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ABSTRACT: Tunneling projects encounter challenges in predicting Rate of Penetration (ROP), often leading to cost overruns. This study 

introduces a deep learning approach, combining Deep Feed Forward (DFF) and Long-Short Term Memory (LSTM) techniques to enhance the 

accuracy of ROP prediction. Focused on the Mae Tang - Mae Ngad Project and its geological complexities in massive and highly fractured 

granite rock conditions, the research aims to improve ROP predictions. The study demonstrates substantial improvements, revealing Root 

Mean Square Error (RMSE) values of 0.162 (m/h) for DFF and 0.216 (m/h) for LSTM. Notably, the models exhibit enhanced performance in 

massive rock conditions with an RMSE of 0.110 (m/h), while highly fractured granite shows an RMSE of 0.261 (m/h). These findings 

underscore the potential for more precise predictions, addressing historical inaccuracies that often lead to cost overruns ranging between 50 

and 900 percent. Integrating deep learning techniques proves valuable, offering a pathway for more reliable and cost-effective tunnel 

construction endeavors. 
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1. INTRODUCTION 

Tunneling, a pivotal facet of infrastructure development spurred by 

economic and population growth, faces inherent risks in construction, 

including geological challenges, construction methods, and 

management issues, often resulting in cost overruns and delays, such 

as those observed in the Attiko Metro Project in Greece and Troy and 

Greenfield Railroad Project in the USA, with cost overruns ranging 

between 50% and 900%, respectively (Paraskevopoulou and Boutsis, 

2020). To mitigate these challenges, predictive models, integrated 

with estimation techniques like cutter wear and adherence to contract 

management regulations, have been proposed and applied throughout 

various project stages, enhancing reliability and overall performance 

(Bruland, 2000a). 

Predicting the Rate of Penetration (ROP) in tunneling involves 

two main model categories. Theoretical Models, rooted in laboratory 

testing and full-scale cutting tests, focus on cutting force 

measurements, aiding machine design, and optimizing thrust-torque 

tradeoffs. Empirical Models, incorporating field observation data, 

consider machine performance and rock mass properties, 

significantly impacting performance parameters (Rostami, 2016). 

Detailed in Table 1, existing models encompass both theoretical and 

empirical approaches, incorporating parameters from intact rock to 

machine specifications. Recent advancements involve machine 

learning applications, as shown in Table 2, where various algorithms 

and input parameters contribute to predictive accuracy. 

The evolution of these models traces back to their origin as 

theoretical models in 1976. Tunnellers subsequently developed 

models with field observation data until computers became suitable 

for AI technology in recent decades. Figure 1 illustrates that machine 

learning has played a more dominant role in prediction compared to 

other types. 

Despite the widespread use of prediction models in project 

planning, their accuracy often falls below expectations (AACE, 

2005), resulting in cost overruns and impacting project contingencies. 

For instance, applying eight existing models to the Mae Tang - Mae 

Ngad Project (MTMG) yielded root mean square errors (RMSE) 

between actual and predicted ROP values ranging from 0.356 to 0.893 

(Table 3). Accurately predicting tunnel alignment is complicated by 

challenges in determining crucial rock properties such as the uniaxial 

compressive strength. This is especially difficult in studies involving 

massive granite rock and highly fractured granite rock (Pandey et al., 

2020). 

 

Table 1  Appearance of existing models in relevant research 

Model 

Input Parameter 

Intact Rock 

Parameter 

Rock Mass 

Properties 

Machine & Performance 

Parameter 
I 

1 

I 

2 

I 

3 

I 

4 

I 

5 

R 

1 

R 

2 

R 

3 

R 

4 

M 

1 

M 

2 

M 

3 

M 

4 

M 

5 

M 

6 

CSM 

(Rostami, 

1997) 

x x         x x x x x 

MCSM 

(Yagiz, 

2002) 

x x x   x x    x x x x x 

Yagiz 

(Yagiz, 

2006) 

x x x   x x         

NTNU 
(Bruland, 

2000b) 

   x x x x    x  x x  

Mod. 

