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Abstract 

 

Floating Nuclear Power Plant (FNPP) is used to potentially fulfil the energy needs of a remote region. In this 

context, a new FNPP reactor named Gama-Float was designed to tackle different issues. The first stage of the 

design process was producing a fuel assembly design without burnable poison. However, the design was inadequate 

at beginning-of-cycle (BOC) since multiplication factor (k∞) was relatively high and required compensation. Therefore, 

this research aimed to develop an optimization process using the Method of Characteristics for neutronic calculations 

in achieving a better design based on a genetic algorithm. The results showed that optimization must satisfy two 

objectives, namely lowering the multiplication factor and maintaining the fuel cycle length. A subsequent analysis 

was carried out to select results from the optimization. In this context, the assemblies' initial multiplication factor, 

fuel cycle length, and power peaking factor (PPF) were analyzed and the final design was selected based on the 

analysis. The initial multiplication factor and fuel cycle were reduced to 1.0054 and 3644.41 days, while the radial 

PPF increased to 1.2789 at BOC in an acceptable range. These results highlight the effectiveness of the 

optimization process in improving neutronic performance and fuel cycle efficiency for the Gama-Float reactor. 
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1. Introduction  

 

Indonesia as an archipelagic country is subjected to different challenges in fulfilling energy requirements. 

Generally, this issue is manifested in remote regions where the demand is small and dispersed, with over 300 

villages lacking access to electricity [1]. The development of the region posed a significant challenge since the 

current energy supply relies on precarious fossil fuels such as coal. In this context, the use of Floating Nuclear 

Power Plant (FNPP) is an option to address the issues. The power plant has several advantages in solving issues, 

where high mobility and energy density allow the reactor to be deployed in unreachable regions without constant 

fuel supply. 

Currently, one of the FNPPs in operation is KLT-40s and this reactor was designed by JSC "Afrikantov OKB 

Mechanical Engineering" [2]. KLT-40s is a pressurized Water Reactor (PWR) with 150 MWt thermal power and 

water coolant. A suitable design is needed to tackle the energy issues in remote regions since the power output of 

KLT-40s reactor is unsuitable for regions with less demand. 

FNPP research team from Universitas Gadjah Mada developed a reactor named Gama-Float to tackle the issue 

of fulfilling energy requirements [3]. Gama-Float is a Pressurized Water Reactor with rectangular fuel assemblies. 

The first stage of development to design a fuel assembly with an extended fuel cycle has been conducted. The 

design is inadequate as the multiplication factor (k∞) at beginning of cycle (BOC) is relatively high. Meanwhile, 

large excess reactivity requires a large amount of neutron absorbers (control rods), leading to increased power 

generation in the region with fewer neutron absorbers, resulting in non-uniform power generation [4]. An increase 

in power during transient results in a pellet-cladding interaction, compromising the integrity of the fuel pin [5,6]. 

Other methods to compensate for the excess reactivity include the usage of soluble boron in the coolant. 

However, this practice does not suit a high multiplication factor because a coolant with a high concentration of 
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soluble boron can form positive reactivity feedback during a loss of coolant accident (LOCA) [7]. Lowering k∞ 

value is also achieved by introducing neutron absorber material in the fuel assembly configuration [8,9]. 

Burnable poison (BP) as a neutron absorber was selected over soluble boron to simplify the reactor design. In 

this context, the elimination of soluble boron removes boron-induced reactivity accidents and gains a negative 

moderator reactivity coefficient [10]. The removal also creates several advantages by removing the corrosive 

effects of soluble boron [11]. Meanwhile, the absorber selected must conserve the fuel cycle length and lower the 

k∞ at BOC. Gadolinium oxide (Gd2O3) form is burnable poison and the isotopic composition in gadolinium (Gd) 

improves the evolution of the fuel assembly's multiplication factor [12]. Compared to other BP (such as boron 

(B), erbium (Er), europium (Eu), samarium (Sm), dysprosium (Dy)), Gd has an extremely fast depletion rate and 

the residual reactivity is very small. Samarium also depletes very rapidly but has a significant burnup penalty 

[13,14]. The residual reactivity of the boron is negligible and depletes slowly. For Er, Eu, and Dy, the depletion 

is relatively slow with a high residual reactivity [13]. 157Gd has high absorption cross sections, lowering the 

parasitic absorption due to enrichment of 70%. The isotope was shown to perform better than natural Gd [15,16]. 

