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Abstract: 

Fused Filament Fabrication (FFF), also known as Fused Deposition Modeling 

(FDM), is a widely utilized additive manufacturing technique. By fine-tuning 

process parameters, improvements in product quality can be achieved. This 

study investigates optimizing parameters: print speed, layer height, and infill 

density in fabricating acetabular liners, a component of hip implants using 

FFF. Four decision-making methods namely the Analytic Hierarchy Process 

(AHP) combined with Technique for Order of Preference by Similarity to Ideal 

Solution (AHP-TOPSIS), Entropy Weight Method (EWM)-TOPSIS, AHP-

Multi-Objective Optimization on the basis of Ratio Analysis (MOORA), and 

EWM-MOORA) are compared to identify the most suitable parameter settings. 

Observations from Experiments are used in each method. The research 

evaluates these methods to determine the optimal FFF parameters and the 

results will help to improve the 3D Printing process through informed 

parameter selection.  
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1. Introduction 

 

Additive manufacturing (AM) or 3D printing is a cutting-edge technique for producing goods by layering computer 

models into actual items. In contrast to conventional manufacturing technologies, which generally entail removing 

material from a solid block, additive manufacturing involves gradually adding material to create the finished object. 

This technology is transforming many industries, including consumer products, automotive, aerospace, and 

healthcare, by making it possible to create complex designs with increased precision and customization [1]. AM finds 

extensive application in various medical domains, including medication delivery, in-vitro technologies, and 4D 

printing. The pharmaceutical business uses AM in several ways, including Screw Extrusion Additive Manufacturing 

and Stereolithography for diagnostic procedures. External prostheses are also made using Fused Filament Fabrication 

(FFF), Selective Laser Sintering (SLS), and Melt Electrospinning Writing (MEW) [2]. Fused Filament Fabrication is 

a popular manufacturing concept employed by companies and researchers due to its low cost, short turnaround time, 

and high accuracy. Replacement of human tissues, bones, and joints is just one of the numerous biomedical 

applications for which Fused Deposition Modelling (FDM) is an excellent method [3]. 
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The Total Hip Arthroplasty (THA), sometimes referred to as Total Hip Replacement, is a sophisticated surgical 

procedure used to substitute damaged or broken hip components with prosthetic implants. A vital component of the 

total hip arthroplasty prosthesis is the acetabular liner. It is positioned precisely inside the acetabular cup. The liner 

is an extra layer between the acetabular cup and the femoral head, acting as a protective cushion [4, 5]. It was 

successfully fabricated using FFF as the process has evolved from making prototypes to final product production. 

Optimizing the 3D printing process is necessary to ensure mass-produced items meet high standards pertaining to 

mechanical and quality aspects for enhanced performance. In recent years, considerable studies have been undertaken 

for optimizing numerous process variables, such as extruder temperature, raster angle, layer thickness, raster gap, 

raster width, contour width, and specimen orientation, to produce the best required mechanical properties possible. 

Achieving optimal process parameters in manufacturing often necessitates balancing multiple, sometimes conflicting, 

objectives. To address this challenge, researchers have adopted a diverse array of optimization techniques, including 

Taguchi-based Simple Additive Weighting (SAW), VIekriterijumsko KOmpromisno Rangiranje (VIKOR), 

Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), Electre technique, Grey Relational 

Analysis (GRA), and Particle Swarm Optimization (PSO). These methods have demonstrably yielded success in 

optimizing turning parameters for tool life and surface roughness [6], welding parameters for mechanical properties 

[7], friction stir welding parameters [8], and electrochemical machining process parameters for dimensional accuracy 

and material removal rate [9]. The selection of the most suitable optimization technique is paramount for ensuring 

the achievement of desired outcomes across a wide spectrum of manufacturing processes.  

