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Abstract 

 

     In this study, weighted likelihood estimator was applied to the Exponentiated Weibull distribution 
(EW) with contamination  and the performance of the maximum likelihood estimator and the weighted 
likelihood estimator was compared. The central distribution was fixed to be the Exponentiated Weibull 
distribution (𝜶, 𝜷, 𝜽) where 𝜶 and 𝜷 are the shape parameters and 𝜽 is the scale parameter with (2,1,1) 
and (2,2,2) and the contamination is Exponentiated Weibull distribution with parameter 𝜶𝟏 =
𝜶(𝟏 + ∆), 𝜷𝟏 = 𝜷(𝟏 + ∆),  𝜽𝟏 = 𝜽(𝟏 + ∆) where 𝚫 = 1, 5 and the contamination proportion (𝜺)= 0.01, 
0.03, and 0.05 and the values of pre–assigned small probability k= 0.01, 0.03, 0.05 with shape parameter 
𝜶 = 2. Monte Carlo simulation was performed to compare the performance of the maximum likelihood 
estimator and the weighted likelihood estimator for estimate 𝜷 are the shape parameters and 𝜽  is the 
scale parameter. The simulation results are based on the 10,000 replace. The efficiency of the maximum 
likelihood estimator and the weighted likelihood estimator are compared based on the bias values and 
the root mean square error (RMSE). The result shows that the sample size increases as the bias and root 
mean square error of the maximum likelihood estimator and the weighted likelihood estimator decrease 
in most of the cases. The weighted likelihood estimator method for 𝜽 provides better than the maximum 
likelihood estimator, resulting in term of the bias and root mean square error when k is large for the 
estimator scale parameter 𝜽. While the maximum likelihood estimator method for 𝜷 provides better 
weighted likelihood estimator, resulting in term of the bias and root mean square error for the estimator 
shape parameter 𝜷. A real dataset on breaking stress of carbon fibers was presented to show the 
performance of the proposed methodology. Therefore, in the presence of contamination in the data 
highlights that the weighted likelihood estimator does the better estimates for the parameters. 
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1. Introduction   

     The Exponentiated Weibull ( EW) 
distribution was introduced by Mudholkar and 
Srivastava [1], this distribution is an extension 
of the well-known Weibull distribution by 
adding shape parameter.  The Exponentiated 
Weibull distribution has a scale parameter and 
two shape parameters. The properties of the 
distribution were studied by Gupta and Kundu 
[2].  They observed that many properties of the 
Exponentiated Weibull distribution are like 
those of the Weibull or gamma family. The 
Exponentiated Weibull distribution as a failure 
model is more realistic than that of monotone 

failure rates and plays an important role in the 
analysis of many types of survival data [3]. The 
applications of the Exponentiated Weibull 
distribution are used for modeling of extreme 
value data using floods, firmware system 
failure, distribution for excess-of-loss insurance 
data, and software reliability data [4]. The 
Exponentiated Weibull distribution has become 
more appealing in reliability engineering, such 
as when the performance of airborne optical 
communications is evaluated by modeling the 
atmospheric turbulence [5]. The stress data of 
carbon fibers and life test data of ball bearings 
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are also fitted by the Exponentiated Weibull 
model [6]. 
      The estimation of the parameters for 
Exponentiated Weibull distribution using the 
life testing data is an important problem. In life 
testing, due to the short total time spent on the 
experiment and the limited number of used 
units, the experiment is often terminated before 
all the units fail, according to Manisha et. al [7].  
      The maximum likelihood (ML) method is 
an effective and important approach for 
parameter estimation. The method finds a value 
of the parameter that maximizes the likelihood 
function.  The maximum likelihood estimation 
(MLE) method has many large sample 
properties that make it attractive.  It is 
asymptotically consistent, which means that as 
the sample size gets larger, the estimates 
converge to the true values. It is asymptotically 
efficient, which means that for large samples, it 
produces the most precise estimates.  It is 
asymptotically unbiased, which means that for 
large samples, one expects to get the true value 
on average.  The estimates themselves are 
normally distributed if the sample is large 
enough.  These are all excellent large sample 
properties.  However, it is complicated to solve 
the maximum likelihood equations by 
conventional numerical methods.  
      Real-life data often contain contaminated 
data due to various reasons. Consequently, we 
assume any sample group is a mixture of good 
and bad observations. Contaminated data refers 
to data points that deviate significantly from the 
expected pattern or distribution, potentially 
affecting the accuracy of analysis. Numbers far 
beyond the normal range, such as a person's 
height of 10 feet. Data points that don't fit the 

overall pattern, like a negative age value. 
Incorrectly recorded information was for 
example a typo in a numerical value and 
inaccurate readings from equipment or 
instruments readings from equipment or 
instruments. However, when data is 
contaminated with outliers, maximum 
likelihood estimation (MLE) becomes highly 
unreliable [8]. Regarding the Exponentiated 
Weibull distribution parameter estimation, no 
single method consistently outperforms others 
due to estimator properties and data variability. 
Estimating the EW parameters in the presence 
of outliers is crucial for reliability applications. 
Their estimation methods assume, however, 
that the number of outliers and their distribution 
families are known. Ahmed, Volodin, and 
Hussein [9] proposed the weighted likelihood 
estimator (WLE) for robust estimation of 
exponential distribution parameters. The 
weighted likelihood method was introduced as 
a generalization of the local likelihood method 
and can be global, as demonstrated by one of 
the applications in Hu and Zidek [10]. 
      In this paper, the weighted likelihood 
estimator method for the parameters of the 
Exponentiated Weibull distribution was 
developed and proposed to obtain the estimates 
of the Exponentiated Weibull parameters when 
the data set shows contamination. Finally, the 
simulation studies were extended to compare 
the maximum likelihood estimation and 
weighted likelihood estimator methods based 
on the bias and root mean square error of the 
parameter estimator.  