The calculation of BP in fuel assembly is carried out by implementing a deterministic or stochastic method to an 

optimization method. Therefore, this research aims to determine the optimal ratio and configuration of Gd for 

Gama-Float fuel assembly. Burnable poison design should conserve the fuel cycle length with no parasitic 

absorption toward end-of-cycle (EOC). In addition, the design needs to lower k∞ at BOC without compromising 

the result in the cycle. 

 

2. Materials and methods 

 

The decision regarding the optimization algorithm and burnable poison selection is based on other results 

[9,13,14,16-18]. This decision includes using 70% enriched Gd and a genetic algorithm optimization method with 

the weight factor as the fitness function. The placement of Gd in the fuel assembly follows two arrangements, 

namely integral fuel burnable absorber (IFBA), as shown in Figure 1(A) and homogeneous burnable poison, as 

shown in Figure 1(B). For the IFBA arrangement, burnable poison is placed as an outer ring of Gd2O3 on the fuel 

pellet inside the cladding. Meanwhile, the other arrangement, the homogeneous burnable poison, and the 

placement of Gd2O3 in the fuel form a homogeneous mix. Each arrangement uses a 70% enriched Gd2O3, with the 

isotopic composition presented in Table 1.  

 

 
 

Figure 1 Model for burnable poison type, in which A is the integral fuel burnable absorber and B is the 

homogeneous burnable poison. 
 

Table 1 The isotopic composition of 70% enriched Gd [16]. 
Isotope Percentage (%) 

Gadolinium-152 0.071 
Gadolinium-154 0.747 

Gadolinium-155 5.160 

Gadolinium-156 7.219 
Gadolinium-157 70.000 

Gadolinium-158 8.883 

Gadolinium-160 7.920 

 

The modeling process is performed with Polaris, which is a lattice physics module for light water reactor fuel 

in SCALE 6.2. In this context, Embedded Self-Shielding Method (ESSM) is used for multigroup cross-section 

processing through Bondarenko interpolation. For the keff calculation, a new Method of Characteristics transport 

solver developed by the Exnihilo computational package is used [19]. The model is a 2-D lattice with a quarter 

symmetry in the southeast region of the fuel assembly. Moreover, the basic configuration follows the previous 
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research that FNPP team has conducted and presented in Table 2. The assembly configurations will remain the 

same except for the fuel radius of IFBA poison and material for homogeneous burnable poison pins. Burnup 

calculation is performed with adjusted timesteps and the selection should be carried out before the optimization. 

Subsequently, a set of different timesteps is evaluated, and an optimal set is selected. The optimal set of timestep 

include 0, 1, 2, 4, 8, 30, 120, 240, 360, 480, 960, 1400, 2200, 3000, and 3700 days. 

 

Table 2 The basic configuration of the fuel assembly [3]. 

Pin Fuel material Cladding material P/D 
Fuel radius 
(cm) 

Cladding thickness 
(cm) 

Total diameter 
(cm) 

Fuel enrichment 
(%) 

10×10 U3Si2 FeCrAl 1.34 0.4033 0.030 0.8846 7.70 

11×11 U3Si2 FeCrAl 1.60 0.3707 0.030 0.8194 6.79 
12×12 UN FeCrAl 1.81 0.3621 0.030 0.8022 7.51 

13×13 UN SiC 1.56 0.4100 0.057 0.9520 7.17 

14×14 U3Si2 SiC 1.41 0.5197 0.057 1.1714 6.39 
15×15 U3Si2 SiC 1.72 0.4642 0.057 1.0604 6.53 

16×16 U3Si2 FeCrAl 1.62 0.4543 0.030 0.9866 6.67 

17×17 U3Si2 FeCrAl 1.46 0.4233 0.030 0.9246 6.90 

 

Burnup is essential for calculating the fuel cycle length and multiplication factor. The calculation is performed 

with interpolation based on multiplication factor on the multiple points. The model is performed with the method 

of characteristics in solving the Boltzmann transport equation while calculating the Bateman equation using the 

Chebyshev rational approximation method (CRAM) simultaneously. Meanwhile, Method of Characteristics has 

been successfully applied and implemented in many reactor analysis codes for solving partial differential 

equations. This is achieved by implementing an algorithm for ray tracing along each characteristic line to compute 

solutions [20, 21]. CRAM uses a rational function to approximate the exponential matrix solution [22] and the 

Bateman equation needs to be written in terms of coefficients in a matrix [23].  

