.2509 

 3 5.5846 77.6355 7.9514 131.6594 29.7650 41.0331 5 5.7769 85.9757 7.9853 137.2684 27.6556 37.3668 

 6 7.1993 97.9516 12.3371 195.7667 41.6454 49.9651 8 7.1260 96.2031 13.0163 201.4324 45.2533 52.2405 

 8 8.3088 111.0474 16.9079 249.5852 50.8583 55.5072 11 8.1491 107.1185 16.9079 249.5852 51.8031 57.0814 

  49 15.0642 345.9319 21.7734 405.1579 30.8138 14.6180 46 15.0409 341.4889 21.7734 405.1579 30.9208 15.7146 

RBF 1 4.0520 69.6566 4.2832 78.1107 5.3985 10.8233 

32.7643 33.3791 

1 4.0520 69.6566 4.2832 78.1107 5.3985 10.8233 

32.6907 32.5458 

linear 2 5.6267 83.3440 7.7971 129.1014 27.8362 35.4430 4 5.6783 85.2989 8.0251 132.0851 29.2427 35.4213 

 4 6.9215 95.5402 12.5610 194.8669 44.8973 50.9715 9 7.1922 103.9784 12.6967 196.7953 43.3536 47.1642 

 6 7.8917 107.0646 17.2550 249.9400 54.2645 57.1639 11 7.9314 107.8949 17.2550 249.9400 54.0340 56.8317 

  50 14.7939 366.6418 21.5733 418.9888 31.4250 12.4936 48 14.7939 366.6619 21.5733 418.9888 31.4248 12.4889 

RBF 1 -8929.9531 -10112.7500 11.7592 195.8403 76040.3353 5263.7751 

24,578.47 1,814.08 

1 -8656.1563 -10005.2500 12.7665 203.9469 67903.5694 5005.8107 

22,951.19 1,762.73 

cubic spline 38 -2421.1406 -3301.5000 13.1187 259.1499 18555.6304 1373.9732 34 -2421.1406 -3301.5000 13.1187 259.1499 18555.6304 1373.9732 

 40 -1944.1250 -2636.7500 13.7632 269.0811 14225.5099 1079.9089 36 -1944.1094 -2640.2500 13.7632 269.0811 14225.3963 1081.2097 

 41 -1469.9844 -2165.6250 10.5405 174.9437 14046.0063 1337.8980 37 -1469.9688 -2165.5000 10.5405 174.9437 14045.8581 1337.8265 

  50 15.8125 346.0000 21.0601 406.4756 24.9174 14.8780 46 15.6875 346.0000 21.0601 406.4756 25.5109 14.8780 

RBF 1 6.5696 138.5821 4.1204 83.4986 59.4417 65.9693 

45.3049 34.6362 

1 6.5696 138.5821 4.0726 83.6281 61.3128 65.7123 

46.4617 45.8472 

Gaussian 16 7.6346 162.4795 10.1891 164.5031 25.0706 1.2301 29 8.4472 181.1325 13.9120 300.3938 39.2811 39.7016 

 33 8.8162 189.6664 14.5769 263.6302 39.5193 28.0559 33 8.7137 187.2958 14.3334 317.9030 39.2070 41.0840 

 39 9.2243 199.1197 17.4446 290.6791 47.1221 31.4984 37 8.9802 193.4594 15.1748 308.7692 40.8214 37.3450 

  49 9.7850 212.1660 21.9250 396.0337 55.3708 46.4273 50 9.8423 213.5004 20.3716 390.9783 51.6861 45.3933 

RBF 1 3.9443 80.7158 4.2832 78.1107 7.9135 3.3352 

21.8614 19.7690 

1 3.9443 80.7158 4.2832 78.1107 7.9135 3.3352 

23.4102 19.0647 

Multiquadric 6 4.9677 100.9121 6.7709 147.4934 26.6316 31.5820 8 5.2394 106.5754 7.1991 155.5386 27.2218 31.4797 

 10 5.7296 117.0485 7.9660 134.7803 28.0741 13.1561 10 5.6218 114.7160 7.7941 128.9217 27.8708 11.0189 

 12 6.1484 126.2880 8.7189 145.9466 29.4820 13.4697 26 8.4114 179.2086 13.3175 204.0806 36.8390 12.1873 

  50 12.5450 276.5988 15.1520 441.1625 17.2059 37.3023 50 12.5450 276.5988 15.1520 441.1625 17.2059 37.3023 