 

The Analytic Hierarchy Process (AHP), developed in the 1970s, aids in complex decision-making by breaking down 

problems into hierarchical criteria and alternatives. Through pairwise comparisons, AHP quantifies both qualitative 

and quantitative factors, facilitating informed evaluations. Its versatility has led to widespread adoption across various 

fields. Rakhade et al. [10] used AHP and TOPSIS to select 3D printers, while Al Theeb et al. [11] applied AHP and 

combined AHP-TOPSIS to identify optimal waste-to-energy technology for Jordan. Ccatamayo-Barrios et al. [12] 

used AHP and TOPSIS for mining method selection in Peru's Gol Gohar mine. The Entropy Weight Method (EWM) 

has become a prominent model in decision-making, gaining attention in academia and practical applications. Its key 

advantage lies in reducing human bias compared to subjective methods, by objectively assigning weights to criteria 

based on information content in the decision matrix. This data-driven approach enhances objectivity and reliability, 

leading to widespread adoption across decision-making domains. Li et al. [13] applied EWM to evaluate coal mine 

safety, demonstrating its reliability with TOPSIS. Zhao et al. [14] integrated EWM and TOPSIS for sustainable island 

development, validated in a case study of Dachan Island. Zhang [15] used EWM and TOPSIS for power grid supplier 

evaluation, offering a dependable selection framework. Zhu et al. [16] explored EWM in water source site selection, 

highlighting potential distortions with Monte Carlo Simulation. 

 

Multi-Objective Optimization by Ratio Analysis (MOORA) is a decision-making technique that selects the optimal 

alternative from a group of possibilities based on a variety of factors. Each criterion is given a weight, and alternatives 

are ranked depending on their performance about these weights. MOORA seeks to discover the best solution that 

maximizes benefits while minimizing expenses across different objectives. Sahu et al. [17] compared the performance 

of AlSiMg electrodes manufactured using the SLS technique to that of conventional copper and brass electrodes. The 

MOORA method was used to optimize parameters for achieving a better surface finish in the EDM process and 

optimal parameters were found to be discharge current = 10A and pulse-on-time =100µs, and AlSiMg RP tool 

electrode. Paul and Das [18] explored the use of Fuzzy Analytic Hierarchy Process and MOORA for optimizing layer 

height, print speed, and orientation minimizing printing time and printing cost. It was found that layer thickness 

increases, print times are reduced and print speeds improve as well. Print time is significantly impacted by the 

construction orientation. Shihab et al. [19] applied MOORA method to identify the parameters voltage, torch angle, 

and current to reduce both the power and duration of the cladding process. Syed et al. [20] utilized the Grey-Taguchi 

methodology to enhance FDM parameters for optimizing tensile strength, flexural strength, and longitudinal 

shrinkage. They identify key parameters like layer thickness, raster angle, fill density, contours, printing temperature, 

and speed, optimizing them to minimize shrinkage while maximizing strengths. Yang et al. [21] focused on 

maximizing tensile strength and minimizing surface roughness and build time in FDM through central composite 

design, leveraging response surface methodology combined with genetic algorithms. Ganapathy et al. [22] predicted 

surface finish and delamination factor in FDM using machine learning models, emphasizing process parameters like 

printing temperature, layer height, raster angle, and fill pattern. Kónya [23] determined optimal layer thickness and 

component orientation for improved surface roughness and accuracy, favoring vertical orientation.  
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Fountas et al. [24] studied nozzle temperature and layer thickness effects on surface roughness in FDM, achieving 

minimum roughness with specific parameter settings. Mohanty et al. [25] investigated the impact of processing 

constraints on dimensional accuracy, employing Taguchi's methodology and various optimization techniques. 

Begovic et al. [26] optimized gear torque using Taguchi method, identifying optimal values for factors like wall 

thickness and infill, enhancing torque performance. Tura and Mamo [27] employed hybrid methodologies to improve 

flexural strength in FDM, emphasizing the influence of raster angle. Shirmohammadi et al. [28] optimized surface 

roughness using neural networks and particle swarm algorithms, achieving superior results with specific parameter 

settings. Hasdiansah et al. [29] reported surface roughness optimization in Thermoplastic Polyurethane (TPU) 3D 

printing via Taguchi approach, identifying optimal process parameters. Tuncel [30] analyzed the impact of layer 

height, infill density, and print speed on the compressive strength of ABS samples using Taguchi design and ANOVA. 