Based on the calculation from burnup, two parameters are derived for the optimization, namely fuel cycle 

length and change in multiplication factor at BOC. These two parameters are used to construct the fitness for each 

fuel assembly configuration. Considering the dual objectives within the optimization problem, a function that 

amalgamates the two objectives into a singular fitness value is important. The simplest method includes 

formulating a calculation where each objective is assigned a weight and aggregated to generate a cumulative sum 

[24]. However, an appropriate weight is needed to ensure the conduction of the optimization. In this context, 

Equation (1) presented a function to derive the fitness. The weight fractions are skewed in favor of the initial 

weight and the fractions are distributed as 0.55-0.75 for the first and 0.45-0.25 for the second. Following 

normalization, the weight factors (w1 and w2) adopt values in the range of 0.55-0.75 and 4500-2500, respectively. 

To determine the optimal weight factor, five variations are selected for the analysis as presented in Table 3. For 

w1, and w2 the corresponding objective is the fuel cycle length and change in the initial multiplication factor, 

respectively. The difference in the order of magnitude requires a different method of formulating the weight. In 

addition, the weights are supposed to be fractions with a cumulative sum. The differences in the objective's 

numerical value (103 and 10-1) required adjusting the weights. Therefore, the second weight is normalized by 

multiplying with a multiplication factor of 104. The normalization gave the fitness components the same numerical 

value of 103, which balances the formulation of the function. Each variation is used to formulate the fitness 

function for the genetic algorithm and a sample of 20 individuals is taken from the result. An analysis is performed 

to comprehend the relationship between fitness and objectives after the appropriate weight is found. Meanwhile, 

the optimization is performed using the genetic algorithm according to the flowchart shown in Figure 2. 

 

fitness = (w1×fuel cycle length)+(w2×∆k∞)       (1) 

 

Table 3 Weight factor variation. 

Variation 
Weight Fraction 

w1 w2 

A                                      0.55 4500 
B                                      0.6 4000 

C                                      0.65 3500 

D                                      0.7 3000 
E                                      0.75 2500 
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Figure 2 The flowchart of the Genetic Algorithm. 

 

Several input parameters are needed to dictate the optimization and determine the performance of the 

algorithm, as listed in Table 4. The number of individuals within the population will affect the initial search space 

with a smaller number, the search would be limited, and the solution could converge prematurely. A total of 80 

individuals are selected as the population to increase the probability of global optima. A value will be assigned to 

each individual that represents how robust that individual is and this value is called fitness. In addition, a selection 

is carried out as the component that guides the algorithm to the optimal solution by preferring individuals with 

high fitness [25]. The mutation rate will also affect the search or the exploration with a higher rate, the algorithm 

will search for more solutions within the search space. The mutation prevents the algorithm from falling within 

the local maximum and converging prematurely [26]. Meanwhile, limitations result from the imbalanced nature 

of exploration and exploitation. The implementation of elitism through iteration balances the exploration and 

exploitation in the algorithm to solve the problem. 

  

 End 
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Table 4 Input parameters in the algorithm. 
Parameter Value Unit 

Population 80 individual 

Iteration 2 generation 

Mutation rate 50% - 

Convergence limit 0.00001 - 

 

The mechanism of elitism is not found in the conventional genetic algorithm. This is based on the use of 

iteration and a database where the parent will be selected as the fittest individuals across generations. In addition, 

there is no chance for the generation to show an inferior trait. 

After obtaining the result from the optimization, further analysis needs to be performed. The analysis examines 

the assemblies' initial multiplication factor, fuel cycle length, and power peaking factor (PPF). The examination 

of the parameters occurs at BOC, k∞ peak, middle-of-cycle (MOC), and EOC. The assembly with the lowest 

excess reactivity is given a higher rank for the initial multiplication factor. For fuel cycle length, the longest 

receives a higher rank and the assembly with the lower PPF value is selected in PPF analysis. For each of the 

solutions, the analysis provides a specific score to represent the rank. Based on the score, the highest-ranked fuel 

assembly is the best solution. Comparative research on the effect of burnable poison on the basic fuel assembly 

configuration from the research by FNPP team is performed. This is based on the same research parameters, initial 

multiplication factor, fuel cycle length, and PPF. 

