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Abstract 

 

Medical data plays an essential role in diagnosing diseases and planning therapeutic. However, securing these data is a very critical 

function in the healthcare system. Some of the traditional Encryption and decryption mechanisms have resulted in a loss of sensitive 

medical information. In addition, maintaining the confidential score of the medical information is a much more needed and essential 

task. Considering these cases, the healthcare application was adopted in this present study. Therefore, to enhance security, a novel 

Transformer Neural Data Encryption Blockchain (TNDEB) has been proposed in this research. The IoMT database was initially 

collected and trained to detect and eliminate malicious events. Further, the hashing and encryption process has been carried out to 

secure the data. Moreover, to check the data similarity, the homomorphism function was performed at the verification module, and the 

verified data was decrypted using the shared private key. The chief contribution of this study is to keep medical information confidential 

with the support of the holomorphic concept. Additionally, the cryptanalysis was carried out by launching the brute force attack to 

compute the performance efficiency of the TNDEB model. Subsequently, the validated performance results are compared with existing 

models. The decrypt and encrypt time achieved by the TNDEB model is 1.260ms and 1.010ms, respectively. In addition, the gained 

confidential score is 98.8%. Hence, the proposed model is highly suitable for the IMoT application to secure the information at a high 

confidential rate.  
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1. Introduction 

 

In the past decades, the technologies of Medicare have extended fundamental functions in day-to-day life, including the healthcare 

systems [1]. The primary aim of intelligence in the healthcare systems is to offer the best interfacing ability among patients and 

caretakers to enhance the effectiveness and access to health advice and devices [2]. In recent times, the Internet of Medical Things 

(IoMT) and Artificial Intelligence (AI) have played the necessary tasks in the remote health care monitoring (RHM) process [3]. The 

IoMT was used to gather the patient's remote data via wearable sensors or devices and was stored in the cloud databases [4]. The IoMT 

comprises three stages: the device layer, the fog layer, and the cloud service layer. The RHM was the continuously monitored process 

of the medical data. The data includes heart rate, physical activity, medication tracking, behavior monitoring, temperature, blood 

pressure, and diet monitoring [5, 6]. These medical data were transmitted to the users via the cloud [7]. The IoMT supported the quick 

and secure diagnosis of various disease types and improved decision-making [8]. Leveraging AI systems provides many benefits in 

healthcare, such as convenience, reduced medical costs, enhanced patient safety, improved diagnosis, and avoiding repeating tests [9]. 

Monitoring the vital signs is a critical task in Medicare, and these signs help to identify abnormal conditions in the human body 

[10]. Even in the hospital, based on several conditions, caretakers were allocated to monitor the improvement in health conditions [11]. 

The monitoring parameters are temperature, pressure, pulse, and breathing rate [12]. Monitoring systems provide alerts about the 

patient's abnormality and help them get timely aid to escape death [13]. The system prioritizes the patients based on their critical health 

condition. Subsequently, it collects the patients' medical records and stores them in the cloud for evaluation by the physician [14]. E-

healthcare is a suitable way to cheaply offer remedies to people in remote and isolated regions [15]. According to the pulse and 

temperature level measure, the health data was recorded and preserved in the cloud to visualize in real-time and send patient details. 

This would help to reduce the gap between rural area patients and the physician [16]. 

Privacy and data security were the primary concerns for health monitoring systems worldwide. The mHealth allowed the collection 

of extensive patient data, including the vital symptoms of the disease [17]. The interoperability problem produces interference in the 

practical information-sharing process [18]. The fraud medical reasoning detection was significant, and the drugs were complex to 

differentiate from the authorized party. The monitoring process takes more computational time. For instance, a large amount of money 

was charged for hospitalized patients [19]. 

Meanwhile, patients staying in remote areas had difficulty accessing the hospital. So, the health monitoring process was done using 

the IoMT application. The encryption process could be used for data transfer to prevent unauthorized users from accessing the data 
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[20]. To overcome these problems, an efficient, optimized technique was used for health monitoring and the diagnostic ecosystem of 

the patient's vital signs. 

Intelligent models like machine learning and deep learning have recently been introduced to secure medical records. Hence, the 

convolutional neural model with recurrent system [21], sequence network [22], decision-based machine learning [23], AI-based 

regression model [24], etc., acted as the securing mechanism to store the medical records with the blockchain facilities. However, those 

models failed to perform the data integrity analysis. Even though intelligent features were incorporated into the blockchain mechanism, 

the data records' confidential score was average. These issues motivated this study to create an intelligent crypto strategy in the 

healthcare system. So, the present work has proposed an intelligent encryption system and the holomorphic concept to offer data 

integrity. 

