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ABSTRACT: In the area of ground improvement, the stone columns (SCs) play a definite role. The ground treatment technique has been 

demonstrated to be effective in improving the embankments’ stability and natural slopes by raising the bearing capacity and decreasing 

settlements. The objectives of this study are to develop models for predicting the performance of SCs-supported embankment foundations 

utilizing artificial neural networks (ANN). For the aim of creating ANN models, training, testing, and validation sets comprising 70%, 15%, 

and 15% of the data, respectively steps were done, making use of available numerical results obtained from the 2D finite element analysis. A 

dataset including about 200 cases is involved, and the mean square error (MSE) with R-squared value is used as performance metrics of the 

system. The applied data in ANN models are arranged in the component of 4 input parameters, which cover column diameter d, centre-to-

centre spacing S, the internal friction angle of columns material ϕ, and embankment high H. Relating to these input parameters, the selected 

responses were the bearing capacity of the SC (BC) and the safety factor against the stability (SF). Based on the simulated results, an ideal 4-

14-1 ANN architecture has been settled for the direct prediction. According to the technique used, the forecasted data from the model had a 

good agreement with the actual datum, where the high regression coefficient (R2) was equal to 0.995 and 0.891 for BC and SF models, 

respectively. Furthermore, the relative importance of influential variables is examined, which shows that the column diameter is the most 

effective parameter in the two study models with a significance score of 32.9%. Finally, the outcomes clearly demonstrated that the ANN 

method is reliable for modelling and optimizing of the SC behaviour. 
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1. INTRODUCTION 

The scarcity of good quality land for infrastructural development has 

increased interest in soil improvement methods. The growing lack of 

suitable land is exacerbated by the high cost of virgin land and the 

environmental requirement to site infrastructure away from urban 

areas.  As a result, the location of structures on improved or stabilised 

soft soils has become an economically viable alternative. In general, 

soft clays are responsible for the excessive settlement observed in 

constructed embankments (Indraratna and Redana, 2000). Therefore, 

engineers are required to improve soft soils or clay grounds to meet 

the technical project requirements and address the shortage of suitable 

construction land (Moseley and Kirsch, 2004). Over the years, 

numerous techniques have been proposed for ground improvement 

including vibro compaction, soil preloading, ground freezing, 

grouting, and vibro-replacement stone columns (Alfaro et al., 1994; 

Moseley and Kirsch, 2004; Kirsch and Bell, 2012). 

The use of stone columns (SCs) to improve the ground has 

become more prominent due to its relative economic advantages over 

conventional piling methods for less sensitive structural settlements 

(Sivakumar et al., 2010). In practice, the construction of stone 

columns involves creating a hole in the ground, which is subsequently 

filled with granular material. The analytical methods approved for SC 

designs range from experience based semi-empirical design to finite 

element analyses. Generally, the design of a reinforced ground-based 

SC is typically performed in two major stages, namely, the ultimate 

bearing capacity and the lasting drained settlement. For the SCs 

design, geotechnical engineers are required to rely on either 

knowledge or analysis techniques such as finite element method 

(FEM). This typically safeguards the stability against failure and 

controls the deformation of the subsoil within the permissible limits. 

So far, efforts have been made by numerous researchers to investigate 

the treated ground performance through analytical and experimental 

studies (Greenwood, 1970; Hughes et al., 1976; Priebe, 1976). 

Furthermore, Ambily and Gandhi (2007) opine that despite the 

extensive adoption of SC and advances in construction methods, 

current design methods are still empirical. Hence, current knowledge 

of SC design in building codes and published materials is still limited. 

The definite SC bearing capacity is reliant on its geometry, the 

material, and the native soil properties. Previous studies have 

provided extensive information on the use of SCs as the most critical 

ground improvement technique. Furthermore, current studies 

examine SC behaviour based on several assumptions that simplify the 

problem under makeshift settings. The main difference between this 

work and previous studies is the use of simulation or modeling tools 

to predicate the bearing capability and the safety factor of the soil-

columns system. 

Bouassida et al. (2009) adopted design graphs to deduce the 

bearing capacity of a floating SCs collection. In the study, friction 

between the footing and soil along the SC distribution was ignored. 