 

3. Results and discussion 

 

3.1 Weight factor selection 

 

The selection of the weight is based on the behavior of the fitness concerning the objectives. The value needs 

to satisfy the priority with fitness as the sole factor in algorithm selection. The range between the first and second 

weights is needed to accommodate for the difference in the value of the objective. In addition, the relationship is 

presented in Figures 3 to 7 for all variations. For the first objective, a lower weight value led to oscillating fitness. 

Meanwhile, for the second objective, a lower weight value did not affect fitness. In this context, the second 

objective does not behave differently since the variation of the weight seems to be viable. For the first objective, 

the difference in weight value affects the fitness significantly and an increase reduces the oscillation of the fitness, 

with the slightest appearing in variation E. Considering the desired fitness behavior for linearity, the optimal 

choice for formulating the function in the optimization process is to assign the weight to variation E. 

 

 
  

Figure 3 Relation between objectives and fitness of the variation A. 
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Figure 4 Relation between objectives and fitness of the variation B. 

  
 

Figure 5 Relation between objectives and fitness of the variation C. 

 

 
  

Figure 6 Relation between objectives and fitness of the variation D. 
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Figure 7 Relation between objectives and fitness of the variation E. 

 

3.2 Optimization and comparison from the basic design 

 

Optimization was carried out simultaneously for eight pin sizes, from 10×10 to 17×17, using Genetic 

Algorithm. The process followed the algorithm, with the calculation performed by a solver (Polaris). The 

refinement of the optimization was performed in a cycle consisting of two generations. In each cycle, a process 

of exploration and exploitation was considered. Elitism is used for continuous exploitation throughout generations 

while the exploration is only carried out in promising space. The number of cycles needed to determine the optimal 

solution varies in each pin size. The number of search variables will affect the search and the process can be 

completed in a few generations for search variables. For more extensive search variables, the search can take up 

to tens of generations. The criterion for ending the search is based on convergence. In addition, when the difference 

in fitness within a generation is no greater than 10-5, the search is stopped, and the optimal solution is obtained. 

The result of the optimization process performed for all the pin sizes is shown in Table 5. The result varies for 

each pin size, with the poison ratio around 0.13% - 2.78%, while seven out of eight poison types resulted in IFBA. 

The type and placement of the poison pin appear to be influenced by the selection process, hence, the objectives 

are fulfilled with the configurations. 

 

Table 5 Result from the optimization for each fuel assembly configuration. 
Pin Poison ratio (%) Poison type Poison placement 

10×10 0.66 IFBA A 0.013 mm layer of coating 

11×11 0.3 IFBA A 0.006 mm layer of coating 

12×12 2.78 IFBA A 0.051 mm layer of coating 
13×13 0.14 IFBA A 0.003 mm layer of coating 

14×14 0.35 IFBA A 0.009 mm layer of coating 

15×15 0.13 Homogenous burnable poison Mixed within the fuel pellet 
16×16 0.24 IFBA A 0.005 mm layer of coating 

17×17 0.29 IFBA A 0.006 mm layer of coating 
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Figure 8 Poison configuration of the fuel assembly configuration, the map is a quarter southeast symmetry, in 

which (A) 10×10 pin configuration, (B) 11×11 pin configuration, (C) 12×12 pin configuration, (D) 13×13 pin 

configuration, (E) 14×14 pin configuration, (F) 15×15 pin configuration, (G) 16×16 pin configuration, and (H) 

17×17 pin configuration. 
 

The result from the optimization process will give eight candidates with the poison configuration shown in 

Figures 8A, 8B, 8C, 8D, 8E, 8F, 8G and 8H, respectively. These individuals are selected based on the initial 

multiplication factor, fuel cycle length, and PPF, as presented in Table 6. The result shows that the difference in 

the initial multiplication factor does not vary greatly, ranging from 1.0037 to 1.0141. Meanwhile, the difference 

for fuel cycle length and PPF range from 3580.44 to 3644.41 and 1.2789 to 1.4522, respectively. 