RBF 1 3.9065 79.9194 3.3312 95.7131 17.2711 16.5011 

24.6146 22.7284 

1 3.9065 79.9194 3.3312 95.7131 17.2711 16.5011 

23.2411 17.6819 

Inverse 13 6.3011 130.9722 7.2579 203.1487 13.1831 35.5289 24 8.2841 175.8331 9.1058 258.2197 9.0233 31.9056 

Quadric 35 10.1996 221.0120 12.6131 306.2610 19.1350 27.8354 36 10.4829 227.4547 12.0431 344.9035 12.9552 34.0526 

 45 12.0082 264.0171 19.9880 280.4253 39.9228 5.8512 46 12.2402 269.2806 19.9880 277.4100 38.7623 2.9305 

  49 12.8382 282.8552 19.3232 392.4465 33.5608 27.9252 50 13.0352 287.4426 21.0905 296.3931 38.1937 3.0198 
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Table 4 Comparison of surrogate model results and CFD results of MMIPDE and RPBILDE (continued). 

Prediction  

model 

MMIPDE RPBILDE 

Pareto  

point no. 

f prediction f actual % Error 
Avg.  

Error [%] 
Pareto  

point no. 

f prediction f actual % Error 
Avg.  

Error [%] 

Nu fRe Nu fRe Nu fRe Nu fRe Nu fRe Nu fRe Nu fRe Nu fRe 

RBF 1 3.8236 78.2007 3.3312 95.7131 14.7833 18.2968 

20.9731 15.6011 

1 3.8236 78.2007 3.3312 95.7131 14.7833 18.2968 

18.3140 24.5892 

Inverse 21 7.7003 162.3470 8.4144 234.1746 8.4868 30.6727 27 8.7539 187.3376 10.0814 286.6694 13.1680 34.6503 

Multiquadric 37 10.7365 233.5484 13.5661 278.8054 20.8578 16.2324 38 10.7857 234.7090 12.5362 359.7790 13.9638 34.7630 

 43 11.7755 258.0665 18.1829 285.3975 35.2389 9.5765 43 11.7089 256.5104 13.5662 391.3039 13.6905 34.4473 

  49 12.7843 281.5354 17.1598 272.7336 25.4986 3.2273 50 12.9877 286.4277 20.2819 288.7046 35.9643 0.7886 

KNN 1 4.0533 69.7147 4.6193 83.2721 12.2536 16.2809 

34.4429 28.4331 

1 4.0533 69.7147 5.8016 99.8775 30.1343 30.1998 

36.2279 28.9890 

k = 2 17 8.3305 113.0126 19.2386 271.4552 56.6990 58.3679 13 7.9771 109.2842 17.9513 256.1228 55.5627 57.3313 

 34 11.5639 192.4547 21.5085 322.9322 46.2357 40.4040 26 11.5639 192.4547 21.4454 330.8093 46.0777 41.8231 

 43 13.5351 287.1961 19.0126 355.2486 28.8098 19.1563 37 13.5351 287.1961 17.4760 321.5596 22.5502 10.6865 

  50 14.7051 385.6607 20.4853 418.9992 28.2164 7.9567 46 14.7051 385.6607 20.0930 405.5507 26.8146 4.9044 

KNN 1 4.0522 70.4475 5.7626 99.2234 29.6812 29.0011 

33.2286 27.2504 

1 4.0522 70.4475 4.2447 77.9023 4.5347 9.5694 

28.3518 24.0099 

k = 3 6 6.1250 91.8576 9.8706 161.4379 37.9472 43.1003 7 6.0541 87.5929 10.2343 163.4639 40.8451 46.4145 

 27 10.8161 170.8323 18.6348 283.9936 41.9577 39.8464 25 10.8161 170.8323 19.5957 295.5244 44.8038 42.1935 

 47 14.2808 316.0215 20.0958 356.6531 28.9365 11.3925 44 14.1850 303.2131 20.0190 375.9356 29.1424 19.3444 

  50 14.5432 358.6213 20.0930 411.7899 27.6203 12.9116 48 14.5432 358.6213 18.7492 367.9201 22.4327 2.5274 

KNN 1 4.0345 71.7083 4.3308 79.5789 6.8426 9.8903 

34.7660 31.5745 

1 4.0345 71.7083 5.5244 98.1982 26.9701 26.9760 

36.9825 32.0011 

k = 5 9 6.3492 96.3277 10.3174 168.9336 38.4611 42.9790 8 6.3797 98.0392 10.2757 168.6679 37.9146 41.8744 

 17 8.6622 122.9959 19.6207 273.1486 55.8517 54.9711 15 8.6622 122.9959 19.6207 273.1486 55.8517 54.9711 