However, Etezad et al. (2015) established a systematic model of a 

group of SCs subjected to general shear failure in soft soil. The model 

is robust enough to estimate the critical bearing capability of the 

reinforced ground. Other available solutions have been obtained by 

different researchers in recently published studies. For example, 

Fattah et al. (2017) developed a formula to predict the bearing ability 

of floating SCs group mounted on clays of undrained shear strengths 

ranging from 4 kPa to 25 kPa, diverse diameters of column d and 

length ratios L/d. The formula was acquired by executing a statistical 

analysis using the SPSS program based on the data from their 

empirical work and previous studies. Next, the bearing capability of 

soft clay strengthened with SCs was successfully calculated using 

the Morgenstern-Price method of slices (Khalifa et al., 2018). The 

study utilized the slices technique to predict the ultimate bearing 

capability of the soil supported by a series of SCs based on an 

analytical model. In 2018, Ng predicted the formula for ultimate 

bearing capacity that accounts for the undrained shear strength of the 

surrounding soil and the friction angle of the SC. In summary, the 

load-bearing capability of a specific SC is a multifaceted issue, 

including the relations between the constituent column materials and 

the adjoining soil. So far, an accurate mathematical solution to 

calculate the ultimate bearing ability is still lacking (Dheerendra et 

al., 2013). 

Recently, in geotechnical engineering, numerous researchers 

have published successful usage of alternative traditional forecasting 

models to simulate complex problems (Haque and Steward, 2020; 

Kharit et al., 2020; Armaghani et al., 2021; and Barkhordari et al., 

2022). Similarly, the NNs have become eloquent tools that permit 
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data to be examined to define the practical connections between the 

consideration parameters. The NNs are computer systems that are 

skilled in determining the complicated relationships between several 

variables or data sets.  Many researchers have defined the assembly 

and procedures of ANNs (Ripley, 2007). A typical ANNs contain 

numerous processing elements (PEs) or nodes, which are typically in 

a set of layers, namely: the input, output, and various hidden layers 

(Figure 1). 

 

Figure 1  Biological processing elements-

neuron (Maier and Dandy 1998) 

 

The ANNs are defined as a class of artificial intelligence (AI) that 

seeks to imitate human behaviour or neural system (Shahin et al., 

2001). In the 1940s, the modern neural network views began and 

extended to the end of the 1960s with the works of McClloch and Pitts 

(1943) and Hebb (1949). During the 1980s, research in NNs increased 

dramatically. Over time, the ANN application has soared into fields 

such as geotechnical science. Artificial neural networks have 

successfully adapted to model the behaviour of soils, liquefaction, 

and earthquakes. Other applications include the characterization of 

sites, ground-retaining buildings, slope stabilization, subways, and 

subterranean slots. Lastly, soil bulging, classification, prediction of 

pile capability, and footing settlement are other uses of ANNs (Al-

Ani et al., 2009). 

Moreover, ANN has the ability to model the non-linear 

relationship between a set of input variables and the corresponding 

outputs without a prior definition of mathematical equations (Maizir 

et al., 2015). Similarly, The NNs can provide complex input-output 

mapping, which is easier to use than the classical computational 

methods. By modelling a system, specialists can predict its future 

evolution under the influence of different factors. In ANNs, choosing 

the input variables that have a considerable effect on the outputs is 

one of the main stages. In current work, ANNs are utilized to forecast 

the SCs behaviour based on numerical data collected from previous 

studies. The bearing capacity (BC) and a safety factor (SF) of the 

system are the targets of the neural network. The efficiency of an 

ANN can be enhanced by reducing its computational complexity. 

This is according to the principle that the network’s computational 

complexity is typically influenced by the neurons available in each 

layer. However, the different between the actual data and predicted 

data of an ANN model is typically used to measure its performance. 

Overall, it is difficult to predict the performance of SCs reinforced 

grounds comprised of soft clay under embankment load. This is 

generally attributed to the non-linear relation between the input and 

output factors. Furthermore, the effects of SC behaviour regarding the 

ultimate bearing capacity (qu) are complex and poorly understood at 

present. Therefore, this study will attempt to enhance the 

understanding of the behaviour of stabilized SCs based on the ANNs 

technique. 

 

2. DATABASE USED IN ANN 

The ANN is used to forecast the behaviour of SCs supporting 

embankment highway projects resting on soft clay soil, as shown in 

Figure 2. The database of about 200 recorded cases from the bearing 

capacity BC and safety factor SF reported to design SCs was 

compiled from the reference Gaber 2019. The work was based on 

2-D finite element analysis conducted by the Plaxis software to 

evaluate the performance of the SC under various conditions. 2-D 

modelling is one of the preferable ways to create the actual situations 

of this kind of projects. However, the ANN analysis was conducted 

using Matlab software. A database of a numerical study was selected 

to create and validate the ANN models. 

