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ABSTRACT
The combined cycle power plant (CCPP) has seen significant growth as a key player in

the energy sector due to its efficient electricity generation and low greenhouse gas emissions.
The growing global demand for electricity, fueled by rapid technological advancements, un-
derscores the need for a reliable power supply. However, accurately predicting the efficiency
of CCPPs is essential for optimizing performance and cost-effectiveness. The efficiency of
power plants is influenced by a variety of environmental and internal factors, but traditional
models often fail to capture these complexities. This study addresses these gaps by em-
ploying machine learning models to estimate the efficiency of a CCPP in Thailand, using a
comprehensive dataset of fourteen input variables. Nine machine learning models, including
regression and ensemble methods, were used for evaluation, with Random Forest Regression
and Gradient Boosting achieving superior accuracy levels of 99.91% and 99.83%, respec-
tively. Furthermore, the research delves into 14 distinct variables utilized for prediction and
aims to determine which variables are of paramount significance in the assessment process.

Keywords: Combined cycle power plant; Efficiency; Gradient boosting; Machine learning;
Random forest regression

1. Introduction
The supply of power evolves in

tandem with technological advancements.
Given the rapid changes in global tech-

nology consumption, there is an increas-
ing need for a robust power supply to meet
the surging demand. Consequently, the
spectre of an impending energy shortage
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Fig. 1. Layout of a CCPP.

looms over the world. Power plants, which
have been in operation for decades, re-
main the primary contributors to electric-
ity generation. Owing to their ability to
efficiently produce electricity with mini-
mal greenhouse gas emissions, combined
cycle power plants (CCPPs) are progres-
sively displacing traditional power plants
on a global scale [1].

The efficiency of power plants must
be optimized to maintain and further reduce
production costs [2]. Therefore, accurate
energy efficiency prediction is essential to
ensure cost-effectiveness. This study fo-
cuses on estimating the efficiency of CCPPs
using various machine learning methods,
taking into account diverse internal and en-
vironmental factors.

CCPPs employ a combination of a
gas and steam turbine to convert the thermal
energy from fuel into electrical power [3].
This procedure involves two cycles: the
Brayton cycle, which mirrors a traditional
gas turbine, and the Rankine Cycle, facili-
tated by a steam turbine. Significantly, the
residual heat produced following the gen-
eration of electricity through the gas tur-
bine is repurposed to generate steam, sub-
sequently producing extra electrical power.
In contrast, traditional power plants used

to generate only about 33% of electricity,
with a staggering 67% of energy going to
waste. Since the introduction of CCPPs, the
efficiency of electricity generation has in-
creased by approximately 68% [4].

CCPPs are also more adaptable than
conventional thermal power plants. For a
visual representation, refer to Fig. 1, which
provides a diagrammatic representation of a
CCPP.

The production of electricity and the
energy efficiency of a plant are intrinsically
linked to a multitude of factors, encom-
passing both environmental and internal as-
pects. Any alteration in these factors can
significantly influence a plant’s efficiency.
Thus, the establishment of a system to es-
timate this efficiency becomes a matter of
paramount importance.

Typically, power plants operate at
two distinct loads: Full Load and Partial
Load. Plants that adhere to these load pro-
files adjust their power output in response
to the fluctuating demand for electricity
throughout the day [5]. For instance, dur-
ing periods of lower electricity demand, the
plant operates at partial capacity rather than
running at full capacity. Conversely, when
demand peaks, the plant shifts to full capac-
ity. Combined Cycle Power Plants (CCPPs)
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excel in maintaining high efficiency across
a wide range of loads while simultane-
ously producing fewer harmful emissions
and consuming less cooling water. Conse-
quently, this paper is dedicated to assessing
the efficiency of a power plant located in
Thailand, taking into account various influ-
encing factors.

While energy efficiency can be cal-
culated through straightforward mathemat-
ical equations, relying solely on such equa-
tions may not yield accurate predictions.
Often, numerous other seemingly insignif-
icant factors come into play, exerting a
substantial impact on a plant’s efficiency.
Mathematical formulas typically omit criti-
cal environment and inlying attributes, such
as temperature, humidity, generators, and
turbines. This paper aims to shed light on
the significance of these internal and envi-
ronmental factors in determining plant effi-
ciency. We employ various intelligent mod-
els to estimate the competency of a CCPP,
utilizing a dataset consisting of fourteen in-
put variables.