 36 12.2751 221.5955 21.0400 318.2973 41.6586 30.3810 33 12.3266 235.9314 20.2578 327.8868 39.1513 28.0448 

  50 14.2488 336.6602 20.6552 418.9992 31.0159 19.6514 46 14.2488 336.6602 19.0047 366.4895 25.0247 8.1392 

KNN 1 3.9780 74.3625 5.8320 100.6495 31.7902 26.1173 

30.8816 28.1206 

1 3.9780 74.3625 5.8127 102.8220 31.5643 27.6784 

31.4900 31.1409 

k = 10 4 4.9274 89.0521 5.8268 111.0711 15.4343 19.8242 4 4.9191 86.0450 5.8268 111.0711 15.5780 22.5316 

 10 6.7372 111.1972 10.4197 165.3537 35.3412 32.7519 10 6.6108 104.6799 10.4197 165.3537 36.5549 36.6934 

 16 8.4142 135.0902 14.4545 234.5516 41.7881 42.4049 17 8.4142 135.0902 14.4545 234.5516 41.7881 42.4049 

  50 13.4390 316.3245 19.2134 392.9721 30.0541 19.5046 47 13.2677 283.2568 19.5012 384.8404 31.9645 26.3963 

* The minimum value is presented in bold. 
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Table 5 CFD detailed results of optimum solution from MMIPDE and RPBILDE. 

Prediction  

model 

MMIPDE RPBILDE 

Pareto point no. Nu f Nu ratio f ratio TEF Pareto point no. Nu f Nu ratio f ratio TEF 

KRG 1 4.3084 0.7881 1.1772 1.2315 1.0982 1 4.2554 0.7799 1.1627 1.2185 1.0885 

 3 7.9514 0.2633 2.1725 2.0572 1.7082 5 7.9853 0.2745 2.1818 2.1448 1.6918 
 6 12.3371 0.1958 3.3708 3.0589 2.3221 8 13.0163 0.2014 3.5564 3.1474 2.4267 
 8 16.9079 0.1664 4.6196 3.8998 2.9349 11 16.9079 0.1664 4.6196 3.8998 2.9349 

  49 21.7734 0.2026 5.9490 6.3306 3.2159 46 21.7734 0.2026 5.9490 6.3306 3.2159 

RBF 1 4.2832 0.7811 1.1703 1.2205 1.0951 1 4.2832 0.7811 1.1703 1.2205 1.0951 

linear 2 7.7971 0.2582 2.1304 2.0172 1.6861 4 8.0251 0.2642 2.1926 2.0638 1.7222 

 4 12.5610 0.1949 3.4320 3.0448 2.3679 9 12.6967 0.1968 3.4690 3.0749 2.3856 
 6 17.2550 0.1666 4.7145 3.9053 2.9938 11 17.2550 0.1666 4.7145 3.9053 2.9938 

  50 21.5733 0.2095 5.8943 6.5467 3.1508 48 21.5733 0.2095 5.8943 6.5467 3.1508 

RBF 1 11.7592 0.1567 3.2129 3.0600 2.2130 1 12.7665 0.1658 3.4881 3.1867 2.3703 

cubic spline 38 13.1187 0.2468 3.5843 4.0492 2.2488 34 13.1187 0.2468 3.5843 4.0492 2.2488 

 40 13.7632 0.2587 3.7604 4.2044 2.3299 36 13.7632 0.2587 3.7604 4.2044 2.3299 

 41 10.5405 0.1698 2.8799 2.7335 2.0597 37 10.5405 0.1698 2.8799 2.7335 2.0597 

  50 21.0601 0.2032 5.7541 6.3512 3.1071 46 21.0601 0.2032 5.7541 6.3512 3.1071 

RBF 1 4.1204 0.8350 1.1258 1.3047 1.0303 1 4.0726 0.8363 1.1127 1.3067 1.0178 

Gaussian 16 10.1891 0.2136 2.7839 2.5704 2.0323 29 13.9120 0.2567 3.8011 4.6937 2.2702 
 33 14.5769 0.1953 3.9828 4.1192 2.4845 33 14.3334 0.2445 3.9162 4.9672 2.2952 

 39 17.4446 0.1851 4.7663 4.5419 2.8781 37 15.1748 0.2159 4.1461 4.8245 2.4537 

  49 21.9250 0.2021 5.9904 6.1880 3.2629 50 20.3716 0.1955 5.5660 6.1090 3.0448 

RBF 1 4.2832 0.7811 1.1703 1.2205 1.0951 1 4.2832 0.7811 1.1703 1.2205 1.0951 

Multiquadric 6 6.7709 0.3881 1.8500 2.3046 1.4006 8 7.1991 0.3617 1.9670 2.4303 1.4630 
 10 7.9660 0.2592 2.1765 2.1059 1.6980 10 7.7941 0.2578 2.1295 2.0144 1.6862 
 12 8.7189 0.2432 2.3822 2.2804 1.8099 26 13.3175 0.1890 3.6387 3.1888 2.4721 