IoMT-based intelligent healthcare devices have made health service an immense requirement by integrating better mobile services, 

user-friendly interfaces, and computing applications. In contrast, patients can identify and analyze healthcare data. The existing works 

of health monitoring systems presented limitations, including maximum medical cost. However, IoMT applications produce a massive 

amount of data that is too complex to analyze and generate immediate reports of the patients. Recent innovative technology could not 

provide real-time monitoring and diagnostics of a patient's essential signs. These problems were motivated by an efficient, optimized 

approach to developing the data-driven health monitoring system. The main scope of this study is to develop an intelligent blockchain 

system for healthcare applications to secure medical records from malicious events. The critical contribution of this research study is 

detailed as follows, 

 The IoMT decentralized database was primarily considered and trained in the Python environment. 

 Then, a unique blockchain mechanism, TNDEB, was designed for a decentralized environment. 

 Consequently, the database is monitored for any malicious event. If there is any malicious event, then it is predicted and 

neglected. 

 Hereafter, the database was hashed and encrypted using the TNDEB encryption function. 

 Furthermore, the crypt analysis is carried out by launching a brute-force attack on the hidden data. 

 Finally, the chief parameters, such as Decryption and Encryption time, confidential rate, error rate, and execution time, were 

measured and validated using existing studies. 

The executed blockchain-based security system work is arranged in the following order. A few recent works of literature are 

explained with advantages and limitations in section 2. The problems from past studies of the survey are discussed in section 3. The 

presented security solution is elaborated on in section 4. The framework results with comparison are detailed in section 5, and the 

research conclusion is explained in section 6. 

 

2. Related work 

 

Several recent works carried out for the health monitoring system were described as follows: 

Jamil et al. [25] proposed a Healthcare IoT blockchain model to investigate the patients' symptoms. This technique used the hyper 

ledger composer to design intelligent contracts to monitor patients' vital signs securely. Here, the critical movement was stored 

successfully after selecting the patient from the set of patients, and the doctor assigned the healthcare device to get vital sign 

information. Finally, sensors were used to monitor the patient's vital signs, and communication was done through the constrained 

application protocol (CoAP). This scheme obtains an increase in throughput and latency for monitoring. 

The sharing of medical data from the cloud is vulnerable to cyber-attacks. Therefore, to preserve the data in encryption format, 

Mamta et al. [26] introduced an Attribute Search Encryption (ASE) Scheme. The simulation of this process is done with the data 

collected from the resource-strained devices. The computation cost of the encryption process is reduced by incorporating the 

decentralized blockchain strategy. It is load-balanced and prevents system failure. However, this system needs to add extra features for 

search result verification. Saidi et al. [27] modeled identity-based blockchain architecture to enhance medical information security. It 

gives exclusive access to the patients to control their medical records. It is structured with the decentralized providers and credential 

verification phase for the emergency. This system satisfied privacy factors such as sustainability, scalability, emergency case access, 

etc. The hybrid algorithm provides better protection for data and user privacy. 

Khan et al. [28] proposed a hybrid machine learning technique that aimed to monitor the patient's vital signs, and the outliers were 

neglected from the collected data. The allocation of the channel state information avoids the fluctuation in the Wifi. The patient's 

respiration rate in sleep was monitored with minimum hardware-related cost. Consequently, the hybrid model is made for the feature 

selection and prediction of the patient's health condition from the noise-eliminated and balanced data. This system transmits large 

amounts of redundant and inconsistent data. Aujla and Jindal [29] designed a decoupled blockchain-based system for privacy in medical 

procedures. Specific devices perform this scheme to decouple the blocks of the blockchain architecture that export medical data from 

the sensors to the incorporated edge devices. Then, the incremental tensor-based approach was used to transmit and save the data in 

the cloud. This system aimed to minimize the duplication process of the bulk data transferred to the IoT network. Hence, the need for 

sample cloud storage space is reduced. 