In our previous work [6], we anal-
ysed Thailand’s primary Combined Cy-
cle Power Plant (CCPP) using a five-year
dataset. For this study, we extended the
dataset by three additional years and in-
troduced a new input variable to assess
its compatibility with existing variables.
We applied various regression and boosting
models to identify top performers and anal-
yse the influence of each variable on effi-
ciency, distinguishing those of greatest sig-
nificance. Initially, we focused on environ-
mental factors alone, then incorporated in-
ternal factors to observe their combined im-
pact on efficiency.

This paper is structured as follows:

1. Introduction to CCPPs and research
rationale

2. Review of relevant literature

3. Description of models used

4. Experimental results on datasets and
variable selection

5. Conclusion and future research direc-
tions

2. Literature Review
In their paper titled ”A Data-Driven

Approach for On-line Gas Turbine Com-
bustion Monitoring using Classification
Models,” Allegorico and Mantini [7] em-
ployed logistic regression and an artificial
neural network to recognize anomaly pat-
terns leading to combustion issues. They
also integrated a physics-based algorithm
into their study for comparison. Their find-
ings revealed that machine learning mod-
els, particularly logistic regression, outper-
formed their counterparts, demonstrating
the potential of these models in detecting
combustion anomalies. However, their fo-
cus on combustion monitoring alone rather
than on broader efficiency metrics and their
analysis under specific turbine conditions
limits the generalizability of their approach

Jihad and Tahiri [8], in their work
”Forecasting the Heating and Cooling Load
of Residential Buildings by Using a Ma-
chine Learning Algorithm ’Gradient De-
scent,’” predicted the energy requirements
of residential buildings in the Agadir re-
gion of Morocco. They achieved remark-
able accuracy rates of 98.7% and 97.6%
for prediction and test data, respectively,
using gradient boosting. This high per-
formance influenced our choice of the al-
gorithm for our research. However, their
study focused solely on residential build-
ings, which differ significantly in efficiency
and operational dynamics from industrial
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power plants, thereby limiting the direct ap-
plicability of their findings to Combined
Cycle Power Plants (CCPPs).

Elfaki and Ahmed [9] utilized arti-
ficial neural network (ANN)-based regres-
sion models with a four-input dataset to pre-
dict the electrical output power of a com-
bined cycle power plant. Their research
highlighted the stochastic behaviour of the
regression model and concluded that in-
creasing the dataset size led to improved
predictions and enhanced the reliability of
the ANN model. Yet, with only four input
variables, their model potentially missed
additional factors relevant to more complex
energy systems like CCPPs.

Kaya, Tufecki, and Gurgen [10] con-
ducted an experiment using a six-year
dataset, incorporating temperature, humid-
ity, pressure, and exhaust vacuum as in-
puts. They formed both local and global
predictive models using various techniques,
including conventional multivariate regres-
sion, additive regression, k-NN, feedfor-
ward ANN, and K-Means clustering. Their
findings illustrated that even basic regres-
sion tools such as K-NN could forecast
net yield with an average relative error of
less than 1%, underscoring the potential for
improved performance with the incorpora-
tion of more advanced tools and compre-
hensive pre-processing. This finding high-
lighted the potential for improved perfor-
mance with advanced tools and thorough
pre-processing. However, their study did
not explore ensemble methods that could
capture complex interactions between vari-
ables.

Siddqui et al. [11] estimated power
production by a Combined Cycle Power
Plant (CCPP) on an hourly basis using
machine learning algorithms. They eval-
uated five models, including K-Nearest
Neighbors, Linear Regression, Gradient-

Boosted Decision Trees, Artificial Neural
Network, and Deep Neural Network, with
the Gradient-Boosted Decision Trees yield-
ing the most favorable results. Their work
underscores the need to evaluate multiple
models to achieve optimal accuracy; how-
ever, it concentrated only on power predic-
tion without exploring efficiency or other
operational metrics

Similarly, Alketbi et al. [12] em-
ployed four machine learning methods–
Multiple Linear Regression, K-Nearest
Neighbors, Multilayer Perceptron, and
Random Forest Regression-on four input
variables. Their experiments demonstrated
that Random Forest Regression produced
the most promising outcomes. While effec-
tive, their approach used a limited number
of input variables, possibly overlooking ad-
ditional significant operational factors for
power plants.