The parameter affects the others substantially reducing the initial multiplication factor by introducing a 

burnable absorber material will affect the local power generation by dropping the power on the pin with poison. 

As the total power is kept constant, it increases the neutron flux and the corresponding power generation in other 

spots, increasing the power peaking factor. Burnable absorber presence on EOC will shorten the cycle due to 

parasitic absorption, thereby shortening the length. Factors including each assembly's basic configuration (i.e., 

fuel enrichment, fuel radius, P/D) influence the optimization result. The fuel cycle length is primarily impacted 

by the inherent capacity of the basic configuration. Therefore, the quantity of fuel remains constant, leading to a 

marginal increase in the cycle length. The initial multiplication factor and PPF remain unaffected since the two 

parameters are controlled by the presence of burnable poison. 

 

Table 6 Result from analysis of each fuel assembly's parameters. 
Fuel 

assembly 
(Figure 8) 

Initial k∞ Fuel cycle 

length 
(day) 

Time to 

reach k∞ 
peak 

(day) 

BOC PPF k∞ peak 

PPF 

MOC PPF EOC PPF Maximum 

PPF 

A 1.0054 3644.41 450 1.2789 1.0114 1.0037 1.0037 1.2789 

B 1.0082 3626.23 240 1.4064 1.0048 1.0019 1.0018 1.4064 
C 1.0141 3637.43 720 1.4421 1.0104 1.0094 1.0094 1.4421 

D 1.0037 3623.23 180 1.3431 1.0039 1.0014 1.0013 1.3431 

E 1.0078 3638.14 240 1.3263 1.0081 1.0018 1.0018 1.3263 
F 1.0066 3603.77 180 1.4522 1.0030 1.0022 1.0016 1.4522 

G 1.0071 3617.22 180 1.4112 1.0083 1.0024 1.0024 1.4112 

H 1.0062 3580.44 240 1.3500 1.0063 1.0018 1.0017 1.3500 
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Figure 9 The pin power distribution of 10×10 configuration with poison, in which (A) at BOC, (B) at k∞ peak, 

(C) at MOC, and (D) at EOC. 

 

All configurations with poison follow the same behavior, where the highest PPF is observed at BOC and 

decreases substantially towards EOC, as shown in Figures 9A, 9B, 9C and 9D. The presence of burnable poison 

significantly influences the behavior and at BOC, the concentration is highest, resulting in increased PPF. Towards 

k∞ peak, PPF decreased substantially, marking a significant reduction in burnable poison. In MOC and EOC, PPF 

is lower, with some configurations showing the same result. There is a subtle difference in PPF value of others 

between MOC and EOC. The discernible variations during the phase of the fuel cycle in some configurations can 

be attributed to the phenomenon of parasitic absorption. This observation serves as evidence that burnable poison 

is still present in the fuel. 

 

 
 

Figure 10 Burnup of each fuel assembly configuration.  

 

  

 (A) (B) 

(C) (D) 

Effective Full Power Day 
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Table 7 Comparison of the basic and new design parameters. 
Pin Initial multiplication factor Fuel cycle length (day) Maximum PPF 

10×10 
Basic 1.4107 3645.82 1.0005 

New 1.0054 3644.41 1.2789 

11×11 
Basic 1.4898 3623.28 1.0009 
New 1.0082 3626.23 1.4064 

12×12 
Basic 1.4694 3619.91 1.0005 

New 1.0141 3637.43 1.4421 

13×13 
Basic 1.4521 3621.62 1.0006 

New 1.0037 3623.23 1.3431 

14×14 
Basic 1.4834 3635.81 1.0001 
New 1.0078 3638.14 1.3263 

15×15 
Basic 1.5688 3603.08 1.0002 

New 1.0066 3603.77 1.4522 

16×16 
Basic 1.5051 3614.75 1.0015 

New 1.0071 3617.22 1.4112 

17×17 
Basic 1.4548 3632.75 1.0012 
New 1.0062 3580.44 1.3500 

 

  
Figure 11 The comparison in pin power distribution of 10×10 configuration without (A) and with poison 

introduction (B). 

 

A comparison analysis for the basic and new configurations has been conducted. Table 7 shows the result of 

the parameters for all configurations. The use of burnable poison produces a recurring circumstance in the 

configurations. A decrease in the initial multiplication factor occurs considering the use of burnable poison. 