Khan et al. [30] have developed a unique approach using fuzzy logic and generative adversarial networks (FLGAN) for multimedia 

streaming data compression and encoding techniques. This cooperative framework minimizes lossless video files, removes adversarial 

loss, and guarantees safe data compression. The experiment outcomes demonstrate better compression ratios but have limitations in 

the GAN model overfitting certain data distributions. Khan et al. [31] have discussed serverless consortium networks and blockchain 

hyperledger's application to fog and edge computing. It suggests a serverless edge-based distributed outsourced compute architecture 

supported by blockchain and Hyperledger Sawtooth (BHLS), providing strong data security, provenance, transparency, and privacy 

protection. However, using blockchain technology results in higher communication and processing expenses. Khan et al. [32] have 

suggested a cooperative method for fog node management that uses the blockchain hyperledger architecture and the B-Drone 

evolutionary algorithm (BHLBE). This allows for the gathering, scheduling, processing, administration, optimizing, and preserving of 

data using drones in a secure node. The results demonstrate storage increased by 73.11% while computation costs decreased by 12.03% 

but faced challenges in handling large-scale images. 

Khan et al. [33] have introduced a secure hyper ledger sawtooth-enabled architecture (SHSA), provides pseudo-chain codes and 

consensus protocols for seamless transactions, and examines the implementation issues of blockchain-enabling industrial Internet of 

things (IIoT). The multiple proof-of-work examined and replicated the information flow between linked IIoT devices by limiting the 

use of resources, but it has scalability issues. Khan et al. [34] have developed a Particle Swam Optimisation and Artificial Neural 
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Networks (PSANN) based machine learning intelligence system for load balancing in telecommunications. The system analyses 

obstacles to 5G and other next-generation intercommunication technologies while automating transactional load allocation. Automation 

of transactional load distribution improves reliability. The drawback is strong security measures are required to secure the data from 

breaches. Khan et al. [35] have optimized data transmission for smart cities through a secure blockchain distributed consortium network 

using partial swam optimization (DCNPS). It employs NuCypher proxy re-encryption-enabled value encryption for neighborhood 

encryption, secure transmission, and Artificial Neural Networks (ANNs) to optimize record administration and preservation to tackle 

smart city data delivery categorization difficulties. A thorough security assessment is required. 

Mehmood et al. [36] have investigated permissionless public, private, and consortium chains emphasizing distributed real-time 

applications using blockchain systems. Using optimization and Byzantine Fault Tolerance, a lightweight Plenum consensus mechanism 

for consortium blockchain (LPCCB) is introduced. Simulations demonstrate that BLPCA can guarantee node scalability while 

managing massively distributed traffic, but it has limitations in complexity. Khan et al. [37] have developed a lightweight consensus 

based on Proof-of-Elapsed Time (LPET) and examined permissioned private chains' advantages. It enhances participant identity, 

mining privileges, block construction, and transaction verification. System scalability is increased, and the lightweight architecture 

decreases multi-node efficiency costs. However, large-scale multi-transaction processing still has trouble addressing enormous 

computing needs. 

 

Table 1 Summary of literature review 

 

References Method Merits Demerits 

[25] CoAP It has scored a high throughput ratio for 

data sharing 

It has recorded high latency to deliver 

the message 

[26] ASE But Encryption and Decryption are 

processed within a short duration 

Here, the data originality is not 

verified. For the verification process, 

additional features were required 

[27] identity-based blockchain Here, the saved data is verified based 

on the user's credentials 

Hence, the decryption process on the 

other end is not possible 

[28] Hybrid ML with blockchain It applies to all applications; different 

data formats are acceptable for this 

model. 

Processing the crypto model is 

problematic because it accepts 

redundant and inconsistent data. 

[29] Tensor decouple blockchain It can reduce the duplicated data. 

Hence, the cloud space requirement was 

minimized. 

The data integrity verification process 

is not performed. 

[30] FLGAN It removes adversarial loss and 

demonstrates a better compression ratio 

Has limitations in overfitting to 

certain data distribution 

[31] BHLS This technique addresses multi-

execution issues, boosts productivity, 

and reduces cloud storage usage. 

Increases the cost of computing and 

communication 

[32] BHLBE Increases the storage by reducing the 

computation cost 

Handling massive picture sizes via a 

dispersed network is a difficult issue. 

[33] SHSA An effective use of resources is 

provided. 

It faces limitations in scalability. 

[34] PSANN Automation of transactional load 

distribution improves reliability 

Requires strong security against 

intrusions 

[35] DCNPS It employs secure transmission and 

handles different data types 

It is necessary to thoroughly evaluate 

the security and privacy assurances 

on a large scale. 