  50 15.1520 0.2206 4.1399 6.8932 2.1753 50 15.1520 0.2206 4.1399 6.8932 2.1753 

RBF 1 3.3312 0.9571 0.9102 1.4955 0.7959 1 3.3312 0.9571 0.9102 1.4955 0.7959 

Inverse 13 7.2579 0.2783 1.9830 3.1742 1.3493 24 9.1058 0.2532 2.4879 4.0347 1.5628 

Quadric 35 12.6131 0.2127 3.4462 4.7853 2.0451 36 12.0431 0.2330 3.2905 5.3891 1.8768 
 45 19.9880 0.1524 5.4612 4.3816 3.3374 46 19.9880 0.1491 5.4612 4.3345 3.3495 

  49 19.3232 0.2044 5.2795 6.1320 2.8845 50 21.0905 0.1505 5.7624 4.6311 3.4571 
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Table 5 CFD detailed results of optimum solution from MMIPDE and RPBILDE (continued). 

Prediction  

model 

MMIPDE RPBILDE 

Pareto point no. Nu f Nu ratio f ratio TEF Pareto point no. Nu f Nu ratio f ratio TEF 

RBF 1 3.3312 0.9571 0.9102 1.4955 0.7959 1 3.3312 0.9571 0.9102 1.4955 0.7959 

Inverse 21 8.4144 0.2573 2.2990 3.6590 1.4920 27 10.0814 0.2450 2.7545 4.4792 1.6710 

Multiquadric 37 13.5661 0.1799 3.7066 4.3563 2.2695 38 12.5362 0.2306 3.4252 5.6215 1.9263 
 43 18.1829 0.1640 4.9680 4.4593 3.0183 43 13.5662 0.2262 3.7066 6.1141 2.0271 

  49 17.1598 0.1443 4.6885 4.2615 2.8919 50 20.2819 0.1473 5.5415 4.5110 3.3538 

KNN 1 4.6193 0.5551 1.2621 1.3011 1.1561 1 5.8016 0.3699 1.5851 1.5606 1.3666 

k = 2 17 19.2386 0.1551 5.2565 4.2415 3.2473 13 17.9513 0.1652 4.9047 4.0019 3.0893 

 34 21.5085 0.1615 5.8766 5.0458 3.4262 26 21.4454 0.1688 5.8594 5.1689 3.3889 
 43 19.0126 0.1785 5.1947 5.5508 2.9339 37 17.4760 0.1827 4.7749 5.0244 2.7878 

  50 20.4853 0.2095 5.5971 6.5469 2.9919 46 20.0930 0.2048 5.4899 6.3367 2.9667 

KNN 1 5.7626 0.3675 1.5745 1.5504 1.3604 1 4.2447 0.7790 1.1597 1.2172 1.0862 

k = 3 6 9.8706 0.2153 2.6969 2.5225 1.9812 7 10.2343 0.2180 2.7962 2.5541 2.0456 

 27 18.6348 0.1595 5.0915 4.4374 3.0984 25 19.5957 0.1642 5.3540 4.6176 3.2152 

 47 20.0958 0.1960 5.4907 5.5727 3.0970 44 20.0190 0.1889 5.4697 5.8740 3.0315 

  50 20.0930 0.2112 5.4899 6.4342 2.9516 48 18.7492 0.2079 5.1227 5.7488 2.8596 

KNN 1 4.3308 0.7234 1.1833 1.2434 1.1004 1 5.5244 0.3928 1.5094 1.5343 1.3087 

k = 5 9 10.3174 0.2252 2.8190 2.6396 2.0398 8 10.2757 0.2249 2.8076 2.6354 2.0326 
 17 19.6207 0.1561 5.3608 4.2679 3.3049 15 19.6207 0.1561 5.3608 4.2679 3.3049 