 
2. Weighted Likelihood Estimators 
 

The Exponential Weibull (EW) family contains distributions with non-monotone failure rates 
besides a broader class of monotone failure rates [3]. The Exponentiated Weibull distribution has a 
scale parameter and two shape parameters [11]. The cumulative distribution function (cdf) and the 
probability density function (pdf) of a random variable described by the EW distribution is given by:   

                        𝐹(𝑥) = ቂ1 − 𝑒𝑥𝑝 ቀ−
௫ഁ

ఏഁቁቃ
ఈ

                                                                                                 (1) 

and          𝑓(𝑥) =
ఈఉ

ఏഁ
𝑥ఉିଵ 𝑒𝑥𝑝 ቀ−

௫ഁ

ఏഁ
ቁ ቂ1 − 𝑒𝑥𝑝 ቀ−

௫ഁ

ఏഁ
ቁቃ

ఈିଵ

 ; 𝑥 > 0, 𝛼 > 0, 𝛽 > 0, 𝜃 > 0.                                   (2) 

respectively, for 𝑥 > 0, 𝛼 > 0, 𝛽 > 0, and 𝜃 > 0, where 𝛼 and 𝛽 are the shape parameters and 𝜃 is the scale 
parameter.  
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Let 𝑋ଵ, 𝑋ଶ, … , 𝑋௡  be a random sample of size 𝑛, drawn from a probability density function 𝑓(𝑥)  
where 𝛼, 𝛽, 𝜃 are an unknown parameter.  Consider the Exponentiated Weibull distribution a probability 
density function given in (2), then the likelihood function will be: 

                              𝐿(𝛼, 𝛽, 𝜃) = ∏
ఈఉ

ఏഁ
𝑥௜

ఉିଵ 𝑒𝑥𝑝 ቀ−
௫೔

ഁ

ఏഁ
ቁ ቂ1 − 𝑒𝑥𝑝 ቀ−

௫೔
ഁ

ఏഁ
ቁቃ

ఈିଵ
௡
௜ୀଵ                            (3) 

Now the log likelihood function can be written as: 

𝐿(𝛼, 𝛽, 𝜃) = 𝑛𝑙𝑛 𝛼 + 𝑛𝑙𝑛 𝛽 + (𝛽 − 1) ∑ 𝑙𝑛 𝑥௜
௡
௜ୀଵ − 𝑛𝛽 𝑙𝑛 𝜃 − ∑ ቀ

௫೔

ఏ
ቁ

ఉ
௡
௜ୀଵ + (𝛼 − 1) ∑ 𝑙𝑛 ൤1 − 𝑒𝑥𝑝 ൬− ቀ

௫೔

ఏ
ቁ

ఉ

൰൨௡
௜ୀଵ .          (4) 

Therefore, the maximum likelihood estimation of  𝛼, 𝛽, 𝜃 say  𝛼ො, 𝛽መ , 𝜃෠,  respectively, where maximize 
must satisfy the normal equation given by 

డ

డఈ
𝐿(𝛼, 𝛽, 𝜃) =

௡

ఈ
+ ∑ 𝑙𝑛 ൤1 − 𝑒𝑥𝑝 ൬− ቀ

௫೔

ఏ
ቁ

ఉ

൰൨௡
௜ୀଵ = 0                                        (5) 

డ

డఉ
𝐿(𝛼, 𝛽, 𝜃) =

௡

ఉ
+ ∑ 𝑙𝑛 𝑥௜

௡
௜ୀଵ − 𝑛 𝑙𝑛 𝜃 − ∑ ቀ

௫೔

ఏ
ቁ

ఉ
𝑙𝑛 ቀ

௫೔

ఏ
ቁ௡

௜ୀଵ + (𝛼 − 1) ∑
ቀ

ೣ೔
ഇ

ቁ
ഁ

௟௡ቀ
ೣ೔
ഇ

ቁ ௘௫௣൬ିቀ
ೣ೔
ഇ

ቁ
ഁ

൰

ଵି௘௫௣൬ିቀ
ೣ೔
ഇ

ቁ
ഁ

൰

௡
௜ୀଵ = 0                         (6) 

డ

డఏ
𝐿(𝛼, 𝛽, 𝜃) = −

௡ఉ

ఏ
+

ఉ

ఏ
∑ ቀ

௫೔

ఏ
ቁ

ఉ
௡
௜ୀଵ −

(ఈିଵ)ఉ

ఏ
∑

ቀ
ೣ೔
ഇ

ቁ
ഁ

௘௫௣൬ିቀ
ೣ೔
ഇ

ቁ
ഁ

൰

ଵି௘௫௣൬ିቀ
ೣ೔
ഇ

ቁ
ഁ

൰

௡
௜ୀଵ = 0                                                          (7) 

Numerical computation during data analysis used standard iterative procedures such as Newton-
Raphson method [12]. It is obtaining the maximum likelihood estimation by maximizing equation (4). 