NTNU 

(Macias, 

2016) 

   x x x x    x  x x  

Gerhing 

(Gerhing, 

1995) 

x     x x    x  x x  

Alpine 

(Wilfing, 
2016) 

x x    x x    x  x x  

Farrokh 
(Farrokh 

et al., 

2012) 

x       x x x    x  

Remarks:  I1- Uniaxial Compressive Strength, I2- Brazilian Tensile Strength, I3-

Density, I4- Drilling Rate Index, I5- Porosity, R1- Distance between planes of 

weakness, R2-Angle between the plane of weakness and TBM driven direction, R3-

Rock Type, R4- Rock Quality Designation, M1- Tunnel Diameter, M2- Cutter Disc 

Spacing, M3-Cutter Tip width, M4-Cutter disc diameter, M5-Thrust Force and M6-
Total Torque. 
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Table 2  Some reviews on machine learning model in tunneling 

Author Algorithm Data 

input 

Output Evaluation 

Hadi Fattahi & 
Nima Babanouri  

(Fattahi and 

Babanouri, 2017)  

SVR-DE 
SVR-ABC 

SVR-GSA 

UCS, BI, 

DPW, 

Alpha 
angle 

ROP MSE = 

0.0145 

MSE = 
0.0178 

MSE = 

0.0158 

Danial Jahed 

Armaghani 
(Armaghani et al., 

2018) 

GEP 

Equation 

RQD, 

UCS, 

RMR, 

BTS, 

WZ, TF, 

RPM 

ROP RMSE = 

0.264 

Feng Shangxin 

(Shangxin et al., 

2021) 

Deep 

Learning 

Torque, 

Thrust, 
RPM, 

Advance 

velocity 

FPI RMSE = 

2.290 

Mohammadreza 

Koopialipoor 
(Koopialipoor et 

al., 2019) 

Group 

method of 
data 

handling 

RQD, 

UCS, 

RMR, 

BTS, 

WZ, TF, 

RPM 

ROP R2 = 0.924 

Mohammadreza 

Koopialipoor 

(Koopialipoor et 
al., 2020) 

ANN 

FA-ANN 

RQD, 
UCS, 

RMR, 

BTS, 

WZ, TF, 

RPM 

ROP R2 = 0.889 

R2 = 0.936 

Remarks: SVR-Support vector regression, DE-Differential Evolution algorithm, 

ABC-Artificial Bee Colony algorithm, GSA-Gravity Search Algorithm, GEP-Gene 

Expression Programming Equation, ANN-Artificial neural network, FA-Firefly 

algorithm, UCS-Uniaxial Compressive Strength, BI-Brittleness Index, DPW-
Distance Between Planes of Weakness, Alpha angle-angle between plane of 

weakness and TBM direction, RQD-Rock Quality Designation, RMR-Rock Mass 

Rating, BTS-Brazilian Tensile Strength, WZ-Weathering Zone, TF-Thrust Force, 

RPM-Cutterhead Velocity, FPI-Field Penetration Index, ROP- Rate of Penetration. 
 

Table 3  Result of existing TBM performance prediction models 

Model Model evaluation 

 All Rock 

Type 

RMSE 

Rock 

Type I 

RMSE 

Rock 

Type II 

RMSE 

CSM (Rostami, 1997) 0.499 0.356 0.743 

MCSM (Yagiz, 2002) 0.690 0.764 0.460 

Yagiz (Yagiz, 2006) 0.438 0.430 0.457 

NTNU (Bruland, 2000) 0.816 0.787 0.885 

MNTNU (Macias, 2016) 0.809 0.787 0.861 

Gehring (Gerhing, 1995) 0.629 0.481 0.893 

Alpine (Wilfing, 2016) 0.514 0.390 0.736 

Farrokh (Farrokh, 2012) 0.444 0.422 0.493 

Remarks: RMSE - Root mean square errors (m/h),  

Rock Type I - Rock without plane of weakness,  

Rock Type II - Rock with the plane of weakness. 

 

In response to these challenges, this paper endeavors to develop a 

predictive model for Tunnel Boring Machine (TBM) performance 

during the construction phase. Deep learning techniques, specifically 

Deep Feed Forward (DFF) and Long-Short Term Memory (LSTM), 

will be employed, integrating with block models based on mining 

techniques. This innovative approach aims to enhance the accuracy 

of tunneling performance predictions, contributing to more effective 

project planning and execution. Additionally, the study will 

rigorously analyze the output of predictions in massive granite rock 

and highly fractured granite rock, providing valuable insights into the 

model's performance under diverse geological conditions. 