 
Figure 2  Site cross-section of the case study with geometric 

characteristics (Gaber 2019) 

 
3. DEVELOPMENT OF ANN MODEL 

The procedure for designing ANN models involve the designating the 

inputs and outputs of the model, along with sorting out the available 

data. Other requirements include selecting suitable network 

architecture (NA) as well as enhancing the joining weights. 

Subsequently, Matlab software was employed to determine the 

optimal NA using trial and error manner. 

 

3.1 Inputs and Outputs 

The parameters selected as inputs for the ANN models are column 

diameter d, center-to-center interval S, internal friction angle of the 

SC ϕ, and embankment high H. Next, these four variables were 

considered to be input model due to their considerable effect on the 

selected responses: bearing capacity and safety factor. The data 

selected for this paper is statistically listed in Table 1. 

 

Table 1  Details of model tests program  

Parameter        Symbol/Unit Value 

Range 

Stone column diameter (d) [m] 0.7-1.2 

Spacing between adjacent 

columns ratio 

(S/d) [-] 1.875 - 

3.125 

Internal friction Angel of 

SC 

ϕ [ᵒ] 28 - 45 

Height of embankment H [m] 1.8 - 3.5 

 

3.2 Data Division 

The following stage of creating ANN models is splitting the selected 

data into subsets. Consequently, this data is randomly distributed into 

triple groups: training, testing, and validation. This technique of 

division in data is known as “cross-validation technique,” which has 

been applied as the discontinuing criteria in current work. The overall 

data used for the training set was 70% whereas the twin sets of testing 

and validation accounted for 30%. 

 

3.3 Network Architecture, Optimization, and Ending Criteria 

The hard process in the ANN model creation is to determine the 

architecture network. The Back-Propagation Neural Networks 

(BPNN) is considered to be one of the most common ANNs model 

(Priddy and Keller, 2007). Typically, the BPNN comprises triple 
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inter-connected sets of layers, namely, the input, output, and hidden 

layers, as indicated in Figure 3. The objective of training through the 

BPNN is to iteratively alter the neuron weights to ensure error 

minimization. Hence, the sum of the hidden neurons is essential to the 

BPNN. Nonetheless, there is no established technique to compute the 

total number of neurons in the hidden layers. As defined by Nawari 

et al. (1999), excess hidden layers elongate the training period, 

however, a limited number of hidden layers traps the learning 

algorithm in a local minimum. The appropriate number of hidden 

layer is computed by trial and error, as affected in this paper.  Feed-

forward networks have been effectively implemented in numerous 

geotechnical engineering challenges (Shahin et al., 2002). The 

method is generally adapted to determine the optimum weight 

arrangement for the feed-forward-based neural network, which is the 

backpropagation algorithm that was previously highlighted. 

 

 

Figure 3  Back-propagation algorithm 

 

However, the decision to terminate the training procedure is 

accomplished with the ending criteria. The training sets are utilized 

to regulate the connecting weights, whereas the testing set scales the 

model’s capacity to popularize. Furthermore, the model performance 

is tested at various steps using this set during the training procedure. 

The process is terminated when the error of the testing set begins 

increasing (Shahin et al., 2002). 

 

3.4 Model Validation 

Once the model training phase is successfully completed, the 

performance of the trained model is validated using the validation 

data that has not been utilized in building the sample. The evaluation 

of the performance of ANN models can be performed by: 

- Determination Coefficient (R2): It is used to measure the relation 

between the observed (desired) and predicted (calculated) data: 

         R2 =
∑ (dk−D̅)2n

k=1

∑ (yk−D̅)2n
k=1

(1)                                                                      

where, dk is the desired output value, yk is the predicted output, 

D̅ is the mean of the desired output and n is the amount of data. 

- Mean- Square Error (MSE): It is the most widespread index for 

the error and has the benefit that large slip obtains more 

consideration than smaller variants.  

         MSE =
1

n
∑ (yk − d)2n

k=1                                                         (2) 

 The determination coefficient (R2) and the mean square error 

(MSE) was utilized as the fitness purpose in this study. 