Let 𝑥(௡) = {𝑋ଵ, 𝑋ଶ, … , 𝑋௡}   be a random sample from a distribution with a probability density 
function 𝑓(𝑥) where 𝛼, 𝛽, 𝜃 are an unknown parameter. The weighted likelihood estimators (WLE) of 
{𝛼, 𝛽, 𝜃 } are obtained by maximizing the weighted likelihood function: 

𝐿൫𝛼, 𝛽, 𝜃 ห𝑥(௡)൯ = ∑ 𝑤௜൫𝑥(௡)൯ 𝑙𝑛൫𝑓(𝑥௜ ; 𝛼, 𝛽, 𝜃 )൯௡
௜ୀଵ ,                                                     (8) 

where  𝑤௜൫𝑥(௡)൯, 1 ≤ 𝑖 ≤ 𝑛 are the weights which depend on the sample. Following the idea presented by 
Ahmed, Volodin, and Hussein [9], we let the weight 𝑤௜ that corresponds to the 𝑖௧௛ observation to be 1, 
if its estimated likelihood is sufficiently large, and 0 elsewhere. That is: 

 𝑤௜ = ൜
1 if 𝑓൫𝑥௜; 𝛼ො, 𝜃෠, 𝛽መ൯ > 𝐶

0 otherwise
                                                                                  (9) 

where 𝛼ො, 𝛽መ , 𝜃෠  are the maximum likelihood estimation of the parameter (𝛼, 𝜃, 𝛽). We consider, 

𝑓൫𝑥௜; 𝛼ො, 𝜃෠, 𝛽መ൯ > 𝐶                                                           (10) 

ఈෝఉ෡

ఏ෡
෡ഁ 𝑥௜

ఉ෡ ିଵ 𝑒𝑥𝑝 ൬−
௫೔

෡ഁ

ఏ෡
෡ഁ ൰ ൤1 − 𝑒𝑥𝑝 ൬−

௫೔
෡ഁ

ఏ෡
෡ഁ ൰൨

ఈෝିଵ

> 𝐶                                                         (11) 

𝑥௜
ఉ෡ ିଵ 𝑒𝑥𝑝 ൬−

௫೔
෡ഁ

ఏ෡
෡ഁ ൰ ൤1 − 𝑒𝑥𝑝 ൬−

௫೔
෡ഁ

ఏ෡
෡ഁ ൰൨

ఈෝିଵ

> 𝐶
ఏ෡

෡ഁ

ఈෝఉ෡
 .                                                             (12) 

We assume that 𝐶 = 𝑎 ቀ
ఈෝఉ෡

ఏ෡
෡ഁ ቁ where assume that 𝑎 is chosen from the condition of a small probability of 

rejection of an observation when we sample from the non-contamination of the Exponentiated Weibull 
distribution with cumulative distribution function [9]. We define 𝐶 by the given pre-assigned small 
probability 𝑘 as: 

𝑘 = 𝑃 ቎ max
ଵஸ௜ஸ௡

𝑋௜ > 𝜃෠ ቈ−𝑙𝑛 ൬𝐶
ఏ෡

෡ഁ

ఈෝఉ෡
൰ + ൫𝛽መ − 1൯ ln(𝑥௜) +𝑙𝑛 ൤1 − 𝑒𝑥𝑝 ൬−

௫೔
෡ഁ

ఏ෡
෡ഁ ൰൨

ఈෝିଵ

቉

ଵ ఉ෡⁄

቏                             (13) 
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𝑘 = 1 − ∏ 𝑃 ቎𝑥௜ ≤ 𝜃෠ ቈ−𝑙𝑛 ൬𝐶
ఏ෡

෡ഁ

ఈෝఉ෡
൰ + ൫𝛽መ − 1൯ 𝑙𝑛(𝑥௜) +𝑙𝑛 ൤1 − 𝑒𝑥𝑝 ൬−

௫೔
෡ഁ

ఏ෡
෡ഁ ൰൨

ఈෝିଵ

቉

ଵ ఉ෡⁄

቏ .௡
௜ୀଵ           (14) 

We get  

𝑎 ≈
௡

௞
ቀ𝑥௜

ఉ෡ ିଵቁ ൤1 − 𝑒𝑥𝑝 ൬−
௫೔

෡ഁ

ఏ෡
෡ഁ ൰൨

ఈෝିଵ

                                                                 (15) 

𝑥 > 𝜃෠ ቈ−𝑙𝑛 ൬𝐶
ఏ෡

෡ഁ

ఈෝఉ෡
൰ + ൫𝛽መ − 1൯ 𝑙𝑛(𝑥௜) +𝑙𝑛 ൤1 − 𝑒𝑥𝑝 ൬−

௫೔
෡ഁ

ఏ෡
෡ഁ ൰൨

ఈෝିଵ

቉

ଵ ఉ෡⁄

.                                   (16) 

So we reject an observation from the sample if: 

𝑥 > 𝜃෠ ቈ−𝑙𝑛 ቆ
௡

௞
ቀ𝑥௜

ఉ෡ ିଵቁ ൤1 − 𝑒𝑥𝑝 ൬−
௫೔

෡ഁ

ఏ෡
෡ഁ ൰൨

ఈෝିଵ

ቇ + ൫𝛽መ − 1൯ 𝑙𝑛(𝑥௜) +𝑙𝑛 ൤1 − 𝑒𝑥𝑝 ൬−
௫೔

෡ഁ

ఏ෡
෡ഁ ൰൨

ఈෝିଵ

቉

ଵ ఉ෡⁄

        (17)                        

𝑥 > 𝜃෠ ቂ𝑙𝑛 ቀ
௡

௞
ቁቃ

ଵ ఉ෡⁄

.                                                                                                  (18) 