 

Figure 1  Trending of TBM prediction model 

 

2. PROJECT DESCRIPTION 

2.1 MTMG Water Transfer Tunnel Project – Contract 1 

As part of a broader infrastructure initiative, the MTMG project has 

a primary focus on addressing water supply challenges by transferring 

water from the Mae Tang River to the Mae Kuang reservoirs. 

Specifically, the project encompasses a bifurcated tunnel spanning 25 

km in its initial segment, dedicated to facilitating water transportation 

from the Mae Tang River to the Mae Ngad reservoir (refer to Figure 

2 and Table 4). Subsequently, the second section of the tunnel is 

committed to transferring water from the Mae Ngad reservoir to the 

Mae Kuang reservoir. The overarching goal of the MTMG project is 

to significantly enhance the water supply for residents residing in 

Chiang Mai and Lamphun Province, both situated in Northern 

Thailand. This vital infrastructure endeavor aims to alleviate water 

scarcity concerns and contribute to the sustainable development of the 

region. 

The tunneling process for the MTMG project is intricately 

designed and divided into four distinct components, namely, Mae 

Tang - Mae Ngad contracts 1 and 2, and Mae Ngad - Mae Kuang 

contracts 1 and 2. Each of these components plays a crucial role in 

the seamless execution of the project, ensuring the efficient and 

reliable transfer of water across the specified segments. 

By delineating the tunneling process into these well-defined 

components, the project management aims to enhance precision, 

streamline construction activities, and optimize resource utilization, 

ultimately contributing to the successful realization of the project's 

overarching water supply objectives. 

 

2.2 Geological Conditions along the MTMG Project 

A comprehensive geological assessment of the project reveals the 

presence of three distinct zones. Zone I is characterized by Triassic 

granitoid and felsic volcanic rock, Zone II encompasses the Ping 

River fault, and Zone III is defined by sedimentary rock formations 

(refer to Figure 3). The geological composition of each zone plays a 

critical role in influencing the tunneling process and determining the 

challenges associated with the excavation. 

Within this geological framework, the Tunnel Boring Machine 

(TBM) excavation primarily occurs in Zone I. This zone, delineated 

by granite and marble, presents sporadic instances of high fracture 

and fault occurrences. This paper specifically focuses on the 

geological conditions within Zone I, particularly examining the 

section spanning ring numbers 2350 to 2649, equivalent to 420 

meters. This segment is characterized by massive and highly fractured 

granite, as depicted in Figure 4, with uniaxial compressive strength 

(UCS) values ranging between 177 and 32 MPa. By delving into the 

geological nuances of this specific zone, the study aims to provide a 

detailed understanding of the challenges and considerations pertinent 

to the tunneling activities within this scope. 
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Figure 2  MTMG water transfer tunnel 

 

 

Figure 3  Geological conditions along the MTMG tunnel 

(Kaewkongkaew et al., 2013) 

 

 

Figure 4  Left side of tail shied opening at ring no. 2484 

 

Table 4  Information of MTMG tunnel project 

(Mae Tang - Mae Ngad contracts 1) 

Description Value Remarks 

Tunnel length 13.6 km Main Tunnel 

Inner diameter 4.0 m  

Tunneling 

method 

2  

   - Drill & Blast 3.9 km Sta.0+000 to 3+700 

  and Sta.13+400 to 13+600 

   - TBM 9.7 km Sta.13+400 to 3+700 

Support system   

   - Drill & Blast Concrete 

Lining 

Horseshoe shape 

   - TBM Concrete 

Segmental 

Honeycomb type 

 

2.3 TBM Specification 

The tunnel boring machine (TBM) chosen for this project is a hard 

rock double shield TBM specifically designed to navigate challenging 

geological conditions. Ascending with a slope of 0.156% from Adit-

2 to Adit-1, the TBM ensures efficient excavation throughout the 

tunneling process. With an excavation diameter of 4.74 meters, the 

TBM is equipped with 32 cutter discs, each measuring 17 inches (432 

mm) in diameter. The cutter discs are arranged with an average 

spacing of 82 mm, contributing to precision in the excavation process. 