[36] LPCAB It can ensure node scalability while 

handling widely dispersed traffic. 

The use of a heterogeneous 

multithreading approach entails 

complexity. 

[37] LPET System scalability is increased, and 

multi-node efficiency costs are 

decreased. 

Struggle to handle large-scale multi-

transaction processing requirements. 

 

In every literature in Table 1, a few limitations were addressed, but still, a few drawbacks were not addressed due to the restrictions 

of features. Several studies have explained that verification is not done, so the data integrity parameter confidential rate is not measured. 

The main motive of this study is to introduce homomorphism intelligent blockchain to the healthcare domain.  

 

3. Proposed methodology 

 

A novel Transformer Neural Data Encryption Blockchain (TNDEB) was introduced in this study to safeguard medical records. In 

addition, the implemented novel blockchain is validated by testing it with the IoMT database. Primarily, the database was trained, and 

the malicious activities were neglected. Consequently, the blockchain functioning process was activated to secure third-party 

information. Simultaneously, the originality of the data is checked by performing the homomorphism concept from the encrypted data. 
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Figure 1 Proposed architecture 

 

Finally, the crypt analysis has been performed by launching the brute force attack. Subsequently, the chief parameters such as 

Decryption and Encryption time, confidential rate, error rate, and execution time were measured and compared with other traditional 

approaches. The proposed architecture process is mentioned in Figure 1. 

 

3.1 Process of TNDEB model 

 

The presented TNDEB mechanism combined the functions of the transformer neural network [38] and the Data Encryption standard 

algorithm [39]. The proposed security mechanism is processed by the dataset collected from the medical cloud, which includes the 

patient's data from certain hospitals. The data initialization process was followed based on the transformer neural network's function, 

which is explained in Eqn. (1). 

 

 𝐼(𝐷𝑐) = ∑ 𝑑𝑖

𝑛

𝑖=1

 
(1) 

        

Here 𝐼 indicate the data initialization functions 𝐷𝑐 represent the medical data collected from the IoT cloud, 𝑛 define the number of 

data, and 𝑑𝑖 denote the original input data. 

 

3.1.1 Malicious event prediction and neglecting 

 

The initialized data are trained to the transformer model to trace the malicious activities present in the data and then neglected. The 

malicious event tracking and neglecting function is explained in Eqns. (2) and (3).  

 

 𝑃𝑀𝐸 = 𝜆(𝑑𝑏 , 𝑑𝑚) × 𝐷𝑐(𝑑1, 𝑑2, . . . 𝑑𝑛) (2) 

  

 𝑁𝑀𝐸 = 𝐷𝑐 − 𝜆(𝑑𝑚) (3) 

        

Here malicious prediction function is defined as 𝑃𝑀𝐸, 𝜆 is the malicious event tracing variable, 𝑑𝑚 are the malicious features 𝑑𝑏 

represent the benign features 𝑁𝑀𝐸 indicating the malicious event elimination function. 

 

3.1.2 Hashing 

 

After the malicious event detection and elimination process, the original benign data is sent to the hashing phase. In this phase, the 

hash values of each original data set are computed and named as hash 1 value. The hash value computation function is explained in 

Eqn. (4).  

 

 ℎ1(𝐷𝑐) = 𝑑𝑖mod 𝑝 (4) 

        

Here ℎ1(𝐷𝑐) represents the Hash 1 value of the original data and 𝑝
 
denoted the prime number. The hash 1 value of the original data 

is computed and stored in the blockchain architecture through this function. 

 

3.1.3 Encryption 

 

The hash value calculated data are then encrypted using the principle of the DES algorithm. It is a commonly used encryption 

algorithm that encrypts data in groups of 64 bits. This algorithm uses a similar key for Decryption and Encryption; the length of the 

key is 48 bits, and sub-keys are created for each group. Primarily, the key is generated utilizing the document number and variables to 

encrypt the data. The key generation function is expressed in Eqn. (5). 

 

 𝐾𝑒 = 𝑎𝑓 mod 𝑏 (5) 

IoMT database TNDEB 
Malicious event 

prediction and 

neglecting 

Securing the data by 

performing hashing 

and encryption process 

Performance analysis 
Data originality 

checking 

Homomorphism 

Crypt analysis 
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Where, 𝐾𝑒  express the generated encryption key, 𝑎  and 𝑏  denotes the public variables, 𝑓  indicates file number. The data is 

encrypted using the generated encryption key. In the DES, the plain text is split into two parts: left (𝐿) and right (𝑅), using the 

permutation function, and further, the encryption function is explained in Eqn. (6). 