In reviewing previous studies, we
noted that regression methods were com-
monly used but with limited input variables,
often missing critical aspects of CCPP ef-
ficiency. This prompted us to expand our
experiments to include not only key envi-
ronmental factors but also a range of in-
ternal components. Additionally, we em-
ployed advanced machine learning tech-
niques, such as gradient boosting, adaptive
boosting, and bagging ensembles, along-
side various regression methods to identify
the most effective model. By incorporating
a broader set of variables and sophisticated
techniques, our study aims to offer a more
accurate and comprehensive approach to ef-
ficiency estimation.

3. Methodology
This paper encompasses nine ma-

chine learning models, all employed in the
estimation of the Combined Cycle Power
Plant’s (CCPP) efficiency. The selection of
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the top-performing model is the initial step,
and subsequently, it is utilized to identify
the variables that have the most significant
impact on the plant’s efficiency.

In this study, we utilize four environ-
mental variables and ten internal variables.
In our previous research, we conducted
separate experiments on environmental and
internal variables, discovering that com-
bining them yielded the most favourable
outcomes [6]. For this study, an addi-
tional internal variable has been introduced,
along with an expanded dataset. The ap-
proach entails initially shortlisting the best-
performing model from the regression and
boostingmodels. We then proceed to evalu-
ate the estimation results of these two mod-
els by systematically removing variables in-
dividually and assessing how their absence
affects the outcome. Ultimately, this pro-
cess helps determine the variables of utmost
importance and identifies which of the se-
lected regression and boosting models per-
forms best.

The input variables include temper-
ature, humidity, pressure, heatrate, IGV1
(inlet guide vanes), generating power pro-
duced, condenser data, cooling tower data,
gas turbine 1, gas turbine 2, heat recovery
steam generator 1, heat recovery steam gen-
erator 2, steam turbine, and IGV2. The re-
sulting variable is the comprehensive ther-
mal efficiency produced.

Our machine learning models in-
clude both regression and ensemble meth-
ods, as explained by Huang et al [13]. In
regression, the focus is on scrutinizing the
connections between different variables, ul-
timately culminating in the development of
a mathematical model that evaluates the
value of a variable (label) based on its fea-
tures. On the contrary, ensemble methods
employ the strategy of generating andmerg-
ingmultiple models to achieve enhanced re-

sults. The models in use are as follows.

3.1 Linear Regression
Linear regression is a type of super-

vised learning model employed for con-
ducting regression tasks. It is founded on
the concept of using the independent vari-
able to make predictions about the depen-
dent variable, as described by Montgomery
et al., in 2012 [14]. A basic regression
model can be expressed using the following
Eq. (3.1):

𝑦 = 𝜃1 + 𝜃2 · 𝑥, (3.1)

In this context, where 𝑥 represents the in-
put training data, specifically univariate–
meaning one input variable or parameter, 𝑦
is the label, 𝜃11 is the intercept and 𝜃2 is the
coefficient of 𝑥. Table 1 shows the parame-
ters we have used for our work.

Table 1. Linear Regression Parameters.

S. no Parameters Value
1 fit_intercept TRUE
2 n_jobs -1
3 Positive FALSE
4 Normalize FALSE

The fit_intercept parameter decides
if the model includes an intercept. Setting
it to False forces the line through the ori-
gin, which can lead to a biased result if
the data doesn’t go through zero naturally.
n_jobs controls how many CPU cores the
model uses to run faster, especially with
big datasets, but it doesn’t affect accuracy.
Positive keeps coefficients positive if we
expect only positive relationships between
variables. Lastly, normalize makes sure
features are on a similar scale, which can
help make the model more stable and im-
prove how it performs.
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3.2 K-Nearest Neighbor Regression
In the same vein, K-Nearest Neigh-

bors (KNN) can be applied to regression
tasks, not just classification. It is partic-
ularly useful when dealing with situations
where non-linear boundaries define classes
or values of interest. KNN leverages a fea-
ture similarity algorithm to predict the class
or value for new data points. These addi-
tional data points are classified according
to their closeness to the training dataset, as
elucidated by Parsian [15]. The distance
measurement can be accomplished through
three distinct methods.

3.2.1 Euclidean Distance

𝑑 =
√
[(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2] . (3.2)

In simple terms, Euclidean distance
can be defined as a formula used to assess
the distance between two points.