Chohan et al. [31] employed TOPSIS for the optimization of tensile strength, surface roughness, and weights of ABS 

samples made by FDM. In summary, the review reveals that while various combination optimization techniques have 

been employed for multi-parameter optimization, there is relatively less exploration in the integration of different 

weighting methods with an optimization technique. This research focuses on utilizing two techniques of weight 

evaluation in combination with TOPSIS and MOORA for optimizing dimensional accuracy and surface roughness 

of acetabular liners made by FFF process. 

 

2. Experimental Setup 

 

The acetabular liners were fabricated using two filament materials, polylactic acid (PLA) and high-impact                        

polystyrene (HIPS). Material selection was based on biocompatibility and desired degradation profile. PLA offers      

biocompatibility and biodegradability, ideal for applications requiring implant degradation. Conversely, HIPS                

possessed biocompatibility but lacked biodegradability. Both filaments (1.75mm diameter) were acquired from          

World of Lilliput (WOL) 3D. The proposed liner design employed a PLA core of thickness 8 mm encapsulated             

within HIPS layers of thickness 2mm for degradation protection. Additionally, the top layer utilized HIPS to shield 

PLA from bodily fluids. The important dimensions of the designed liner are shown in Fig. 1. A Divide by Zero            

Model 250 printer with dual nozzles facilitated the fabrication of acetabular liners which is presented in Fig. 2.               

Three printing parameters such as slice height, infill density, and print speed were used for investigations, with                

different levels provided in Table 1. Taguchi's L9 Orthogonal array served as the experimental design, enabling the 

exploration of various parameter combinations across multiple levels which is presented in Table 2. The subsequent 

section outlines the nine experiments conducted for sample fabrication. 

 

Table 1: Control parameters and their levels 

Parameter/Level Level 1 Level 2 Level 3 

Print Speed in mm/sec 30 40 50 

Layer Height in mm 0.1 0.2 0.3 

Infill Density in % 40 60 80 

 

Table 2: L9 inner orthogonal array 

Experiment No Print Speed Layer Height Infill density 

1 30 0.1 40 

2 30 0.2 60 

3 30 0.3 80 

4 40 0.1 60 

5 40 0.2 80 

6 40 0.3 40 

7 50 0.1 80 

8 50 0.2 40 

9 50 0.3 60 
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Fig. 1. Important dimensions of the designed acetabular liner 

 

 
 

Fig. 2. Used 3D printer 

 

The fabrication of designed dual materials acetabular liner in the 3D printer (Fig. 3) is shown. Support material is 

used during fabrication and these materials are removed once the process is completed. The dimensional accuracy 

and surface quality of the fabricated acetabular liners were evaluated. Dimensional measurements, including height 

(H), inner diameter (ID), and external diameter (ED), were performed using a coordinate measuring machine (CMM) 

(Zeiss Contura G2, MPE_E = (1.8 + L/300μm), MPE_P = 1.8μm). The CMM is equipped with a ZEISS VAST XT 

scanning probe and CALYPSO 4.8 measurement software. Surface profile roughness (Ra) was measured using a 

Mitutoyo SJ-410 surface roughness tester with a least count of 0.01μm. 

 

 
 

Fig. 3. Acetabular liners fabricated by FFF 
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3. Data Processing 

 

3.1 Analytic Hierarchy Process 

 

Thomas Saaty developed the Analytic Hierarchy Process (AHP) in 1980 as a method to decompose and analyze 

complex problems hierarchically [14]. The scale for the relative importance of the parameters is displayed in         

Table 3.  