 

 𝐶𝑖 = {
𝐿𝑔 = 𝑅𝑔−1

𝑅𝑔 = 𝐿𝑔−1 ⊕ 𝑓(𝑅𝑔−1, 𝐾𝑒
𝑔)

 
(6) 

      

Here 𝐶𝑖 represented, the encrypted cipher data 𝑔 denotes the number of groups 𝑓
 
is the DES function and ⊕ defines the XOR 

function. Thus, the data are encrypted using the DES functions and entered into the Homomorphism to check the data integrity. 

 

3.1.4 Homomorphism 

 

To perform the homomorphism function, the hash values of the encrypted data should be computed. The hash value of the encrypted 

data was named the hash 2 value. It is computed by the function detailed in Eqn. (7). 

 

 ℎ2(𝐷𝑐) = 𝐶𝑖mod 𝑝 (7) 

        

The hash 2 value computation variable is defined as ℎ2(𝐷𝑐). After the hash two value calculation, the homomorphism function 

matches the hash 2 and hash one already stored in the blockchain. The system shows the specific data as "data attacked" if the hash 

values do not. The homomorphism condition is explained in Eqn. (8). 

 

 𝐻 = {
𝑖𝑓(ℎ1 = ℎ2) 𝑑𝑎𝑡𝑎  𝑛𝑜𝑡 𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑑
𝑖𝑓(ℎ1 ≠ ℎ2) 𝑑𝑎𝑡𝑎  𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑑

 
(8) 

      

The system allows the user to access only when the hash values are matched by sharing the key for Decryption. Otherwise, the 

system will not allow the user to access it. 

 

3.1.5 Decryption 

 

The reverse process of Encryption is termed Decryption. The system sends the key to the user after the hash value validation. The 

encrypted cipher files are then decrypted to get the original data in the decryption process. The decryption process is given in Eqn. (9). 

 

 𝛿(𝐷𝑐) = 𝑑𝑖 = {
𝑅𝑔 = 𝐿𝑔−1

𝐿𝑔 = 𝑅𝑔−1 ⊕ 𝑓(𝐿𝑔−1, 𝐾𝑠
𝑔)

 
(9) 

      

Where 𝛿 denotes the decryption function, which is the original data, and 𝐾𝑠 is the system-shared secret key. At the decryption 

phase, the encrypted data were decrypted by applying the key in reverse order of the Encryption. 

The processing functions are expressions of the TNDEB model and are explained in pseudo-code format in Algorithm 1. The 

Python code was implemented based on this algorithm. Additionally, the flow diagram of the TNDEB process is expressed in          

Figure 2. 

 

Algorithm 1. TNDEB 

Start 

{ 

 𝑖𝑛𝑝𝑢𝑡 → 𝑐𝑙𝑜𝑢𝑑 𝑚𝑒𝑑𝑖𝑐𝑎𝑙 𝑑𝑎𝑡𝑎 

 𝐷𝑐 → 𝑑1, 𝑑2, 𝑑3. . . . . . 𝑑𝑛 

 //Iot Medical Data Are Initialized 

 Malicious Event Prediction () 

 { 

 int 𝑃𝑀𝐸 , 𝜆, 𝑑𝑏 , 𝑑𝑚 
 // Malicious Data Detecting Variables Are Initialized 

 𝑃𝑀𝐸 → 𝜆(𝑑𝑏 , 𝑑𝑚) 

 //The Malicious Event Of The Input Data Is Predicted 

 𝑁𝑀𝐸 → 𝐷𝑐 − 𝜆(𝑑𝑚) 

 // The Malicious Data Are Eliminated From The Model 

 } 

 Hashing () 

 { 

 int ℎ1, 𝑝 

 ℎ1 → 𝑑𝑖mod 𝑝 

 //The Hash 1 Value Of The Original Data Are Calculated And Stored 

 } 

 Encryption () 

 { 

 int𝐾𝑒 , 𝐶𝑖 

 //The Encryption Variables Are Initialized 

 The Key 𝐾𝑒 Is Generated Using The Document Number And Public Variables 

 𝐶𝑖 = 𝐾𝑒 ⊕ 𝑑𝑖  

 //The Original Data Are Converted Into Cipher Data Using DES Encryption Key 
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 } 