In Eq. (3.2), 𝑑 represents the Eu-
clidean distance. (𝑥1, 𝑦1) denotes the coor-
dinates of the first point, and (𝑥2, 𝑦2) repre-
sents the coordinates of the second point.

3.2.2 Manhattan Distance∑
|𝑥𝑖 − 𝑦𝑖 |. (3.3)

The distance between their real vectors.
3.2.3 Hamming Distance

𝐷𝐻 =
𝑘∑
𝑖=1

|𝑥𝑖 − 𝑦𝑖 |. (3.4)

Used only for categorical values, the value
of 𝐷 will be zero if (𝑥) and (𝑦) are same.
Otherwise, it will be 1. Table 2 con-
tains the parameters of KNN regression we
have used. The weights parameter con-
trols how much influence each data point
has when making predictions. If set to uni-
form, all points count the same, but if set

Table 2. KNN Regression Parameters.

S. no Parameters Value

1 weights {’unifrom’,
’distance’}

2 n_neighbors range(3, 75)
3 algorithm auto
4 cv 5

to distance, closer points have more influ-
ence. n_neighbors determines how many
nearby points the model looks at to make
a prediction. More neighbors can make
predictions smoother but less sensitive to
changes. The algorithm decides how the
model finds the nearest neighbors, and this
can affect how fast it runs, especially with
big datasets. Lastly, cv stands for cross-
validation, which helps test the model’s per-
formance by splitting the data into parts to
make sure the model works well with new,
unseen data.

3.3 Random Forest Regression
Random forest regression is another

ML method that amalgamates various algo-
rithms to construct a robust model capable
of delivering precise predictions. The syn-
ergy among these algorithms bolsters the
model’s predictive capacity, ultimately en-
hancing its performance, as highlighted by
Cutler [16]. The parameters for random for-
est regression are presented in Table 3. The

Table 3. Random Forest Regression Parame-
ters.

S. no Parameters Value
1 max_features {’auto’, ’log2’}
2 n_estimators 700
3 Criterion ’squared error’
4 random_state 5
5 n_jobs -1

max_features parameter controls howmany
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features the model looks at when building
each tree. Using fewer features can make
the model faster but less accurate, while
using more can make it more accurate but
slower. n_estimators is the number of trees
in the forest; more trees generally make the
model more accurate but slower to run. Cri-
terion decides how tomeasure the quality of
a split in the trees, with options like ”mse”
for mean squared error. random_state is a
seed value that ensures the model’s results
are reproducible, so you get the same out-
come each time you run it. Finally, n_jobs
controls how many CPU cores the model
uses to speed up training, especially useful
with large datasets.

3.4 Linear Support Vector Machine
The Linear Support Vector Machine

(SVM) is exclusively utilized when deal-
ing with datasets that demonstrate linear
separability. Linear separability is a prop-
erty in which data points can be effectively
distinguished and separated using a single
straight line, as explained by Steinwart and
Christmann [17]. Table 4 displays the pa-
rameters associated with the linear SVM.
The kernel parameter defines the type of

Table 4. Linear SVM Parameters.

S. no. Parameters Value
1 kernel ’linear’
2 loss ’squared hinge’

3 c [1e0, 1e1,
1e2, 1e3, 1e4]

4 cv 10
5 random_state None

function used to separate the data points
(like ”linear,” ”poly,” or ”rbf”). It helps
determine how the model works in higher-
dimensional spaces. Loss controls how the
model handles errors, with ”hinge” being
the typical choice for classification tasks.

C is a regularization parameter that helps
balance fitting the data well and avoiding
overfitting; a higher value makes the model
more sensitive to the training data. cv
stands for cross-validation, used to evalu-
ate the model’s performance by splitting the
data into parts. Finally, random_state is a
seed that ensures the model’s results can be
reproduced if run multiple times with the
same settings.

3.5 Kernel Support Vector Machine
The kernel trick in SVM takes a low

dimensional input and then transfers into a
higher dimensional space [17]. It can be de-
scribed as follows:

𝐾 (𝑥) = 1, if ∥𝑥∥ ≤ 1, (3.5)
𝐾 (𝑥) = 0, Otherwise.

Table 5 delivers the parameters for kernel-
ized SVM. The kernel parameter defines the

Table 5. Kernelized SVM Parameters.