 

Table 3: Scale of relative importance 

 

The matrix A is constructed based on pairwise comparisons, with each element Aij representing the comparison 

between the ith row and the jth column. The pairwise comparisons are illustrated in Table 4. The value 1 implies equal 

relevance, while the value 7 shows that the EH is seven times as essential as the SR. As a result, the SR is 1/7 times 

more essential than the EH 

 

Table 4: Pairwise Comparison of desired parameters 

 Surface Roughness SR Error in Height EH Error in ED EED Error in ID EID 

SR 1 7 5 3 

EH 1/7 1 1/3 1/5 

EED 1/5 3 1 1/3 

EID 1/3 5 3 1 

 

 𝐺𝑀𝑖 = {∏ 𝑎𝑖𝑗
𝑏

𝑗=1
}

1/𝑏

 
(1) 

  

 𝑊𝑗 =  
𝐺𝑀𝑖

∑ 𝐺𝑀𝑖
𝑁
𝑖=1

⁄  (2) 

 

Where aij is the element in ith row and jth column of matrix A. 

 

To ensure consistent comparison among the responses listed in Table 4, the following procedure is applied: 

Initially, the weighted sum of the responses and their corresponding eigenvalues (𝜆) for each row is calculated using 

Formula (3).  

 

 λi =  
∑ WjXij
b
j=1

Wi
⁄  

(3) 

 

Next, the maximum eigenvalue (λmax) using Equation (4) is determined.  

 

λmax =
∑ λi
a
i=1

a⁄                                         (4) 

 

As per Satty (1977), a Consistency Index (CI) is computed using Formula (5). 

 

CI =  
(λmax − n)

(n − 1)⁄                   (5) 

 

 

 

 Importance Meaning of attributes 

1 Equal importance Two attributes are equally important 

3 Moderate importance One attribute is moderately important over the other 

5 Strong importance One attribute is strongly important over the other 

7 Very importance One attribute is very important over the other 

9 Absolute importance One attribute is absolutely important over the other 

2,4,6,8 Compromise importance between 1,3,5 and 9 
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The resulting CI value is then compared with the relevant Random Consistency Index (RI) obtained from Table 5. 

 

Table 5: Random Consistency Index (RI) 

N 3 4 5 6 7 8 9 10 

RI 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 

 

Finally, the Consistency Ratio (CR) is calculated using the equation (6) 

   

CR= CI RI⁄                                                                     (6) 

 

If the computed CR value falls below 10% (0.1), indicating a consistent and acceptable pairwise comparison matrix 

(A), the results are considered reliable. However, when the CR value exceeds 10%, adjustments to the pairwise 

comparison values are necessary to ensure consistency and reliability. 

 

3.2 Entropy  

 

The first step is the standardization of measured values. The standardized value of the measure in the i th row and j 

th column is denoted by Pij and is calculated as: 

 

Pij =  
xij
∑ xij
n
j=1

⁄                                                 (7) 

 

In the Entropy method, the entropy value Eij is defined by  

 

𝐸𝑖 = − 
∑ 𝑃𝑖𝑗 ∗  log𝑛 𝑃𝑖𝑗
𝑛
𝑗=1

log𝑛 𝑛
⁄                    (8) 

 

Weights are calculated based on the entropy values 

 

𝑊𝑖= 
(1 − 𝐸𝑖)

∑ (1 − 𝐸𝑖)
𝑚
𝑖=1

⁄                            (9) 

 

3.3 TOPSIS Optimization 

 

In the TOPSIS technique, each criterion progresses in either a continuously increasing or decreasing order. As a 

result, it provides a solution that is not only closest to the theoretically best but also farthest from the theoretically 

worst option [10]. 

 

Step 1: Compute the normalized performance ratings.  

 

In this process, every performance rating 𝑥𝑖𝑗 within 𝑋 is divided by its respective norm. This yields the normalized 

ratings 𝑦𝑖𝑗 (where 𝑖 = 1,2, …𝐼; 𝑗 = 1,2,…𝐽) which can then be computed using the below Eq.(10). 