 

4. MODELLING PROCESS 

In this study, the training was performed through the backpropagation 

algorithm since the BPNN yields precise forecasts to any 

uninterrupted purpose with adequate neurons. The objective of the 

ANN pattern is to obtain the best training datum that responds to 

testing. The variety of sizes of the hidden nodes must be carefully 

carried out to obtain a reliably good model. Subsequently, the ANN 

model is developed to ascertain the total hidden layers and hidden 

nodes in each hidden layer. The most favoured option is lower hidden 

nodes in a network (Alsugair and Al-Qudrah, 1998). The reason is 

that there is an improved capability for oversimplification along with 

fewer issues with the fittings. However, the performance of the 

networks may be impaired if the nodes are not sufficient to capture 

the underlying behaviour of the data. Therefore, in this paper, the trial 

and error (t&e) technique was selected to enhance the numeral of the 

hidden layers and the nodes in the hidden layer. The MSE value is the 

objective of the analysis, and its significance fluctuates with the 

correlation and determination coefficients (R and R2, respectively) of 

the results tested (Park and Cho, 2010). In principle, the R2 value 

defines the input value that contributed to computing the objective 

output value. 

The output data of an ANN could be turned back to the real data 

amount (un-normalized step). Similarly, the resulting output forecast 

by the result of the ANN could then be compared with the output 

targeted from the result of the FE analysis. This is described as the 

process of testing and validation. 

 

5. RESULTS AND DISCUSSIONS 

5.1 ANN Performance  

5.1.1    ANN Training and Calibration 

The statistical performance of the ANN model was examined for 

55%, 60%, 70%, and 80% training set and 45%, 40%, 30%, and 20% 

testing validation sets, as summarized in Table 2. The purpose of 

training is to discover a set of connection weights that will cause the 

lowest MSE in the less probable period (Hagan et al., 1996). 

 

Table 2  Details of various training sets 

Training-testing 

validation sets [%] 

Correlation 

coefficient [R] 

Mean Square 

Error [MSE] 

55-45 0.9110 0.00908 

60-40 0.9679 0.00419 

70-30 0.9983 0.00111 

80-20 0.9905 0.00154 

 

The results indicate that the low training data set for the process 

can be fitted easily, although the model cannot be used to produce 

reliable results. Moreover, the use of higher training data sets, such as 

80%, complicates the process without yielding a good fit. In addition, 

the optimal training sets for reliable modelling time training was 70% 

of the available data. The values were observed when the MSE is 

minimum, and R is maximum. Therefore, the training-testing set (70-

30)% was adopted to predict the behaviour of SC using the ANN 

method. 

 

5.1.2   Learning and Selected Activation Function of ANN Model 

The feasible prediction capability for each model was obtained by 

classifying the data into triple sets, namely, training, testing, and 

validation. The three networks utilize the network training purpose 

trainlm, which updates the weight and bias values based on the 

Levenberg-Marquardt optimization. The trainlm is typically 

recommended as the quickest, first-choice, back-propagation toolbox 

supervised algorithm, despite its high memory requirements. The 

training mechanically rests when the generalization no longer 

improves, as shown by the higher MSE of the validation models 

(Matlab, R2018b). In the current study, two ANN-based architectures 

were established (one model per output parameter) with two transfer 

functions, namely, tan-sigmoidal and linear transfer functions.  

The training data for each network model was comprised of 70% 

of the learning matrix that includes training samples. The MSE 

between the output and the target (desired response) was minimized 
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by performing the training, validation and testing processes of 

multilayer perceptron neural network MLP-NN sample. At the target 

training epoch, the MSE convergence curve of each training model 

was determined as displayed in Figure 4. 

 

 

Figure 4  Network convergence during training ANN models  

(a) SF model, (b) BC model 

 

The results are realistic due to the similar characteristics of the 

test set error and the validation set error. Likewise, no significant 

overfitting was observed. The training was stopped where the greatest 

validation performance occurred after 6 and 36 iterations for SF and 

BC models, respectively. Also, the figure demonstrates that the 

network MSE starts at a high value but declines rapidly, indicating 

the network learning process is active. Overall, the plots show that the 

networks are learning. 

 

5.1.2   Optimum Neurons Number  

The selection of neurons in the hidden layer is a significant 

characteristic of artificial intelligence techniques. Typically, when an 

inadequate number of neurons are designated, the network is not 

incapable of modelling complex data, thereby resulting in a poor fit. 