 Homomorphism () 

 { 

 ℎ2 → 𝐶𝑖mod 𝑝 

 //Hash 2 Value Is Calculated 

 𝑖𝑓(ℎ1 ≠ ℎ2) 

 { 

 Display Data Attacked 

 }Else 

 { 

 Not Attacked 

 } 

 } 

 Decryption () 

 { 

 𝑑𝑖 = 𝐾𝑒 ⊕ 𝐶𝑖 

 //The Benign Data Is Decrypted Using Shared Key 

 } 

} 

End 

 

 
 

Figure 2 Flowchart TNDEB 

 

4. Results and discussion 

 

The TNDEB architecture is designed to secure cloud medical information from various attacks. This method integrated the features 

of the transformer neural structure and DES algorithm. The medical data is collected from the IoT cloud and processed to test the 

presented model. The other requirements for designing the presented model are tabulated in Table 2. 

 

Table 2 Parameter requirements 

 

Execution Parameters 

Parameters Details 

OS Windows 10 

Platform Python 

Version 3.10 

Database Disease Symptom Data 

Launched Attack Brute force 

Start 

Dataset Initialization 

TNDEB 

Malicious event prediction 

Hash 1 value calculation 

Data Encryption 

Hash 2 value calculation 

Homomorphism 

Data not attacked Data attacked 

Verification Successful 

Decryption 

Performance Validation 

Stop 

//Initialization of input 

medical data 

//Design the proposed TNDEB 

//Hash 1 calculation using 

hashing functions 

//Computing hash 2 value 

//Verifying hash 1 with hash 2 

//Malicious data are 

detected and removed 

//Encrypting the data 

with key 

YES                                                                           NO 

//Decrypting the data with key 

//evaluating the 

performance 

//termination 
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The malicious event in the data is traced and removed through the transformer network, and the DES process encrypts data. To 

perform the Homomorphism, the hash values of the original and encrypted data are matched and verified. The verified data is sent to 

the decryption stage. Also, the system is checked by launching a brute force attack. 

 

4.1 Case study 

 

In this section, the case study was explained to understand the functions of the TNDEB model. Primarily, the medical data was 

gathered and entered into the proposed framework. The number of samples collected is 4920. Further, the proposed TNDEB framework 

is modeled in the Python environment using the required parameters. The collected dataset includes the various diseases and their 

symptoms seen in the patients. These data are first imported to the transformer network to identify and eliminate the malware-injected 

data from the collected dataset. After the malware removal, the hash 1 point is computed and encrypted using the DES function. Then, 

hash two is calculated for the encrypted data, and the homomorphism process is carried out by matching the two hash values. If the 

values are reached, the decryption process is performed. Otherwise, the system displays as data is attacked. In addition to checking the 

system's efficiency, the cryptanalysis process is carried out by launching a brute-force attack. 
 

 
 

Figure 3 Performance before and after an attack 

 

The error rate and confidential rate were calculated before and after an attack. It is described in Figure 3. The confidentiality and 

error values of the TNDEB system before launching the brute force attack are 98.808% and 0.0119. After inserting the brute force 

attack, the system's confidentiality percentage and error value change to 98.780% and 0.0121, respectively. 

 

4.2 Comparative analysis  

 

The proposed TNDEB model is designed and implemented in the Python environment. The performance of TNDEB was evaluated 

in terms of Decryption, execution and Encryption time, confidentiality, and error rate. The resulting values are then compared with 

prevailing blockchain cryptography mechanisms such as Elliptical Curve Cryptography (ECC) [40], Rivest-Shamir-Adleman (RSA) 

[40], Ring Hash Elliptical Curve Cryptography (RHECC) [40], Belief Network based Diffie Hellman (BNDH) [41] and Modified Blow 

Fish (MBF) [42] to validate the improvement of the proposed mechanism. 

 

4.2.1 Encryption and decryption time 

 

The framework's time to convert the initial data into cipher data is validated as encryption time. The key generating time is included 

in the encryption time. While the time of the restoration process of the initial data from the cipher data is computed as decryption time. 

It is generally calculated after the encryption and decryption process. The main motive for calculating the decryption and encryption 

time is to show the system's efficiency during the security process. 