 

yij= 
xij

√∑ xij
2I

i=1
⁄

                 (10) 

 

This conversion method makes it easier to compare attributes by using dimensionless units. However, because the 

scale lengths are not identical, it makes direct comparisons difficult. The normalised performance ratings 𝑦𝑖𝑗 can be 

given as a matrix 𝑌 as shown in Eq. (11). 

 

Y = [

y11 y12 … y1J
y21 y22 … y2J
… … … …
yI1 yI2 … yIJ

]                                                   (11) 
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Step 2: The weights obtained from AHP or Entropy methods are combined with the ratings.  

 

The weighted and normalised performance rating 𝑣(𝑖 =1,2,…, 𝐼;𝑗=1,2,…,𝐽) is calculated as shown in Eq. (12). 

These weighted ratings are combined to form the weighted-normalized decision matrix 𝑉 in Eq. (13). 

 

υij = Wj ∗ yij; (i=1,2,…,I; j=1,2,…..J)                 (12) 

 

V = [

υ11 υ12 … υ1J
υ21 υ22 … υ2J
… … … …
υI1 υI2 … υIJ

]                   (13) 

 

Step 3: Determine the positive and negative ideal solutions.  

 
𝐴∗ and 𝐴−are denoted as the positive and negative ideal solution sets respectively which can be detected from Eq. (13) 

as 

 

A∗ = [υ1
∗ , υ2

∗ , … . . , υJ
∗]                                 (14) 

 

A− = [υ1
−, υ2

−, … . . , υJ
−]                    (15) 

 

where, 

vj
∗ = {

maxvij, if j is a benefit attribute

maxvij, if j is a cost attribute
} 

 

vj
− = {

min vij, if j is a benefit attribute

min vij, if j is a cost attribute
} 

 

Step 4: Derive the separation values 

 

The separation measure is the distance of each alternative rating from both the positive and negative ideal solutions 

which is obtained by applying the Euclidean distance theory. Eqs. (16) & (17) show the process for positive and 

negative separation calculations respectively. 

 

𝑆𝑖
+ = √∑ (𝜐𝑖𝑗 − 𝜐𝑗)

2𝐽
𝑗=1                     (16) 

 

𝑆𝑖
− = √∑ (𝜐𝑖𝑗 − 𝜐𝑗

−)2𝐽
𝑗=1                                  (17) 

 

Step 5: Calculate the overall preference score 

 

The overall preference score 𝜐𝑖 for each alternative 𝐴𝑖 is obtained as shown in Eq. (18). 

 

𝜐𝑖 =
𝑆𝑖
−

𝑆𝑖
− + 𝑆𝑖

+ ⁄                     (18) 

 

Alternatives are ranked based on higher 𝜐𝑖 values. 
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3.4 MOORA Optimization 

 

The methodology of the MOORA method is outlined as follows: 

 

1. Compute the normalized value. 

 

𝑋𝑖𝑗 = 
𝑋𝑖𝑗

√∑ 𝑋𝑖𝑗
2𝑚

𝑖=1

⁄
                      (19) 

 

Where Xij = observed responses of the ith number of experiments in the jth response, m is the number of experiments 

and n is the number of responses. 

  

X*
ij = normalized value of the ith number of experiments in the jth response. It is a dimensionless number, which lies 

between 0 and 1. 

 

2. Determine the normalized assessment value. 

 

𝑦𝑖 = ∑ 𝑊𝑗
𝑔
𝑗=1 𝑋𝑖𝑗

∗ −∑ 𝑊𝑗
𝑛
𝑗=𝑔+1 𝑋𝑖𝑗

∗                   (20) 

 

Where    g  = normalized number of responses, 

n-g = minimized number of responses, 

Wj  = weight of the jth response. 

 

In maximization problems, the normalized value is added, while in minimization problems, it is subtracted. 

 

4. Results and Discussion 
 

The acetabular liners are manufactured using FFF and the output responses namely surface roughness, error in height, 

error in external diameter, and Error in internal diameter are found and tabulated as shown in Table 6. 