However, there is currently no mathematical (official) method to 

suitably determine the “optimal set” of important factors of a neural 

network. Consequently, the trial-error method was selected to 

perform this task in the current study. Therefore, the optimum 

arrangement and architecture were determined through the Feed-

Forward network samples. The growing numbers of neurons in the 

hidden layer were randomly selected from 1 to 30 neurons. Next, 

these were investigated to determine the best number of nodes in the 

hidden stratum based on the lowest observed errors (Lek et al., 1996). 

Therefore, the (t&e) process for choosing the optimal number of 

neurons for a definite ANN architecture was performed for each 

model. Table 3 presents the findings of the MSE and R values 

obtained for better visualization. The comparisons indicate that the 

best number of neurons operating in the hidden layer of the neural 

network is 14. This is because 14 neurons in the hidden layer result 

in a lower MSE value and the biggest R (regression) value.  

In the framework of this study, the MSE and R were adopted to 

establish that the proposed model can consistently provide high 

accuracy during the entire period. Therefore, the use of the two 

indices guarantees consistent levels of error while providing the 

potential to examine the model for hidden data during the period of 

testing. 

 

Table 3  NN performance indices versus the number of neurons 

MODEL SF BC 

Neurons Number   MSE R MSE R 

1 0.00876 0.92 3.03 0.985 

3 0.00377 0.9467 3.317 0.9912 

5 0.003 0.9811 1.804 0.9933 

7 0.001848 0.983 1.298 0.9961 

10 0.00213 0.9866 1.6749 0.9929 

13 0.000905 0.9918 1.3616 0.9902 

14 0.000749 0.9939 1.1245 0.9978 

15 0.00237 0.9806 1.2732 0.99656 

17 0.00387 0.976 1.9316 0.9933 

19 0.00319 0.974 1.569 0.99433 

23 0.003962 0.95948 1.2152 0.9968 

25 0.004823 0.96318 1.3211 0.9951 

27 0.002545 0.9793 1.4649 0.9946 

30 0.00569 0.9786 1.3145 0.9948 

 

Interestingly, changing the number of hidden network neurons 

can greatly affect the prediction performance. The outcomes show 

that the prediction performance increased with a growing number of 

hidden neurons (up to 14) with a consistent increase in R but 

decreased MSE for both models. However, a further increase in 

hidden neurons in the network did not enhance the prediction 

performance but lowered the process. For instance, the best 

arrangement of the suggested statistical indices for estimating the 

predicting model for SF, when the ANN architecture had 14 neurons 

was MSE = 7.5*10-4 and R = 0.9939. After numerous network 

training runs, it was observed the two layers neural network model 

with 14 neurons in the single hidden layer (4:14:1) yields the best-

predicted result with quick convergence based on the Feed Forward 

backpropagation network. 

 

5.2 Prediction of the Behavior of Stone Column Using ANN 

Model 

The MLP-ANN method was applied to predict SC behaviour by 

testing the main parameters (outputs). These include the bearing 

capability of each column (BC) and the safety factor (SF). The 

outcomes of the training and testing stages of the designated network 

are presented in Figure 5. The figures display the calculated and 

predicted parameters for the best network models, which yield the 

most accurate prediction. In general, the predictive aptitude of the 

ANN was sufficient for all the entire parameters for the period of 

training, testing, and validation. The observed correlation coefficient 

values (R) ranged from 0.959 to 0.997, which indicates high model 

accuracy. The maximum error percentage displayed as the model 

performance in Figure 6, represents the variance between the 

calculated and forecasted data. The plots of ANN indicate that when 

the zone of the data range is weak in prediction, the error level 

increases, resulting in a mismatch of the output-input results. For 

instance, the charts in Figure 6a clearly indicate the mismatch 

between the calculated and prediction data in specific points around 

the data of the number 150, which led to show a higher error amount. 

 

(a) (b) 

(c) 

(a) 
(a) (b) 

(c) (b) 
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(a)  

 

 
(b) 

Figure 5  ANN model correlation coefficients for the three-phase 

network with the arrangement (4:14:1); (a) SF model (b) BC 

model 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 6  Test results of selected optimal NN models: (a) SF 

model (b) BC model 

 

5.3 Relation Importance of Input (RI) 

Garson (1991) suggested a modest procedure to identify the vital 

relationship between the input variables through the connection 

weights of the training network model. The techniques analyse the 

training network and its connected weights. Therefore, the important 

inputs required to predict the ANNs output were determined through 

the connection weight method. Therefore, the linked weight 

technique adds the hidden output and input-hidden products and 

connected weights from each input to output neuron for the entire 

input variables (Olden et al., 2004). The relative importance of input 

variable RI is given by the relation: 

RIi =
∑ wijwjk

m
j=1

∑ ∑ wijwjk
m
j=1

n
i=1

× 100%     (3) 
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i = 1,2,3, … . . , n and j = 1,2,3, … . . , m    (4) 

where, RIi is the relative importance (%) of the variable i in the 

input layer on the output variable; j is the index number of the hidden 

node; wij  is the connection weight between input variable i and 

hidden node j and wjk is the connection weight between hidden node 

j and the output node k. 