The comparison of the encryption time of the TNDEB scheme with various prevailing cryptography models is shown as a graphical 

representation in Figure 4. The ECC algorithm scored an encryption time of 500ms, the RSA algorithm completed the encryption 

process in 470ms, RHECC resulted in 300ms and BNDH process scored 3.55ms for the encryption time. At the same time, the proposed 

TNDEB model recorded the encryption time as 1.01ms. Compared to the existing approaches, the proposed achieved much less 

encryption time. This less encryption time indicates the speed of the encryption process of the TNDEB architecture is higher than that 

of the other existing approaches. 
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Figure 4 Encryption time evaluation 

 
 

Figure 5 Decryption time evaluation 

 

Similarly, the duration of the decryption process of the proposed TNDEB model is evaluated and competes with the other current 

blockchain models, as shown in Figure 5. The ECC schema validated the decryption time as 500ms, RSA result 470ms, RHECC 

recorded 380ms, and BNDH scored the encrypting time of 3.6ms. However, the proposed TNDEB model validated the decryption time 

of 1.26ms which is lower than all other compared prevailing schemas. Large files require excess time to decrypt and encrypt. Therefore, 

the TNDEB strategy hashing process with Encryption reduced the Encryption and Decryption. 

 

4.2.2 Confidential rate 

 

The data rate the proposed TNDEB model safeguarded is evaluated as the confidentiality rate. 

The values of the existing and proposed encryption scheme's confidential rate are compared in Figure 6. The confidentiality 

percentage of the ECC algorithm is 91%, RSA scored 93.5%, RHECC achieved 98%, and BNDH framework scored 95% of the 

confidential rate. Further, the proposed model showed a confidentiality rate of 98.8%. Compared to the other related models, the 

confidentiality rate of the proposed is increased, which shows the security improvement in the healthcare system. In the proposed 

system, the confidentiality of the medical records is checked with and without attack conditions. Confidentiality is maintained even in 

the presence of the attack, which shows the security efficiency of the presented model. 

 

 
 

Figure 6 Confidential rate 
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4.2.3 Error rate 

 

The error rate is calculated to ensure whether the data that arrived is the data the user or recipient sent. The error rate of the proposed 

method was calculated for two conditions: before and after an attack. Then, the average error rate of both conditions is compared with 

the existing cryptography models for evaluation of improvement. 
  

 
 

Figure 7 Error comparison 
 

Table 3 Overall performance 
 

Methods Decryption time (ms) Encryption time (ms) Confidential rate (%) Error rate 

ECC 500 500 91 0.08 

RSA 470 470 93.5 0.05 

RHECC 380 300 98 0.03 

BNDH 3.6 3.55 95 0.04 

Proposed 1.26 1.01 98.8 0.01 

 

Moreover, a comparative error rate analysis is performed to check the similarity between encrypted and decrypted data. The 

comparison is shown in Figure 7. The proposed TNDEB framework attained an error rate of 0.01. The error values of other related 

models, such as ECC, RSA, RHECC, and BNDH, are 0.08, 0.05, 0.03, and 0.04. The proposed model achieved a very low error rate 

compared to these values. The overall comparison of the error value, confidentiality, Decryption, and encryption time is mentioned in 

Table 3. 
 

4.2.4 Execution time 
 

The time the proposed TNDEB system takes to complete the entire security process of the healthcare system is calculated as 

execution time or run time. The execution time is calculated using the expression given in Eqn. (10). 
 

 𝑋𝑡 = (
𝐸𝑡 +  𝐷𝑡

𝑀𝑡
) 

(10) 

 

Here 𝑋𝑡
 
denotes execution time, 𝐸𝑡 defines encryption time, 𝐷𝑡  represented as decryption time, and 𝑀𝑡  is the maximum time 

allocated for the process. 
 

 
 

Figure 8 Execution time 
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The execution time includes the duration of hash value calculation, Encryption, Homomorphism, and Decryption time. The 

comparison of TNDEB's total execution time with existing models is shown in Figure 8. Here, the execution time is compared with 

existing works such as MBF, RSA, and BNDH. The run time of the MBF is 248ms, RSA is 136ms, and BNDH is 12ms. The total 

execution of the TNDEB framework is only 10ms, which is lower than the other existing models. The values of the execution time are 

arranged in Table 4. 