  

Table 6: Response values 

Expt. No SR EH EED EID 

1 11.78 0.05 0.1 0.15 

2 11.4 0.13 0.17 0.35 

3 12.69 0.08 0.19 0.81 

4 11.7 0.05 0.32 1.82 

5 12.38 0.08 0.32 0.29 

6 11.72 0.37 0.27 0.36 

7 10.88 0.15 0.14 1.87 

8 11.89 0.22 0.25 0.32 

9 11.92 0.17 0.25 0.14 

 

The research is done in four stages: 

 First, the Calculation of Weights using AHP, and an alternative method for AHP, Entropy  

 Using the weights obtained from AHP and Entropy, TOPSIS approach is applied for optimization. 

 The Third stage comprises finding optimal process parameters by adopting MOORA method,  

 Fourthly, a Comparison of the methods is performed. 

 

4.1 Determination of Weights 

 

4.1.1 Weight Computation using AHP 

 

The geometrical mean, weights and their corresponding eigen values are calculated using the equations 1-4 and 

displayed in Table 7. 
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Table 7: Weights and consistency index 

Responses SR EH EED EID GM W λ 

SR 1.00 7 5 3 3.20 0.56 4.12 

EH 0.14 1 0.33 0.20 0.31 0.06 4.13 

EED 0.20 3 1 0.33 0.67 0.12 4.10 

EID 0.33 5 3 1 1.49 0.26 4.10 

      𝜆𝑚𝑎𝑥 = 𝑀𝑒𝑎𝑛 𝑜𝑓 𝜆 4.117 

Consistency Index = 0.03898 

Consistency Ratio = 0.04331 

 

The consistency index and Consistency ratio are calculated using the equations 5 & 6 and are shown in Table 7 to 

check the consistency of the pairwise comparison. With a CR of less than 0.1, the weightage and, consequently the 

pairwise comparisons are considered reliable and acceptable. 

 

4.1.2 Weight Computation using ENTROPY Method 

 

From the responses in Table 6, the standardised values are calculated using equation 7. The corresponding entropy 

value and the weights are determined using the equation 8 and 9 and presented in Table 8. 

 

Table 8: Entropy and weights 

Expt. No 
Standardised Value 

 SR  EH  EED  EID 

1 0.111 0.025 0.050 0.025 

2 0.107 0.031 0.085 0.059 

3 0.119 0.016 0.095 0.144 

4 0.110 0.008 0.159 0.379 

5 0.116 0.010 0.159 0.097 

6 0.110 0.042 0.134 0.012 

7 0.102 0.016 0.070 0.062 

8 0.112 0.023 0.124 0.011 

9 0.112 0.018 0.124 0.005 

Ei 4.826 1.561 4.702 3.147 

Wi 0.374 0.055 0.362 0.210 

 

4.2 TOPSIS Optimization 

 

4.2.1 AHP - TOPSIS 

 

For performing optimization, the response values have to be normalised, therefore the outcomes are normalised using 

the Eq. (10) and expressed as matrix N according to equation (11). 

 

N = 

(

 
 
 
 
 
 

0.332 0.096 0.142 0.053
0.321 0.250 0.241 0.124
0.358 0.154 0.269 0.287
0.330 0.096 0.454 0.646
0.349 0.154 0.454 0.103
0.330 0.710 0.383 0.128
0.307 0.288 0.199 0.663
0.335 0.422 0.355 0.114
0.336 0.326 0.355 0.050)

 
 
 
 
 
 

 

 

The rank of the experiments is given based on the RCR values. The RCR values in turn are dependent on the ideal 

solutions computed. The normalized performance matrix and rank computations were used to evaluate the 

effectiveness of different options in a decision-making process. Each alternative was evaluated using criteria such as 

SR, EH, EED, and EID, and the accompanying scores indicated its performance. The weighted normalized values, 
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S+ and S- values were then calculated using the Eqs. (12) – (18) to determine how close each alternative is to the ideal 

and negative ideal solutions, respectively and presented in Table 9 along with the ranking. 