Let the weighted likelihood estimator ൫𝛼෤, 𝜃෨, 𝛽෨൯ of the parameter (𝛼, 𝜃, 𝛽) be defined as the solution of 

the equation 
∑ డ௙ቀ௫೔ೖ

;ఈ,ఏ,ఉቁ೘
ೖసభ

డఈ
= 0, 

∑ డ௙ቀ௫೔ೖ
;ఈ,ఏ,ఉቁ೘

ೖసభ

డఏ
  and 

∑ డ௙ቀ௫೔ೖ
;ఈ,ఏ,ఉቁ೘

ೖసభ

డఉ
= 0,  where 𝑥௜భ

, 𝑥௜మ
, … , 𝑥௜೘

 are the 

remaining observations in the sample after the rejection method. In the case of the Exponentiated 
Weibull distribution: 

𝐿(𝛼, 𝛽, 𝜃) = ∏
ఈఉ

ఏഁ 𝑥௜ೖ

ఉିଵ 𝑒𝑥𝑝 ൬−
௫೔ೖ

ഁ

ఏഁ ൰ ൤1 − 𝑒𝑥𝑝 ൬−
௫೔ೖ

ഁ

ఏഁ ൰൨
ఈିଵ

௠
௞ୀଵ .                               (19) 

Now the log likelihood function can be written as: 

𝐿(𝛼, 𝛽, 𝜃) = 𝑚𝑙𝑛 𝛼 + 𝑚𝑙𝑛𝛽 + (𝛽 − 1) ∑ 𝑙𝑛 𝑥௜ೖ

௠
௞ୀଵ − 𝑚𝛽 𝑙𝑛 𝜃 − ∑ ቀ

௫೔ೖ

ఏ
ቁ

ఉ
௠
௞ୀଵ   + (𝛼 − 1) ∑ 𝑙𝑛 ൤1 − 𝑒𝑥𝑝 ൬− ቀ

௫೔ೖ

ఏ
ቁ

ఉ

൰൨௠
௞ୀଵ .                 (20) 

Therefore, the weighted likelihood estimator of 𝛼, 𝛽, 𝜃 say  𝛼෤,𝛽෨, 𝜃,෩  respectively, which maximize must 
satisfy the normal equation given by: 

డ

డఈ
𝐿(𝛼, 𝛽, 𝜃) =

௠

ఈ
+ ∑ 𝑙𝑛 ൤1 − 𝑒𝑥𝑝 ൬− ቀ

௫೔ೖ

ఏ
ቁ

ఉ

൰൨௠
௞ୀଵ = 0                                                                (21) 

డ

డఉ
𝐿(𝛼, 𝛽, 𝜃) =

௠

ఉ
+ ∑ 𝑙𝑛 𝑥௜ೖ

௠
௞ୀଵ − 𝑚 𝑙𝑛 𝜃 − ∑ ቀ

௫೔ೖ

ఏ
ቁ

ఉ
𝑙𝑛 ቀ

௫೔ೖ

ఏ
ቁ௠

௞ୀଵ  + (𝛼 − 1) ∑
൬

ೣ೔ೖ
ഇ

൰
ഁ

௟௡൬
ೣ೔ೖ

ഇ
൰ ௘௫௣ቆି൬

ೣ೔ೖ
ഇ

൰
ഁ

ቇ

ଵି௘௫௣ቆି൬
ೣ೔ೖ

ഇ
൰

ഁ

ቇ

௠
௞ୀଵ = 0            (22) 

డ

డఏ
𝐿(𝛼, 𝛽, 𝜃) = −

௠ఉ

ఏ
+

ఉ

ఏ
∑ ቀ

௫೔ೖ

ఏ
ቁ

ఉ
௠
௞ୀଵ −

(ఈିଵ)ఉ

ఏ
∑

൬
ೣ೔ೖ

ഇ
൰

ഁ

௘௫௣ቆି൬
ೣ೔ೖ

ഇ
൰

ഁ

ቇ

ଵି௘௫௣ቆି൬
ೣ೔ೖ

ഇ
൰

ഁ

ቇ

௠
௞ୀଵ = 0.                                    (23) 

It is obtaining the maximum likelihood estimation by maximizing equation (20) numerically. Numerical 
computation during data analysis by use of standard iterative procedures such as the Newton-Raphson 
method. The Newton-Raphson method can be applied to generate a sequence that converges to the 
weighted likelihood estimator. 

3. Simulation Study 

The comparison is based on the root mean 
square error as follows. Generate samples of 
10,000 size (𝑛) are 30, 50, and 100. We assume 
that the sample (𝑥ଵ, 𝑥ଶ, … , 𝑥௡) is taken from the 

distribution 𝐺ఌ(𝑥), the 𝜀–contamination model is 
defined as 𝐺ఌ(𝑥) = (1 − 𝜀)𝐹(𝑥, 𝛩) + 𝜀𝐹ଵ(𝑥, 𝛩ଵ). The 
central model 𝐹(𝑥, 𝛩) is the Exponentiated 
Weibull distribution with parameter (𝛼, 𝛽, 𝜃) . 
For the contamination 𝐹ଵ(𝑥, 𝛩ଵ)  is 
Exponentiated Weibull distribution with 
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parameter (𝛼ଵ, 𝛽ଵ, 𝜃ଵ)  where 𝛼ଵ = 𝛼(1 + ∆), 𝛽ଵ =