S. no Parameters Value
1 Kernel ’rbf’
2 Degree 3

3 C [1e0, 1e1,
1e2, 1e3, 1e4]

4 Cv 10
5 random_state None

type of function used to transform the data
into a higher-dimensional space for better
separation, with common options like ”lin-
ear,” ”poly,” and ”rbf.” Degree is used with
the ”poly” kernel to control the degree of the
polynomial function (higher values create
more complex boundaries). C is a regular-
ization parameter that helps balance fitting
the training data well and preventing over-
fitting; a larger value makes the model more
sensitive to the data. cv refers to cross-
validation, which tests the model’s perfor-
mance by splitting the data into training and
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testing sets. Finally, random_state ensures
the model’s results can be reproduced con-
sistently.

3.6 Bagging ensemble
Bagging and boosting are ensemble

methods employed to enhance the predic-
tive accuracy and overall performance of
models. Bagging, for instance, entails cre-
ating multiple variations of predictors and
then aggregating them to construct a uni-
fied model for practical use. The parame-
ters for Bagging related to decision trees are
detailed in Table 6. The n_estimators pa-

Table 6. Bagging DT’s Parameters.

S. no Parameters Value
1 n_estimator 750
2 max_samples [5, 10]
3 base_estimator None
4 Cv 10
5 random_state None

rameter defines the number of decision trees
in the model; more trees usually improve
accuracy but can make the model slower.
max_samples determines how many sam-
ples each tree will use when building its
model. Setting it lower can help avoid over-
fitting by introducing more variety between
trees. base_estimator is the model that will
be used to build each tree, typically a deci-
sion tree, but it can be any classifier or re-
gressor. cv refers to cross-validation, which
splits the data to test how well the model
generalizes. Lastly, random_state ensures
the results are reproducible each time the
model is run.

3.7 Adaptive Boost on Decision Tree
(Ada Boost DT)

Boosting is yet another ensemble
technique in which either different or a sin-
gle machine learning algorithm is employed
multiple times for prediction, with the aim

of enhancing the overall model’s perfor-
mance. In the case of adaptive boosting,
numerous weak classifiers are combined to
create a powerful classifier, as explained by
Schapire and Freund [18]. Table 7 outlines
the parameters for adaptive boosting. The

Table 7. Adaptive Boost DT Parameters.

S. no Parameters Value
1 n_estimator [100, 500]
2 learning_rate 0.7
3 base_estimator base_dt
4 random_state 5

n_estimators parameter specifies the num-
ber of weak learners (usually decision trees)
to combine into the final model; more esti-
mators generally lead to better performance
but can increase computation time. learn-
ing_rate controls how much each tree con-
tributes to the final prediction. A smaller
learning rate makes the model more robust
but requires more estimators to reach the
same level of accuracy. base_estimator is
the model used for each weak learner, typi-
cally a decision tree, but it can be any classi-
fier or regressor. Finally, random_state en-
sures the results are reproducible when run-
ning the model multiple times.

3.8 Ada Boost on KNN Regression
In this approach, AdaBoost is applied

to K-nearest Neighbor regression, leverag-
ing the power of this machine learning al-
gorithm multiple times to enhance the per-
formance of the model [18]. Table 8 show-
cases AdaBoost KNN’s parameters. The
n_estimators parameter sets the number of
KNN models (or weak learners) to com-
bine into the final model. More estimators
usually improve performance but increase
computation time. learning_rate controls
how much each KNN model contributes
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Table 8. AdaBoost KNN Parameters.

S. no Parameters Value
1 n_estimator [100, 500, 1000]
2 learning_rate 0.7
3 base_estimator base_knn
4 random_state 10

to the final prediction. A lower learning
rate requires more estimators to achieve
the same accuracy but can make the model
more stable. base_estimator specifies the
base model used for each weak learner,
which in this case would be KNN (but it
can be other models too). Lastly, ran-
dom_state ensures that the results are repro-
ducible each time you run the model.

3.9 Gradient boosting
Gradient boosting is another algo-

rithm that operates on the principle that the
prime feasible model, in conjunction with
preceding models, will reduce the predic-
tion errors, as elucidated by [18]. The pa-
rameters utilized in our work for the gra-
dient boosting model are presented in Ta-
ble 9. The n_estimators parameter defines

Table 9. Gradient Boosting Parameters.