The TBM boasts a maximum thrust of 7,500 kN, allowing it to 

navigate through diverse geological formations encountered during 

the project. Operating at a cutterhead speed ranging from 0.5 to 0.9 

revolutions per minute (rpm), the machine adapts to different rock 

conditions. Powering these operations are six drive motors, 

collectively enabling the TBM to execute precise and efficient 

excavation. As an integral part of the backup system, rolling stock is 

incorporated for material supply and muck hauling, ensuring a 

streamlined process for handling excavated material and supplying 

resources required for tunneling activities (Figure 5). These technical 

specifications collectively highlight the TBM's suitability for the 

specified geological conditions and the demands of the project. 

 

 

Figure 5  Illustrate T57 double shield TBM and rolling stock 

fleets 

 

3. DEEP LEARNING TECHNIQUE 

Deep learning, a branch of machine learning, has been extensively 

adopted for its ability to efficiently process complex data structures 

through artificial neural networks (ANNs) with multiple layers.  

In geotechnical engineering, particularly in tunneling, the 

integration of machine learning techniques has proven 

transformative. For instance, Hadi Fattahi and Nima Babanouri 

utilized SVR variants enhanced with different optimization 

algorithms to predict the Rate of Penetration (ROP) with low mean 

squared errors, demonstrating high accuracy in predictions (Fattahi 

and Babanouri, 2017). Similarly, Armaghani et al. (2018) applied the 

Gene Expression Programming (GEP) approach, using factors like 

Rock Quality Designation (RQD) and Uniaxial Compressive Strength 

(UCS) to predict ROP with an RMSE of 0.264. Furthermore, Feng 

Shangxin et al. (2021) explored the use of deep learning for predicting 

the Field Penetration Index (FPI) with data inputs like torque and 

thrust, highlighting the technique’s robustness despite a higher RMSE 

of 2.290. Moreover, Koopialipoor et al. demonstrated the 

effectiveness of the Group Method of Data Handling  (Koopialipoor 

et al., 2019) and Artificial Neural Networks (Koopialipoor et al., 

2020) in predicting ROP with high R2 values, underlining the 

predictive power of these approaches. 

Building upon this empirical foundation, this paper explores the 

use of two distinct deep learning structures tailored to different types 

of data encountered in tunneling operations. The Deep Feed Forward 

(DFF) network will be employed to handle non-sequential data, such 

as the physical properties of rock masses, which do not require 

consideration of previous states or time dependencies. This makes 

DFF particularly suited for analyzing static inputs like mineral 

composition and grain size distribution. On the other hand, the Long 

Short-Term Memory (LSTM) network will be utilized specifically for 

sequential or time series data, such as monitoring data collected over 

the course of tunneling. This approach takes advantage of LSTM's 

capacity to remember and utilize past information, which is crucial 

for accurately predicting the temporal sequence of events, like rock 

deformation or tool wear. By applying these models independently, 

we aim to maximize the predictive accuracy of tunnel boring machine 

performance in the challenging geological conditions of massive and 

highly fractured granite. 

Mae Tang-Mae Ngad 

transfers tunnel 

Mae Ngad 

Reservoir 

Mae Tang 

River 
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3.1 Deep Feed Forward Network (DFF) 

A fundamental architecture in the realm of deep learning, the deep 

feed-forward network (DFF) is distinguished by its multilayer 

structure, comprising an input layer, several hidden layers, and an 

output layer (refer to Figure 6). This architecture facilitates a 

unidirectional flow of information from the input to the output layer, 

allowing each node within a hidden layer to connect to every node in 

the preceding layer. Such a setup enables the network to construct 

intricate hierarchical representations of the input data, which is 

essential for analyzing non-sequential data relevant to tunneling 

projects, such as rock mass properties and geological conditions.  