𝛽(1 + ∆),  𝜃ଵ = 𝜃(1 + ∆)  and ∆> 0.  Let 𝜀  denoted 
the contamination proportion where 0 < 𝜀 < 1 . 
If a random variable U has the uniform 
distribution on the interval [0,1], it will have the 
Exponentiated Weibull distribution with 
parameter (𝛼, 𝛽, 𝜃). In this study, we consider the 
failure rate is increasing function when scale 
parameter α 𝛼 > 1, so we set 𝛼 = 2 and 𝛽, 𝜃 ≥ 1 
so the central distribution to be the 
Exponentiated Weibull with (2,1,1) and (2,2,2). 
And the contamination is Exponentiated 
Weibull distribution with parameter (𝛼ଵ, 𝛽ଵ, 𝜃ଵ) 
where 𝛥 = 1, 5 and 𝜀 = 0.01, 0.03, and 0.05 and 
the values of preassigned small probability 𝑘 = 
0.01, 0.03, 0.05. We performed a Monte Carlo 
simulation to compare the perform of maximum 
likelihood estimation and the weighted 
likelihood estimator for estimate when β are the 
shape parameters and θ is the scale parameter. 
The simulation results are based on the 10,000 
replace and the simulation was done uses 
statistical software R version 4.1.3. The 
efficiency of the maximum likelihood 
estimation and the weighted likelihood 
estimator were compared based on the bias 
values and the root mean square error. The bias 
values were considered as a bias for comparison 
between estimator methods, which take the 
following form:  𝐵𝑖𝑎𝑠൫𝜃෠൯ = 𝐸൫𝜃෠൯ − 𝜃  and 
𝐵𝑖𝑎𝑠൫𝛽መ൯ = 𝐸൫𝛽መ൯ − 𝛽  when fix 𝛼 = 2. The root 
mean square error (RMSE) was considered as a 
bias for comparison between estimator 
methods, which take the following form: 

𝑅𝑀𝑆𝐸൫𝜃෠൯ = ට
∑ ൫ఏ෡ି஘൯

మభబ,బబబ
೔సభ

ଵ଴,଴଴଴
   and 𝑅𝑀𝑆𝐸൫𝛽መ൯ =

ට∑ ൫ఉ෡ ିஒ൯
మభబ,బబబ

೔సభ

ଵ଴,଴଴଴
 when fix 𝛼 =2. 

4. Result and discussion 

In this section, we compared the 
performance of the maximum likelihood 
estimation and weighted likelihood estimator 
methods to estimate parameters Exponentiated 
Weibull with outlier through simulation.  

Table 1 presents the results on bias and root 
mean square error of the maximum likelihood 

estimation and the weighted likelihood 
estimator when the central distribution is the 
Exponentiated Weibull distribution with 
parameter (2,1,1) and the contamination is ∆=1. 
The sample size increases as the bias and root 
mean square error of the maximum likelihood 
estimation and the weighted likelihood 
estimator decrease in most of the cases in term 
of parameters θ and β. For the maximum 
likelihood estimation and the weighted 
likelihood estimator method both of parameters 
θ and β, the ε increase as the bias and root mean 
square error increase. For the weighted 
likelihood estimator method, the magnitude of 
the bias and root mean square error decrease as 
k increases. For ε=0.03, the weighted likelihood 
estimator method provides better results in 
terms of bias and root mean square error. The 
weighted likelihood estimator method provides 
better results in terms of bias and root mean 
square error compared to the maximum 
likelihood estimation method.  

Table 2 presents the bias and root mean 
square error for maximum likelihood 
estimation and weighted likelihood estimator 
when the central distribution is the 
Exponentiated Weibull distribution with 
parameter (2,1,1) and the contamination level is 
∆=2. Generally, both maximum likelihood 
estimation and weighted likelihood estimator 
decrease bias and root mean square error for 
parameters θ and β as sample size increases. 
However, increasing contamination proportion 
(ε) leads to higher bias and root mean square 
error for both estimators. The weighted 
likelihood estimator demonstrates a reduction 
in bias and root mean square error with 
increasing weight parameter (k). Notably, the 
weighted likelihood estimator outperforms the 
maximum likelihood estimation in terms of bias 
and root mean square error for sample sizes of 
30 and 50 when ε=0.05. Overall, the weighted 
likelihood estimator shows better performance 
compared to the maximum likelihood 
estimation in terms of the bias and root means 
square error. 
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Table 1. Bias and RMSE of the MLE and WLE for parameter 𝜃 and 𝛽 when (𝛼, 𝛽, 𝜃) = (2,1,1)  and ∆= 1. 

𝜀 method 

𝑛 = 30 𝑛 = 50 𝑛 = 100 

Bias RMSE Bias RMSE Bias RMSE 

𝜃෠ 𝛽መ  𝜃෠ 𝛽መ  𝜃෠ 𝛽መ 𝜃෠ 𝛽መ  𝜃෠ 𝛽መ 𝜃෠ 𝛽መ  

0.01 

MLE 0.038 0.067 0.164 0.171 0.030 0.045 0.127 0.125 0.024 0.035 0.090 0.088 
WLE (𝑘 = 0.01) 0.036 0.066 0.164 0.171 0.030 0.045 0.127 0.125 0.023 0.032 0.088 0.085 
WLE (𝑘 = 0.03) 0.033 0.065 0.161 0.170 0.029 0.044 0.126 0.123 0.024 0.033 0.088 0.085 
WLE (𝑘 = 0.05) 0.031 0.063 0.163 0.171 0.029 0.044 0.127 0.125 0.022 0.030 0.086 0.084 