S. no Parameters Value
1 n_estimator [100, 500, 1000]
2 learning_rate 1.1
3 n_jobs -1
4 random_state 10
5 min_samples_split [3,4,5]

how many decision trees the model will
use; more trees generally improve accuracy
but can increase computation time. learn-
ing_rate controls howmuch each tree’s con-
tribution is weighted. A smaller learn-
ing rate makes the model more stable, but
you might need more trees to reach the
same performance. n_jobs controls how
many CPU cores to use for training, help-
ing speed up the process, especially for

large datasets. random_state ensures that
the model’s results are reproducible each
time it’s run. Lastly, min_samples_split de-
termines the minimum number of samples
required to split an internal node; increasing
this value can prevent overfitting bymaking
the model more conservative.

The inputs utilized in our study in-
clude the factors that influence the effi-
ciency of the power plant. The attributes
consist of Temperature, Humidity, Pres-
sure, Heat rate, MegaWatt produced, Inlet
Guide Vanes 1, Inlet Guide Vanes 2, Con-
denser, Cooling tower, Gas turbine 1, Gas
turbine 2, Heat Recovery Steam Generator
1, Heat Recovery Steam Generator 2, and
Steam Turbine. The output variable is the
Net Efficiency, which varies based on the
provided variables.

All model experiments were con-
ducted using Google Colaboratory with
GPU settings and a RAM of 12GB, with
processing times ranging from 30 minutes
to 1 hour for each of the model.

4. Experimentation
This segment focuses on the datasets

employed in this research. To enhance un-
derstanding, we have visualized our data,
and the performance has been evaluated us-
ing R-squared metrics. The execution of
individual model is subsequently assessed
collectively to determine which one supe-
rior.

4.1 Dataset
The fifteen variables are individually

elucidated below. The dataset has been col-
lected from North Bangkok Power Plant,
where variables include: Temperature, Hu-
midity, Pressure, Heat rate, Mega Watt, In-
let Guide Vanes 1, Inlet Guide Vanes 2,
Condenser, Cooling tower, Gas Turbine 1,
Gas turbine 2, Heat Recovery Steam Gen-
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erator 1, Heat Recovery Steam Generator 2,
Steam Turbine, and Net Efficiency. These
variables have been collected over the past
eight years at an hourly interval between
data samples. Certain variables, such as In-
let Guide Vanes, Gas Turbine, and Heat Re-
covery Steam Generator, have two values
each because the power plant is equipped
with two sets of these components. Conse-
quently, we obtained two separate readings
for each of these variables.

Temperature, which is a physical
quantity that numerically represents the
degree of hotness or coldness, fluctuates
within the range of 24 ◦C to 35 ◦C in Thai-
land. The probability density is depicted in
Fig. 2. Humidity is a measure of the per-

Fig. 2. Temperature (Celsius).

centage of water vapor in the atmosphere
and typically falls within the range of 30%
to 90%, as illustrated in Fig. 3. Air pres-
sure, as shown in Fig. 4, experiences vari-
ations between 995 and 1025 hPa. These
fluctuations are primarily influenced by the
power plant’s location, which is situated at
sea level. Fig. 5 illustrates a steam turbine,
a device that operates by utilizing a heat
source to raise the temperature of water to
extremely high levels, resulting in its con-
version into steam, as described by Hegde
[18]. The running efficiency of this steam
turbine is depicted, and it is approximately

Fig. 3. Humidity.

Fig. 4. Pressure (hPa).

around 40%. The main function of the In-

Fig. 5. Steam Turbine.

let Guide Vanes (IGV) is to regulate the
airflow and pressure that enters the initial
stage of compression in a centrifugal com-
pressor. The IGV values are presented in
Fig. 6 below. The Heat Recovery Steam
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Fig. 6. Inlet Guide Vane 1 and Inlet Guide Vane
2.

Generator (HRSG) serves as an energy re-
covery heat exchanger designed to recover
heat from hot gas steam. In our study, two
HRSG blocks were employed, as illustrated
in Fig. 7. Fig. 8 displays the condenser,
also referred to as a phase transition unit,
which functions as a heat exchanger con-
verting steam from its gaseous state to its
liquid state, as explained by Hegde [19].
The data in Fig. 8 ranges between 80% and
100%. Fig. 9 presents data related to the
generated MegaWatts in the power plant.
The power plant’s output generation typi-
cally ranges between 580-680 MW when it
is operating at full capacity and decreases
to 400-500 MW when it operates at par-
tial capacity. Net efficiency is a measure
of how effectively a power plant converts
energy input into electricity output, consid-
ering losses and waste in the process. Fig.