DFFs are particularly adept at handling large, static datasets 

where temporal relationships are not a concern, making them ideal 

for predicting aspects like tool wear or estimating the penetration rate 

of TBMs based on geological parameters. The effectiveness of DFFs 

in tunneling stems from their ability to autonomously identify and 

learn from the complex, hierarchical features of geological data, 

thereby enhancing predictive accuracy and operational efficiency in 

tunnel construction. 

 

3.2 Long Short-Term Memory Network (LSTM) 

Within the spectrum of deep learning architectures, the Long Short-

Term Memory network (LSTM) specifically addresses the limitations 

of traditional recurrent neural networks (RNNs), as depicted in Figure 

7. Originating in 1997 from the pioneering work of Sepp Hochreiter 

and Juergen Schmidhuber, LSTMs enhance the basic RNN structure 

by incorporating memory cells and various gates that manage the flow 

of information (Hochreiter and Schmidhuber, 1997). This design 

effectively overcomes the notorious gradient vanishing problem 

associated with extended data sequences. The advanced structure of 

LSTMs is detailed in Figure 8, highlighting the unique components 

such as input gates, forget gates, and output gates. 

The LSTM's ability to maintain and utilize long-term data 

sequences is particularly valuable in tunneling applications where 

sequential or time-series data, such as the continuous monitoring of 

TBM operational parameters, is crucial. LSTMs excel in modeling 

the dynamics of tunnel advancement, adapting to changes in 

geological conditions over time, and predicting potential issues 

before they arise. By capturing and analyzing patterns over extended 

periods, LSTMs facilitate more accurate forecasts of machine 

behavior and project timelines, thereby contributing to safer and more 

cost-effective tunneling operations. 

 

 

Figure 6  Deep feed forward network (DFF) 

 

 

Figure 7  Recurrent neural network (RNN) 

 

Figure 8  Illustrates the structure of long short-term memory 

(LSTM) (Sirinart, 2017). 

 

4. BLOCK MODEL TECHNIQUE 

In tunneling, acquiring comprehensive data on intact rock properties, 

such as unconfined compressive strength (UCS), is often challenging 

due to the practical limitations of examining the entire length of a 

tunnel. Techniques like the use of a Schmidt hammer provide indirect 

measurements of UCS along the penetrated path. Initially developed 

for concrete testing in 1948, the Schmidt hammer has been adapted 

to assess the compressive strength of rock both in-situ and in the 

laboratory. The tool measures the rebound value of a hammer after it 

impacts the rock surface, which correlates to the rock's compressive 

strength. 

From various studies, it has been found that the Schmidt hammer 

is particularly effective in geotechnical evaluations. For instance, 

Ghaemi et al. utilized this tool to measure the compressive strength 

of rock mass in the project of Emamzadeh Hashem Tunnel, Amol, 

Iran (Ghaemi et al., 2015). Their findings showed that the correlation 

between the UCS and the indirect method had a Root Mean Square 

error ranging between 14.73 and 20 percent, with R2 values from 

0.723 to 0.840, highlighting its utility in practical applications. 

However, in the context of double shield-type Tunnel Boring 

Machines (TBMs), the presence of shields complicates direct rock 

investigations, often leading to gaps in UCS data. This specific 

challenge is visually depicted in Figure 9, illustrating how shield 

presence can obstruct rock property assessment along the tunnel 

route. 

To address these challenges, this research proposes the adoption 

of a mining technique known as the “Block Model.” Traditionally 

used in mining to evaluate ore properties such as lithology, grade 

percentage, density, and hardness, the Block Model is adapted here 

for geological evaluation in tunneling. The method involves dividing 

the geological data into discrete “blocks” or “bricks,” where the size 

of each block is determined by its geological characteristics and the 

required precision for assessment. This structured approach allows 

for a detailed, localized analysis of rock properties along the tunnel 

route, as depicted in Figure 10 (Poniewierski, 2019). 