Meanwhile, most of the fuel cycle length is increased slightly, except for the configuration of 10×10 and 17×17. 

The increase shows that the poison is consumed thoroughly toward EOC, leading to the absence of parasitic 

absorption. In this context, 70% enriched Gd lowers parasitic absorption, as reported by Bejmer and Steveborn 

[16]. As for PPF, an increase is observed in all the configurations. The anticipated rise is a natural outcome since 

the presence of burnable poison undeniably influences neutron behavior in the immediate vicinity. This effect 

leads to a reduction in power generation on the pins containing the poison, while simultaneously elevating others. 

Figures 11A and 11B show the difference in pin power distribution of the 10×10 configuration. By introducing 

burnable poison, a substantial increase in PPF is observed at BOC. In the case of 10×10 configuration, the increase 

is from 1.0005 to 1.2789. Even though this can be considered a limitation, PPF will return to the original values 

as burnable poison depletes. 

 

3.3 Selection of the Final Solution 

 

Table 8 shows the score of each configuration before conducting the final selection. Pin 10×10 configuration 

appears to be the highest-ranked configuration, with a score of 29. In addition, the configuration has the most 

extended fuel cycle, lowest PPF, and second lowest initial multiplication factor. This configuration's initial k∞ and 

cycle length are 1.0054 and 3644.41, respectively. 

  

  (A) (B) 
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Table 8 The score of parameters for each design. 
Pin Initial multiplication factor score Fuel cycle length score PPF score Total score 

10×10 9 10 10 29 

11×11 4 7 6 17 

12×12 3 8 3 14 

13×13 10 6 8 24 

14×14 5 9 9 23 

15×15 7 4 4 15 

16×16 6 5 5 16 

17×17 8 3 7 18 

 

  
 

 

Figure 12 The effect of burnable poison in the fuel assembly on the evolution of multiplication factor. 

 

The initial multiplication factor has been reduced from 1.4107 to 1.0054, as shown in Figure 11 and the 

problem regarding excess reactivity has been solved. The reduced excess reactivity allowed for a straightforward 

control system, which led to an advantage for operation in remote regions. Meanwhile, the addition of burnable 

poison in the fuel assembly has lowered multiplication factor without compromising the cycle length. Figure 12 

shows that Gd has been consumed almost entirely at 540 days, with the residual amount present until around 900 

days. 

The fuel cycle length has been maintained close to 10 years, allowing an extended operational time for the 

reactor without additional supply or resources. The maximum PPF of 1.2789 is considered acceptable and falls 

within the typical range of most PWRs between 1.2 and 1.3. Based on the final selection, the fuel assembly 

configuration is presented in Table 9. This follows the basic configuration with the addition of a 0.0013 mm 

coating of burnable poison in the selected pins. 

 

Table 9 The fuel assembly configuration from the final selection. 
Configuration of the selected fuel assembly 

Pin 10×10 

Fuel material U3Si2 

Cladding material FeCrAl 
P/D 1.34 

Fuel radius (m) 0.004033 

Cladding thickness (m) 0.0003 
Total diameter (m) 0.008846 

Fuel enrichment (%) 7.7 

Poison ratio (%) 0.66 
Poison type IFBA 

Fuel radius (m) in poison pin 0.00402 

Poison placement in pin A 0.013 mm layer of coating 
Poison configuration Figure 8 (A) 

 

  

Effective Full Power Day 
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4. Conclusion  

 

In conclusion, the optimization process was conducted successfully and the design satisfied the objectives. 

The final design was a 10×10 configuration with a 0.66% poison ratio and 48 IFBA pins. Additionally, the initial 

multiplication factor was reduced from 1.4107 to 1.0054, and the fuel cycle decreased slightly from 3645.82 days 

to 3644.41 days. The maximum PPF of 1.2789 was observed at BOC. The use of more objectives regarding 

performance parameters was recommended for future optimization research. Other parameters, such as PPF and 

feedback reactivity temperature coefficient ensure the solution does not violate any standards. Meanwhile, a 

subsequent core design and analysis should be performed with consideration of the results. The maximum excess 

reactivity issue after the introduction of burnable poison must also be addressed in future research. 
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