Fig. 7. Heat Recovery Steam Generator 1 and
Heat Recovery Steam Generator 2.

Fig. 8. Condenser.

10 illustrates the net efficiency, with val-
ues falling within the range of 46% to 55%.
A Cooling Tower is utilized to dissipate
heat by spraying water down through the
tower, with the primary objective of max-
imizing the evaporation of water. The data
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Fig. 9. Mega Watt produced (MW).

Fig. 10. Net Efficiency (%).

related to the cooling tower is depicted in
Fig. 11. The gas turbine consolidates the

Fig. 11. Cooling Tower.

air and blends it together alongside fuel; it
is then heated to immense temperatures for
power generation. Data from the two tur-
bines are presented in Fig. 12. The heat
rate within a combined cycle power plant

Fig. 12. Gas turbine 1 and 2.

quantifies the energy input, usually mea-
sured in British Thermal Units (BTUs), es-
sential for generating a single kilowatt-hour
(kWh) of electricity. This metric serves as
a fundamental gauge of the power plant’s
effectiveness in converting fuel into electri-
cal energy. A reduced heat rate signifies a
more efficient power plant, signifying that
it requires less energy to generate a specific
quantity of electricity. The heatrate data is
displayed in Fig. 13 below.

Fig. 13. Heatrate.
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4.2 Training dataset
The dataset is divided into a ratio of

90:10, with 90% of the data designated for
training and the residual 10% for testing.
Due to the extensive nature of the data, min-
max scaling is implemented to standardize
the values within the 0-1 range. For this re-
search, we have opted to use the R-squared
score as the accuracy metric. This metric
is utilized to evaluate the model’s perfor-
mance on the provided data. It is defined as
the ratio of the Sum of Squares Regression
(SSR) to the Sum of Squares Total (SST). A
higher R-squared value indicates better re-
sults, as explained by Kane [20]. The R-
squared is expressed as follows:

R-Squared =
Sum of Squares Regression

Sum of squares Total
.

4.3 Model evaluation result
The R-squared evaluation results of

the models employed are presented in Table
9, and in Fig. 14. From the table it is evident
that, in the context of a regression model,
Random Forest Regression exhibited the
highest performance, achieving an accu-
racy of 99.10% on the training dataset and
99.42% on the testing dataset. Meanwhile,
for the ensemble method, Gradient Boost-
ing emerged as the top-performing model,
attaining 99.83% accuracy on the training
dataset and 97.85% on the testing dataset.
Following the outcomes described above,

Fig. 14. Accuracy of different ML models.

we opted to proceed with Random Forest

Table 10. Training and testing accuracy on dif-
ferent models.

Model Train Test
KNN Regressor 99 96.0597
Linear Reg 96.6942 97.1136
Random Forest Reg 99.9137 99.4238
SVM Linear 94.9827 95.7191
Kernelized SVM 93.5148 93.783
Bagging DT 70.7964 71.866
Adaboost DT 99 99.409
Adaboost on KNN 99.1012 96.49
Gradient boost 99.8306 97.8523

Regression and Gradient Boosting for ad-
ditional experimentation. Our approach in-
volved systematically eliminating variables
one by one and assessing the impact on ac-
curacy.

Subsequently, we identified the vari-
ables that had both positive and negative ef-
fects on accuracy. This process led us to
determine the most favourable combination
of variables for predicting efficiency. In
Table 10, it is evident that the absence of
temperature, humidity, pressure, HRSG 2,
Gas Turbine 1, and Gas Turbine 2 led to
an increase in accuracy. Conversely, when
the other parameters were removed, accu-
racy declined. Subsequently, we trained
the model using the remaining 8 variables,
namely Heatrate, IGV 1 & 2, Condenser,
Cooling Tower, HRSG 1, MegaWatt pro-
duced, and Steam Turbine. The results of
this training are presented in Table 11 be-
low.

The results are encouraging with
the selected 8 parameters, but the high-
est accuracy was attained when only the
pressure data was excluded. As demon-
strated in Table 10, upon removing pressure
from the model, Random Forest Regres-
sion achieved an accuracy of 99.97% on the
training data and 99.93%on the testing data.
Similarly, Gradient Boosting delivered an
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Table 11. Accuracies after parameter removal.