Table 4 shows the connection weight values extracted from 

artificial neurons of the NN based SF model. The tabulated weights 

are derived from the NN toolbox of Matlab software. 

 

Table 4  Connection weights (w1& w2) of the SF model 

N
eu

ro
n

s 

 

connection weight between the input 

and hidden layers (w1) 

connection 

weight between 

hidden and 

output layers 

(w2) 

Input Output 

H [m] S [m] ϕ [ᵒ] D [m] BC 

1 0.01412 1.71606 1.4073 2.1146 -0.09456 

2 -0.7076 1.47332 -4.474 0.1621 0.301981 

3 -0.8334 -1.04308 1.6045 -0.286 0.075503 

4 -0.0714 2.21330 -1.278 -0.363 0.478747 

5 0.76577 -0.05212 0.4518 -0.288 0.7599 

6 -0.0554 -5.97209 -0.500 -4.735 0.157276 

7 2.26267 0.56177 2.5379 -0.819 -0.06715 

8 -0.9083 -0.53481 3.2314 -2.448 0.121887 

9 0.03746 -2.74432 -3.324 1.2501 0.157884 

10 -0.1965 -0.4357 0.1129 0.2802 -1.66731 

11 0.98633 -0.9605 0.8444 1.8427 0.250637 

12 -0.9517 2.82052 -1.811 -1.367 0.169143 

13 -0.0859 -1.90339 1.7275 0.7909 0.404076 

14 2.14330 0.30729 1.2232 -0.212 -0.21625 

 

The effect of each parameter on the SC behaviour was identified 

based on the relative importance RI of the input parameters of the 

ANN sample. The sensibility analysis was performed on the NN 

based on performance evaluation. The process of assessment was 

based on the connected weights of input and output stratus of the NN. 

The RI of each parameter was related to the others in the model and 

presented in Figure 7.   

Figure 7  RI of input parameters in ANN models 

 

The results show that the impact of all parameters is effective in 

predicting the SC behaviour ranging from 14 to 32% based on the 

examination of the RI of the inputs. In general, the plot indicates that 

the most effective inputs were S and d, which are related to the 

column number and area replacement ratio (As) for both models. This 

result is in agreement with (Kardani et al., 2020) when they estimated 

the bearing capability of columns in cohesionless ground using 

optimised machine learning methods. Similarly, (Saxena, and Roy 

2022) observed that the spacing and column diameter are two critical 

variables that influence the strength of the stone columns system. This 

was expected since the input variables were selected carefully 

according to the outcomes of FE analysis. 

 

6. CONCLUSIONS 

The work objective was to test the capacity of AI approaches to 

forecasting the behaviour of SCs. To achieve this, ANN is developed 

with various quantities of the overall data collected. Once about 70% 

training is completed, the training is satisfactorily conducted through 

the feed forward-backwards propagation neural network. Based on 

the upshots acquired, the following conclusions were drawn: 

- The ANN method attained a high level of accuracy in modelling 

the behavioural variables of SCs. The predicted values are 

compared with the real values resulting in deviation with ± 3.5% 

only. 

- The pattern with 14 neurons in the hidden stratum demonstrated 

to be the ‘best’ pattern for the 4-14-1 ANN design to obtain the 

bearing ability and safety factor of the system. 

- The simulated and forecast values are found to be in close 

agreement, the coefficient of efficiency (R) attained in the 

testing phase being more than 0.95 in both investigated models. 

This shows that the established ANN models are able of 

forecasting the bearing ability and factor of safety of stone 

columns with highly acceptable accuracy. 

- Upshots of variable importance analysis point out that the 

column diameter and c/c spacing are the most effective 

parameter (score = 0.329 and 0.322) for bearing capacity and 

safety factor estimation of SC, respectively. 
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