 

Table 4 Execution time comparison 

 

Method Execution time (ms) 

MBF 248 

RSA 136 

BNDH 12 

Proposed 10.64 

 

4.3 Discussion 

 

In this section, the overall parameters of the TNDEB model are discussed. The system acquired an encryption time of 1.010ms and 

a decryption time of 1.2607ms. Compared to the other current models, the presented mechanism has shown lesser Encryption and 

decryption time, as verified by the comparative analysis. The system used a transformer network for attack detection and elimination. 

The network processes large data in less time, giving all data equal importance. Also, the utilization of the DES algorithm completes 

the Encryption and Decryption in a short time. Also, for accurate verification, the homomorphism function is performed using the hash 

two and stored hash one values. To offer further justification, the state of approach in Table 5 is executed in the same platform and 

compared with the present novel proposed model. In every performance metrics case, the proposed approach received the finest 

outcome, revealing the proposed system's robustness in securing medical records. 

 

Table 5 Performance of state-of-the-art models 

 

References Decryption time 

(ms) 

Encryption time 

(ms) 

Confidential rate 

(%) 

Error rate Execution time 

(ms) 

CoAP [25] 10 10 78 9 450 

ASE [26] 9 8 85 10 370 

identity-based blockchain [27] 79 76 64 18 320 

Hybrid ML with blockchain [28] 67 66.8 67 26 210 

Tensor decouple blockchain [29] 87 87 59 22 178 

FLGAN [30] 75 74.2 87 19 152 

BHLS [31] 82 80 72 30 213 

BHLBE [32] 40 41 79 25 80 

SHSA [33] 52 50 90 20 89 

PSANN [34] 13 16 25 15 62 

DCNPS [35] 27 26.6 70 13 108 

LPCAB [36] 33 31 84 36 158 

LPET [37] 44 43 88 33 23 

Proposed 1.26 1.01 98.8 0.01 10.64 

 

When compared to the most advanced methods for protecting medical records, Table 5 shows the effective performance of the 

proposed model. The proposed model outperforms the existing approaches by achieving the highest confidentiality rate of 98.8% and 

the lowest error rate of 0.01%. It shows that the model has robust data security, and encryption, making it difficult for any attackers to 

capture or decode important data. This ensures that the confidentiality of the information remains intact, even under attempted breaches 

or vulnerabilities, and demonstrates that it can effectively safeguard sensitive data. Furthermore, compared to the other models, the 

encryption and decryption speeds of 1.26 ms and 1.01 ms, respectively, are much quicker, guaranteeing effective data processing. 

Moreover, the overall execution time of 10.64 ms is notably lower, highlighting the proposed approach’s efficiency. These results 

emphasize the robustness of the proposed system in securing medical records, offering a balance of high security and low latency, 

making it an optimal solution in healthcare environments. 

Finally, the data was processed to check the system's ability by launching the brute force attack in the proposed model. The 

confidential and error rates were calculated for before and after attack conditions. The overall performance assessment of the presented 

TNDEB model is tabulated in Table 6. 

 

Table 6 Performance Assessment 

 

Metrics Performance 

Decryption Time (ms) 1.2607ms 

Encryption Time (ms) 1.010ms 

Confidential rate (Before attack) 98.808% 

Error Rate (Before Attack) 0.0119 

Confidential Rate (After Attack) 98.780% 

Error Rate (After Attack) 0.0121 

Execution Time (ms) 10.643ms 
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5. Conclusion 

 

In the IoT healthcare system, security is the major concern for data sharing. Therefore, a novel TNDEB model is introduced in this 

article to provide security to the healthcare system. The collected IoMT database processes the system. Initially, malicious events 

present in the collected dataset were identified and removed. Further, the value of hash one is computed. Moreover, the data is 

encrypted, and the hash two value is calculated. The hash values are matched to verify the data. The verified data is then sent to the 

user with a private key to restore the initial data from the encrypted one. In addition, the system is checked by injecting the brute force 

attack. The model is implemented in Python software, and results are compared with prevailing techniques. The encryption and 

decryption time of the TNDEB model is 1.010ms and 1.260ms, and the total execution time is 10.643ms. It is reduced from the existing 

models. Also, the confidential and error rate is measured as 98.8% and 0.0119 before the attack and 98.78% and 0.0121 after the attack. 

The confidential rate has been increased, and the error rate has been reduced. Thus the presented model improves the reliability of the 

healthcare system and prevents attacks. However, if the medical records are in an increased manner, then it causes blockchain storage 

limitations. In the future, automatically concatenating the blockchain based on medical records needs will help tackle storage limitation 

issues. 
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