0.03 

MLE 0.072 0.097 0.175 0.183 0.066 0.077 0.139 0.148 0.061 0.063 0.106 0.103 
WLE (𝑘 = 0.01) 0.069 0.096 0.173 0.183 0.066 0.077 0.137 0.147 0.060 0.063 0.104 0.103 
WLE (𝑘 = 0.03) 0.072 0.096 0.175 0.184 0.064 0.073 0.138 0.147 0.060 0.062 0.104 0.102 
WLE (𝑘 = 0.05) 0.069 0.095 0.171 0.182 0.063 0.072 0.136 0.146 0.060 0.060 0.104 0.101 

0.05 

MLE 0.108 0.132 0.191 0.206 0.102 0.111 0.160 0.162 0.097 0.093 0.129 0.138 
WLE (𝑘 = 0.01) 0.106 0.130 0.189 0.205 0.100 0.111 0.157 0.162 0.094 0.092 0.127 0.135 
WLE (𝑘 = 0.03) 0.107 0.131 0.191 0.210 0.099 0.110 0.156 0.161 0.097 0.092 0.128 0.138 
WLE (𝑘 = 0.05) 0.103 0.130 0.188 0.204 0.101 0.112 0.159 0.163 0.094 0.090 0.127 0.130 

 

Table 2.  Bias and RMSE of the MLE and WLE for parameter 𝜃 and 𝛽 when (𝛼, 𝛽, 𝜃) = (2,1,1)  and ∆= 5. 

𝜀 method 

𝑛 = 30 𝑛 = 50 𝑛 = 100 

Bias RMSE Bias RMSE Bias RMSE 

𝜃෠ 𝛽መ 𝜃෠ 𝛽መ  𝜃෠ 𝛽መ 𝜃෠ 𝛽መ  𝜃෠ 𝛽መ 𝜃෠ 𝛽መ  

0.01 

MLE 0.096 0.131 0.185 0.211 0.089 0.108 0.150 0.162 0.084 0.090 0.120 0.122 
WLE (𝑘 = 0.01) 0.096 0.127 0.185 0.207 0.089 0.103 0.150 0.159 0.084 0.085 0.119 0.117 
WLE (𝑘 = 0.03) 0.095 0.125 0.184 0.197 0.087 0.103 0.149 0.152 0.082 0.082 0.118 0.114 
WLE (𝑘 = 0.05) 0.092 0.118 0.182 0.195 0.087 0.098 0.148 0.150 0.084 0.084 0.119 0.114 

0.03 

MLE 0.242 0. 271 0.287 0.328 0.235 0.240 0.264 0.276 0.231 0.218 0.246 0.236 
WLE (𝑘 = 0.01) 0.240 0.259 0.285 0.317 0.235 0.233 0.264 0.268 0.231 0.211 0.246 0.229 
WLE (𝑘 = 0.03) 0.239 0.259 0.285 0.317 0.233 0.222 0.262 0.256 0.229 0.203 0.243 0.220 
WLE (𝑘 = 0.05) 0.235 0.245 0.281 0.299 0.232 0.218 0.260 0.252 0.230 0.207 0.245 0.225 

0.05 

MLE 0.378 0. 398 0.407 0.447 0.373 0.364 0.391 0.393 0.369 0.338 0.378 0.353 
WLE (𝑘 = 0.01) 0.378 0. 384 0.407 0.433 0.372 0.351 0.391 0.380 0.369 0.332 0.378 0.347 
WLE (𝑘 = 0.03) 0.373 0. 366 0.404 0.412 0.370 0.343 0.388 0.372 0.368 0.322 0.377 0.336 
WLE (𝑘 = 0.05) 0.373 0. 360 0.403 0.407 0.368 0.334 0.386 0.362 0.366 0.314 0.376 0.328 

 

Table 3. Bias and RMSE of the MLE and WLE for parameter 𝜃 and 𝛽 when (𝛼, 𝛽, 𝜃) = (2,2,2)   and ∆= 1. 

𝜀 method 

𝑛 = 30 𝑛 = 50 𝑛 = 100 

Bias RMSE Bias RMSE Bias RMSE 

𝜃෠ 𝛽መ 𝜃෠ 𝛽መ  𝜃෠ 𝛽መ  𝜃෠ 𝛽መ  𝜃෠ 𝛽መ 𝜃෠ 𝛽መ  

0.01 

MLE 0.035 0.144 0.115 0.252 0.033 0.103 0.090 0.183 0.029 0.064 0.065 0.121 
WLE (𝑘 = 0.01) 0.034 0.135 0.115 0.247 0.033 0.096 0.090 0.181 0.029 0.061 0.065 0.121 
WLE (𝑘 = 0.03) 0.035 0.122 0.114 0.234 0.032 0.085 0.089 0.174 0.029 0.057 0.065 0.118 
WLE (𝑘 = 0.05) 0.033 0.121 0.111 0.235 0.032 0.083 0.089 0.173 0.028 0.055 0.064 0.117 

0.03 

MLE 0.091 0.208 0.129 0.280 0.085 0.157 0.104 0.203 0.082 0.122 0.084 0.145 
WLE (𝑘 = 0.01) 0.089 0.199 0.127 0.273 0.084 0.148 0.104 0.200 0.082 0.119 0.084 0.143 
WLE (𝑘 = 0.03) 0.090 0.186 0.129 0.256 0.084 0.141 0.104 0.194 0.081 0.116 0.084 0.140 
WLE (𝑘 = 0.05) 0.086 0.185 0.127 0.257 0.084 0.138 0.104 0.191 0.081 0.113 0.083 0.138 

0.05 

MLE 0.141 0.267 0.148 0.305 0.138 0.217 0.130 0.234 0.135 0.183 0.113 0.176 
WLE (𝑘 = 0.01) 0.141 0.255 0.148 0.296 0.137 0.208 0.129 0.229 0.135 0.176 0.113 0.171 
WLE (𝑘 = 0.03) 0.140 0.240 0.148 0.283 0.136 0.200 0.129 0.221 0.134 0.169 0.113 0.168 
WLE (𝑘 = 0.05) 0.138 0.238 0.146 0.281 0.134 0.196 0.128 0.218 0.134 0.169 0.112 0.166 
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Table 4.  Bias and RMSE of the MLE and WLE for parameter 𝜃 and 𝛽 when (𝛼, 𝛽, 𝜃) = (2,2,2)  and ∆= 5. 