 

4.2.2 Entropy TOPSIS 

 

The normalised performance matrix N of the outcomes already determined is used for the weighted performance 

matrix and rank calculations. The weighted performance matrix is shown in Table 10, where the performance of each 

option is multiplied by its assigned weight. Experiment 1 is the best option, closely followed by experiment 2 based 

on the computed S+ and S- values. Regarding appropriateness, experiment 9 and 8 stands in third and fourth rank 

respectively. 

 

4.3 MOORA Optimization 

 

4.3.1 MOORA with AHP 

 

First, the weighted matrix is calculated using weights from AHP and the normalized values N. The second step is to 

find the normalized assessment values utilizing equation 20 which is presented in Table 11. 

 

Table 9: Calculations of Weighted performance, Rank by AHP -TOPSIS 

SR EH EED EID S+ S- RCR Rank 

0.187 0.005 0.017 0.014 0.016 0.169 0.914 1 

0.181 0.014 0.028 0.033 0.023 0.148 0.863 2 

0.202 0.008 0.032 0.076 0.069 0.106 0.604 7 

0.186 0.005 0.054 0.170 0.160 0.038 0.190 9 

0.197 0.008 0.054 0.027 0.041 0.151 0.786 5 

0.186 0.039 0.045 0.034 0.047 0.142 0.751 6 

0.173 0.016 0.023 0.174 0.162 0.048 0.228 8 

0.189 0.023 0.042 0.030 0.035 0.147 0.809 4 

0.189 0.018 0.042 0.013 0.028 0.164 0.855 3 

 

Table 10: Weighted performance matrix, Rank Calculations by Entropy - TOPSIS 

SR EH EED EID S+ S- RCR RANK 

0.124 0.005 0.051 0.011 0.023 0.174 0.885 1 

0.120 0.014 0.087 0.026 0.024 0.140 0.853 2 

0.134 0.008 0.098 0.060 0.059 0.108 0.645 5 

0.123 0.005 0.164 0.136 0.156 0.036 0.186 9 

0.130 0.008 0.164 0.022 0.094 0.122 0.563 7 

0.124 0.039 0.139 0.027 0.077 0.116 0.600 6 

0.115 0.016 0.072 0.139 0.129 0.097 0.429 8 

0.125 0.023 0.128 0.024 0.062 0.122 0.665 4 

0.126 0.018 0.128 0.010 0.059 0.136 0.697 3 

 

Table 11: Calculated Weights and Ranking by AHP – MOORA 

 

Weighted Standard Decision Matrix 
Contribution Index RANK 

SR EH EED EID 

0.186 0.006 0.017 0.014 -0.223 1 

0.180 0.015 0.029 0.032 -0.256 2 

0.200 0.009 0.032 0.075 -0.317 7 

0.185 0.006 0.054 0.168 -0.413 9 

0.195 0.009 0.054 0.027 -0.286 5 

0.185 0.043 0.046 0.033 -0.307 6 

0.172 0.017 0.024 0.172 -0.385 8 

0.188 0.025 0.043 0.030 -0.285 4 

0.188 0.020 0.043 0.013 -0.263 3 
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4.3.2 MOORA with Entropy 

 

Similarly, the normalized assessment values are calculated by incorporating weights from entropy and are shown in 

Table 12. In MOORA with AHP, experiment 1 has the largest weighted score and hence the highest contribution 

Index, making it the top-ranked option. Experiment 2 is close behind in second place. Similarly, in MOORA with 

Entropy, experiment 1 maintains its lead with the greatest Contribution Index and experiment 2 again takes second 

place. 