 36 21.0400 0.1624 5.7486 4.9734 3.3678 33 20.2578 0.1664 5.5349 5.1232 3.2107 

  50 20.6552 0.2095 5.6435 6.5469 3.0167 46 19.0047 0.2059 5.1925 5.7264 2.9024 

KNN 1 5.8320 0.3471 1.5934 1.5726 1.3702 1 5.8127 0.3546 1.5882 1.6066 1.3560 

k = 10 4 5.8268 0.3702 1.5920 1.7355 1.3248 4 5.8268 0.3702 1.5920 1.7355 1.3248 
 10 10.4197 0.2205 2.8469 2.5837 2.0747 10 10.4197 0.2205 2.8469 2.5837 2.0747 
 16 14.4545 0.1876 3.9493 3.6649 2.5615 17 14.4545 0.1876 3.9493 3.6649 2.5615 

  50 19.2134 0.1995 5.2496 6.1402 2.8668 47 19.5012 0.2162 5.3282 6.0131 2.9301 
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The average ranking of the hypervolume statistical test is shown in Table 3, and the percentage error data of 

the fitness function in Table 4. As discussed earlier, the RBF-Inverse Multiquadric model with the MMIPDE 

algorithm offers satisfactory predictions for both the Nusselt number and the Poiseuille number. The sampling 

points of the Pareto front from the RBF-Inverse Multiquadric model with the MMIPDE algorithm is illustrated in 

Figure 4. 

 

Figure 4 Pareto front of best run from MMIPDE and selected sampling solution. 

All five optimal models are illustrated in Figure 5 (a).  The fluid temperature field and 2D flow structure (in 

the form of a vector) on the transverse plane is depicted in Figure 5 (b).  It is indicated that the twisted oval tube 

creates a swirl flow leading to disruption of the boundary layer around the tube wall, enhancing the heat transfer 

on the tube wall as presented in Figure 5 (c).  It is visible that the case III showed the highest heat transfer on the 

wall. 

 

Figure 5 (A) The optimum geometry model from MMIPDE, (B) Temperature distribution and flow direction 

profile in cross-sectional area, and (C) The Nusselt number profile at wall surface of optimum solution from 

MMIPDE. 

(A) 

(A) (B) 

(A) 

(C) 
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5. Conclusion 

Improving the twisted oval tube (TOT) design is proposed. Surrogate assisted design optimization was applied. 

The geometric parameters for 125 cases of TOT with five various pitch to diameter ratios (PR = p/D = 0.6, 0.8, 

1.0, 1.2, and 1.4), cross-sectional ratios (DR = a/b = 0.02, 0.04, 0.06, 0.08, and 0.10) and (Re = 100, 500, 1,000, 

1,500 and 2,000) were examined. The eleven surrogate models including one Kriging model (KRG), six radial 

basis functions (RBF), the kernel including linear kernel, cubic spline kernel, Gaussian kernel, multiquadric 

kernel, inverse quadric kernel, inverse multiquadric kernel, and four K-nearest neighborhood method (K-NN); the 

kernels including k = 2, 3, 5 and 10 were investigated. Five metaheuristics; multi-objective meta‑heuristic with 

iterative parameter distribution estimation (MMIPDE), hybrid real-code population-based incremental learning 

and differential evolution (RPBILDE), and multi-objective cuckoo Search (MOCS), multi-objective grey wolf 

optimizer (MOGWO), non-dominated sorting genetic algorithm II (NSGA-II) were compared. The key findings 

of this article can be summarized as follows. 

 1. A total of 125 cases were selected for training data. All surrogate models were constructed using the 

training data and the optimum solution found, called the Pareto front. The results found all surrogate 

models are acceptable predictions with percentage error between 15.6011 and 46.4617, except for the 

RBF – cubic spline; this model gives an error of more than 100% for all predictions. 

 2. Based on the comparisons of the statistical tests and error prediction models in Tables 4 and Table 5, the 

best prediction model is the RBF-Inverse Multiquadric with the MMIPDE algorithm. It provides 

acceptable predictions for both the Nusselt number and the Poiseuille number, with average errors of 

20.9731 and 15.6011, respectively. 

 3 Investigating the best solution, based on the most accurate prediction model, the RBF-Inverse 

Multiquadric with the MMIPDE, the optimum geometry model, heat transfer, and friction factor 

characteristics of the sample optimum solution are illustrated in Figures 5, respectively. The percentage 

errors were computed, and it was found that the Poiseuille number was more accurate than the Nusselt 

number. This shows that the surrogate model can only capture the trend of heat transfer and friction factor 

behavior of the twisted oval tube. Therefore, this powerful prediction method can be further improved in 

the future. 

This research provides a base line to set the research direction for the design of twisted oval tube heat 

exchangers. Following the results, the surrogate model will be improved. Many topics can be further studied, for 

example, the geometry parameter, the governing equation can be a turbulent model, or a new optimization 

procedure can be presented. 
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