𝜀 method 

𝑛 = 30 𝑛 = 50 𝑛 = 100 

Bias RMSE Bias RMSE Bias RMSE 

𝜃෠ 𝛽መ 𝜃෠ 𝛽መ  𝜃෠ 𝛽መ  𝜃෠ 𝛽መ  𝜃෠ 𝛽መ 𝜃෠ 𝛽መ  

0.01 

MLE 0.128 0.242 0.143 0.294 0.123 0.193 0.122 0.219 0.121 0.156 0.105 0.161 
WLE (𝑘 = 0.01) 0.126 0.226 0.143 0.283 0.123 0.185 0.122 0.215 0.120 0.151 0.104 0.157 
WLE (𝑘 = 0.03) 0.126 0.217 0.143 0.272 0.122 0.177 0.121 0.210 0.121 0.146 0.104 0.154 
WLE (𝑘 = 0.05) 0.124 0.213 0.142 0.270 0.121 0.173 0.120 0.206 0.120 0.143 0.104 0.152 

0.03 

MLE 0.362 0.491 0.277 0.438 0.357 0.434 0.266 0.363 0.353 0.389 0.256 0.304 
WLE (𝑘 = 0.01) 0.361 0.475 0.277 0.422 0.355 0.424 0.265 0.352 0.353 0.380 0.256 0.297 
WLE (𝑘 = 0.03) 0.359 0.462 0.277 0.411 0.356 0.414 0.265 0.346 0.351 0.377 0.255 0.295 
WLE (𝑘 = 0.05) 0.357 0.457 0.275 0.405 0.354 0.407 0.264 0.341 0.350 0.372 0.254 0.291 

0.05 

MLE 0.589 0.744 0.430 0.602 0.585 0.674 0.422 0.521 0.581 0.624 0.415 0.463 
WLE (𝑘 = 0.01) 0.589 0.716 0.430 0.579 0.585 0.666 0.422 0.515 0.580 0.618 0.414 0.459 
WLE (𝑘 = 0.03) 0.588 0.695 0.429 0.562 0.584 0.643 0.421 0.497 0.580 0.604 0.415 0.448 
WLE (𝑘 = 0.05) 0.585 0.687 0.427 0.554 0.582 0.637 0.420 0.492 0.579 0.597 0.413 0.443 

 

Table 3 presents a comparison of the maximum 
likelihood estimation and the weighted likelihood 
estimator in terms of bias and root mean square error 
for the Exponentiated Weibull distribution with 
parameter (2,2,2) distribution with a contamination 
level of ∆=1. Results indicate that both maximum 
likelihood estimation and weighted likelihood 
estimator generally decrease bias and root mean 
square error for parameters θ and β as sample size 
increases. However, increasing contamination 
proportion (ε) leads to increases in bias and root 
mean square error for both estimators. The weighted 
likelihood estimator demonstrates a reduction in bias 
and root mean square error with increasing weight 
parameter (k). Notably, the weighted likelihood 
estimator outperforms the maximum likelihood 
estimation in terms of bias and root mean square 
error for all sample sizes when ε=0.05. Overall, the 
weighted likelihood estimator method provides 
better results in terms of bias and root mean square 
error compared to the maximum likelihood 
estimation method. 

Table 4 presents the results on bias and root 
mean square error of the maximum likelihood 
estimation and weighted likelihood estimator when 
the central distribution is the Exponentiated Weibull 
distribution with parameter (2,2,2) and the 
contamination level is ∆=2. As the sample size 
increases, the bias and root mean square error of 
both maximum likelihood estimation and the 
weighted likelihood estimator generally decreases 
for parameters θ and β. Both estimation methods 
exhibit increased bias and root mean square error 
as the contamination proportion (ε) increases. For 
the weighted likelihood estimator, the magnitude of 
bias and root mean square error decreases as the 
weight parameter (k) increases. When ε=0.05, the 
weighted likelihood estimator outperforms the 
maximum likelihood estimation in terms of bias and 
root mean square error across all sample sizes. 

Overall, the weighted likelihood estimator provides 
better performance compared to the maximum 
likelihood estimation in terms of bias and root mean 
square error. 