Variables Random Forest Regression Gradient Boosting
Train Test Train Test

All Variables included 99.91% 99.42% 99.83% 97.85%
Temperature absent 99.99% 99.42% 99.86% 98.05%
Pressure absent 99.97% 99.93% 99.96% 99.93%
Humid absent 99.92% 99.45% 99.86% 98.13%
Heatrate absent 99.91% 99.42% 99.76% 98.54%
IGV1 absent 99.79% 98.42% 99.25% 94.48%
IGV2 absent 99.49% 96.01% 99.31% 90.50%
HRSG 1 absent 99.91% 99.41% 99.86% 98.55%
HRSG 2 absent 99.91% 99.45% 99.85% 98.36%
Condenser absent 99.85% 98.29% 99.85% 98.29%
Cooling Tower absent 99.91% 99.43% 99.84% 98.62%
Steam Turbine absent 99.92% 99.20% 99.84% 98.21%
Gas Turbine 1 absent 99.92% 99.44% 99.86% 98.54%
Gas Turbine 2 absent 99.92% 99.43% 99.86% 97.91%
Mega Watt Produced absent 99.80% 98.97% 99.68% 97.72%

Fig. 15. Actual and Predicted data for Random Forest Regression and Gradient Boosting.

Table 12. Accuracy with 8 parameters.

Model Train Test
Random Forest Regression 99.92% 99.48%
Gradient Boosting 99.86% 99.14%

accuracy of 99.96% for the training data and
99.93% for the testing data. The accuracy
increased in both models, suggesting that
the combination of both environmental and
internal variables is essential for a positive
impact, and this combination performs op-
timally when the pressure data is omitted.

Hence, for our final model, we have chosen
to exclude the pressure variable and proceed
with the remaining 13 variables.

Fig. 15 illustrates that our results
have provided valuable insights into how
our datasets have interacted with the mod-
els and howwell they have executed predic-
tions. The experiments have showcased the
proximity between the actual and predicted
data.

Overall, the results have demon-
strated the effectiveness of incorporating
both internal and environmental variables in
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our models. This highlights the importance
of considering various factors whenmaking
predictions and decisions, whether it is in
the field of science, business, or any other
field that relies on data analysis.

5. Conclusion
In our research, we employed a com-

prehensive approach by using nine differ-
ent machine learning models to estimate
the efficiency of a combined cycle power
plant. These models included Linear Re-
gression, KNN Regression, Random Forest
Regression, Linear SVM, Kernelized SVM,
Bagging Ensemble, AdaBoost on DT, Ad-
aBoost on KNN Regression, and Gradient
Boosting. Our findings showed that sev-
eral models achieved over 99% accuracy,
advancing current methods of efficiency es-
timation for combined cycle power plants.
We also provided the specific hyperparam-
eters for each model used.

To enhance our results, we expanded
our dataset by three years, bringing the total
to eight years, and added the ”heatrate” pa-
rameter. After thorough testing, we deter-
mined that Random Forest Regression and
Gradient Boosting were the most stable and
effective models. Each model was trained
on 90% of the data and tested on the remain-
ing portion to ensure accuracy and prevent
overfitting.

In the second part of our research, we
analysed 14 variables to understand their
impact on power plant efficiency. These
variables included temperature, humidity,
pressure, heatrate, megawatt, inlet guide
vanes, condenser, cooling tower, turbines,
and heat recovery steam generators. By in-
cluding a broad range of variables, we en-
sured a thorough examination of all fac-
tors that could affect plant efficiency. To
identify the most influential variables, we
conducted a systematic elimination process,

removing each variable one by one and
observing the impact on model accuracy.
We found that removing pressure data im-
proved the accuracy of both models, lead-
ing to the optimal parameter combination.

This research offers several key con-
tributions: a comprehensive analysis of
power plant efficiency by considering a
wide range of variables, the identification
of key variables through systematic elimi-
nation for targeted optimization, enhanced
model accuracy by focusing on themost im-
pactful factors, and practical implications
that help industry professionals improve
monitoring, control strategies, efficiency,
and reduce costs and environmental impact.

In conclusion, our findings indicate
that Random Forest Regression and Gradi-
ent Boosting, with the exclusion of pressure
data, yield the most favorable outcome with
the Random Forest Regression model com-
ing up overall at the top of the list. For our
futurework, we intend to employ thismodel
as a substitute for the direct computation
of efficiency, streamlining the process that
typically necessitates knowledge of multi-
ple variables and equations.
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