 

Table 12: Calculated Weights and Ranking by Entropy – MOORA 

Weighted Standard Decision Matrix 
Contribution Index RANK 

SR EH EED EID 

0.124 0.005 0.051 0.011 -0.192 1 

0.120 0.014 0.087 0.026 -0.247 2 

0.134 0.008 0.098 0.060 -0.300 4 

0.123 0.005 0.164 0.136 -0.428 9 

0.130 0.008 0.164 0.022 -0.325 6 

0.124 0.039 0.139 0.027 -0.328 7 

0.115 0.016 0.072 0.139 -0.342 8 

0.125 0.023 0.128 0.024 -0.301 5 

0.126 0.018 0.128 0.010 -0.282 3 

 

4.4 Comparison of TOPSIS and MOORA 

 

Table 13 shows the ranks derived from four distinct approaches: MOORA with AHP, MOORA with Entropy, AHP 

TOPSIS, and Entropy TOPSIS, for each experiment. Experiments 1,2,4,7 and 9 have consistent rankings across all 

four methodologies. Experiments 6 and 8 show uniformity with all three methods except for MOORA with Entropy. 

It is observed from the research that the AHP when used with both the optimization techniques yields similar results, 

whereas the entropy weight method shows little difference in the middle rankings. The optimal process parameters 

from the different optimization approaches affecting the surface roughness, height, external diameter, and internal 

diameter of the acetabular liner are found to be a print speed of 30 mm/sec, layer height of 0.1, and infill density of 

40%. This is analogous to the results obtained by Hasdiansah et al. [29] incorporating the Taguchi method, and 

Morvayová et al. [32] using Grey Relational Analysis in combination with Taguchi. 

 

Table 13: Comparison of Ranks obtained from four approaches 

Experiment No. MOORA AHP MOORA ENTROPY AHP TOPSIS ENTROPY TOPSIS 

1 1 1 1 1 

2 2 2 2 2 

3 7 4 7 5 

4 9 9 9 9 

5 5 6 5 7 

6 6 7 6 6 

7 8 8 8 8 

8 4 5 4 4 

9 3 3 3 3 

 

The reason for the best result may be attributed to the following: (i) At lower layer height the materials flow smoothly 

and help to reduce the staircase effect; (ii) Since the print speed is less, the layers have enough time to cool and when 

the next layer is added it gels with the printed layer allowing better dimensional accuracy; (iii) The effect of 

compressive force of the newly formed layer on the already deposited layer is less for the infill density of 40% which 

prevents the flow of material inside the inner diameter of the liner. This has resulted in better dimensional accuracy. 

Experiment 4 exhibits the lowest rank due to the higher print speed and infill density. At high print speed, before the 

printed layer cools completely the next layer is added. Also at high infill density the material in the top layer 

compresses the deposited layer and therefore it starts flowing from the printed area on either side. The support 

material prevents flow outside and hence the material flows towards the inner diameter. This has resulted in poor 

dimensional accuracy of the inner diameter. The samples exhibiting first rank and last rank are shown the Fig. 4(a) 

and (b).  



/ Volume 13(1), 2025 J. Res. Appl. Mech. Eng. 12 

    
        (a)                                                                                  (b) 

 

Fig. 4. Liner fabricated with (a) print speed 30 mm/sec, Layer height 0.1 mm, and Infill density 40%;(b) print speed 

40 mm/sec, Layer height 0.1 mm, and Infill density 60% 

 

5. Conclusion 
 

The FFF process was used to fabricate acetabular liners and tested for surface roughness and dimensional accuracy. 

The AHP and Entropy were used for calculating the weights of the relative importance of the factors. Further, TOPSIS 

and MOORA optimization techniques were used to identify the optimal parameters. The following conclusions were 

drawn: 

 AHP, when combined with both MOORA and TOPSIS, produces similar results. 

 The Entropy method shows slight variations in middle rankings. 

 Optimal process parameters yield the lower surface roughness, reduced error in height, external diameter, and 

internal diameter of the acetabular liner are at print speed of 30 mm/sec; layer height of 0.1; and fill density 

of 40% within the experimented process parameters. 

 The process parameters print speed 40 mm/sec, layer height 0.1 mm, and infill density 60% yielded the lowest 

rank with both MOORA and TOPSIS. 

 Further consideration of different machines, other process parameters and external conditions may yield a 

different optimal solution. 
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