5. Real data Analysis  
 

In this section, a real dataset is presented to 
show the performance of the proposed 
methodology.  We consider a data set on 
breaking stress of carbon fibers (in Gba) from 
Nichols and Padgett [13] which includes the 
following values: 3.7, 2.74, 2.73, 2.5, 3.6, 3.11, 
3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 
1.69, 3.28, 3.09, 1.87, 3.15, 4.9,  3.75, 2.43, 
2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 
3.39, 2.81, 4.2, 3.33, 2.55, 3.31, 3.31, 2.85, 
2.56, 3.56,  3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 
2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 
0.98, 2.76, 4.91, 3.68, 1.84, 1.59,  3.19, 1.57, 
0.81, 5.56, 1.73, 1.59, 2 ,1.22, 1.12, 1.71, 2.17, 
1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 
4.38 ,1.84, 0.39, 3.68 ,2.48, 0.85 ,1.61 ,2.79 ,4.7 
,2.03 ,1.8 ,1.57 ,1.08 ,2.03 ,1.61, 2.12, 1.89, 
2.88, 2.82, 2.05 and 3.65. This suggests that the 
data set following the Exponentiated Weibull 
distribution were fitted by the method of 
maximum likelihood.  The ML estimators of 
parameter (𝛼, 𝛽, 𝜃) is (1.317, 2.409, 2.682) as 
shown in Table 5. The goodness-of-fit test for 
the exponentiated Weibull distribution yielded 
a Kolmogorov-Smirnov statistic (KS) of 0.0064 
with a p-value of 0.8014, indicating a good fit. 
To create a contamination of 1% (ε=0.01) into 
the data set, the last observation (3.65) was 
changed to 7.65. Applying the maximum 
likelihood approach to the contaminated data 
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yielded the maximum likelihood estimation of 
(2.494, 1.628, 2.041) with a log-likelihood of -
148.085. The weighted likelihood estimator 
approach produces estimates of (1.367, 2.353, 
2.635) with a log-likelihood of -139.783. 

Therefore, the presence of contamination in the 
data highlights that the weighted likelihood 
estimator does the better estimates for the 
parameters.  
 

Table 5.  Parameters of the fitted distributions  

Method 𝛼 (𝑆. 𝐸. ) 𝛽(𝑆. 𝐸. ) 𝜃(𝑆. 𝐸. ) -Log Likelihood KS (p-value) 

MLE  

(original data) 

1.317 (0.0001) 2.409(0.0240) 2.682(0.0003) -141.332 0.0064(0.8014) 

MLE 2.494(0.0050) 1.628(0.0030) 2.041(0.0050) -148.085  

WLE 1.367(0.0040) 2.353(0.0023) 2.635(0.0041) -139.783  

 
6. Conclusion 

This study conducted a comparative 
analysis of Maximum Likelihood Estimation 
and Weighted Likelihood Estimation methods 
for estimating parameters of the Exponentiated 
Weibull distribution in the presence of outliers. 
Simulation studies were conducted under 
various conditions of sample size, 
contamination level, and distribution 
parameters. The results consistently 
demonstrate the superiority of the weighted 
likelihood estimator method over the maximum 
likelihood estimation in terms of bias and root 
mean squared error for estimating the scale 
parameter (θ) of the Exponentiated Weibull 
distribution with parameter distribution, 
especially when the contamination level is 
significant. The results on bias and root mean 
square error of the maximum likelihood 
estimation and weighted likelihood estimator 
for the central distribution are the EW (2,1,1) 
and EW (2,2,2) when fix α=2 and the 
distribution of the contamination is ∆=1,5. The 
characteristics of the maximum likelihood 
estimation and weighted likelihood estimator 
for each situation are summarized as follows. 
The sample size increases as the bias and root 
mean square error of the maximum likelihood 
estimation and weighted likelihood estimator 
decrease in most of the cases. For the maximum 
likelihood estimation and the weighted 
likelihood estimator method both of parameters 
θ and β, the ε increases as the bias and root 
mean square error increases. For the maximum 

likelihood estimation method both of 
parameters θ and β, the ε increases as the bias 
and root mean square error increase.  For the 
weighted likelihood estimator method for the 
scale parameter θ, the magnitude of the bias and 
root mean square error decreases as k increases. 
The bias and root mean square error when 
comparing values of the maximum likelihood 
estimation method are close to those of the 
weighted likelihood estimator method when 
k=0.01. On the other hand, the bias and root 
mean square error values of the weighted 
likelihood estimator are smaller than those of 
the maximum likelihood estimation for all 
cases. Hence, in the case when ∆=1,5 based on 
the bias and root mean square error of the 
weighted likelihood estimator method, it 
provides better results when comparing to the 
maximum likelihood estimation method when 
k is large. While both methods showed 
increased bias and root mean square error with 
increasing contamination, the weighted 
likelihood estimator exhibits a more robust 
performance, particularly for larger values of 
the shape parameter. 

The findings of this study underscore the 
limitations of the maximum likelihood 
estimation method in handling outliers within 
the context of the Exponentiated Weibull 
distribution. The weighted likelihood estimator, 
on the other hand, emerges as a more reliable 
approach for estimating the scale parameter in 
the presence of contaminated data. The results 
of this study suggest that the weighted 
likelihood estimator is a viable alternative to the 
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maximum likelihood estimation for analyzing 
data from the Exponentiated Weibull 
distribution when contamination is suspected. 
While this research focused on the scale 
parameter, future studies could explore the 
performance of the weighted likelihood 
estimator for estimating the shape parameter 
under different contamination scenarios. 
Additionally, investigating the sensitivity of the 
weighted likelihood estimator to different 
weight functions would provide further insights 
into its robustness. The successful application 
of the weighted likelihood estimator to the 
Exponentiated Weibull distribution opens 
avenues for extending this methodology to 
other complex distributions, such as the 
exponentiated generalized Weibull distribution. 
Moreover, incorporating censored observations 
into the weighted likelihood estimator 
framework could enhance its applicability to 
real-world datasets with incomplete 
information. Overall, the results of this study 
contribute to the development of robust 
estimation techniques for the Exponentiated 
Weibull distribution and provide valuable 
insights for researchers and practitioners 
dealing with contaminated data. 
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