 

Figure 9  Display gaps UCS and Geological data 

Input layer 

Hidden layer 

Output layer 

Input layer 

Hidden layer 

Output layer Investigation 

Boreholes 

TBM 

Excavate Direction 

UCS & 

Geology Data 

Gap or Missing Data 
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Figure 10  Display of the estimation of drillhole samples into a 

block 

 

The Block Model facilitates the simultaneous assessment of 

multiple rock properties within these blocks using the available data, 

significantly enhancing the understanding of geological variations 

along the tunnel. For areas within the tunnel where data varies 

minimally over significant distances, the Inverse Distance Weighting 

(IDW) Method proves particularly effective. This spatial 

interpolation technique estimates the properties of unknown points 

based on the properties of nearby known points, with closer data 

points receiving greater weighting. The general formula for the IDW 

employed in this study is given by: 

𝐺𝐴 = ∑ 𝑊𝑖𝐺𝑖
𝑛
𝑖=1               (1) 

Where, GA = estimated grade; Wi = normalizes weight; Gi = 

Grade. The summary of Wi equals to 1. Wi can be calculated using 

the equation as: 

𝑊𝑖 = 1 𝑑𝑖
𝑥⁄              (2) 

Where, x = initial value that is equals to 2, after that it is adaptive 

on field. 

This enhanced explanation of the Block Model, including the use 

of the Schmidt hammer for indirect UCS measurements, should 

clarify its application and utility in tunneling projects, facilitating a 

better understanding of geological conditions along the tunnel path 

and enabling more accurate planning and execution. 

 
5. METHODOLOGY 

This section outlines the methodology employed in the study, 

including data collection, data preparation and evaluation processes. 

Each step is detailed below to ensure a clear understanding of the 

research approach. 

 

5.1 Data Collection for Model Formation 

5.1.1 Geological Data 

Geological parameters are gathered from investigated boreholes and 

surveys along the tunnel line. This data includes the Uniaxial 

Compressive Strength (UCS), indirect UCS measurements obtained 

using a Schmidt hammer, Alpha angle, Coarseness Index (CI), and 

Rock Mass Type (RMT). 

 

5.1.2 TBM Performance Data 

Performance data from the tunnel boring machine is continuously 

recorded via a work tracking program. This includes the duration 

required for the installation of concrete segments, each segment 

referred to as a “Ring,” covering a tunnel length of 1.4 meters. 

 

5.2 Geological Parameter Extent Using Block Model 

The Block Model is instrumental in addressing gaps in geological 

data, particularly in the measurement of Uniaxial Compressive 

Strength (UCS). In areas where direct UCS and indirect UCS data are 

missing, the Block Model helps interpolate these values using the 

Inverse Distance Weighting (IDW) method, outlined in Equations 1 

and 2. 

 

5.2.1 Process of Imputing Missing UCS Values 

Initial Data Plotting: Initially, UCS values obtained from borehole 

data and surveys are plotted on a graph as blue dots (Figure 11). These 

represent actual measured values along different points of the tunnel. 

Second, Imputation Using Block Model: To fill in the gaps where 

UCS data are missing, the Block Model employs the IDW method. 

This technique estimates the UCS values based on the spatial 

proximity and the known UCS values from neighboring points. The 

imputed UCS values are plotted as yellow dots on the graph (Figure 

11). These yellow dots effectively bridge the gaps between the blue 

dots, providing a continuous understanding of UCS variations along 

the tunnel. 

Resulting UCS Dataset: The final graph, which can be viewed in 

Figure 11, displays both the original and imputed UCS values. This 

visual representation helps illustrate how the Block Model facilitates 

a comprehensive dataset, enhancing geological assessments and 

subsequent tunneling decisions. 

By integrating the actual and imputed data, the Block Model not 

only fills in missing data but also enhances the reliability of 

geological evaluations across the tunnel. This comprehensive dataset 

is crucial for optimizing tunnel design and anticipating challenges 

that might arise due to varying rock strength. 

 

 

Figure 11  Display of UCS (by Schmidt hammer) and imputed 

UCS values 
 

5.3 Parameter Selection for Inputs 

The input parameters for the predictive model were carefully selected 

based on data collected from 300 Rings, specifically from Ring 

Numbers 2350 to 2649. These inputs include a range of operational 

and geological variables thought to influence the Rate of Penetration 

(ROP), which is critical for assessing the performance of Tunnel 

Boring Machines (TBMs). The parameters considered were Thrust 

Force, Cutterhead Torque, Cutterhead Speed, Rock Mass Type 

(RMT), and Uniaxial Compressive Strength (UCS). 

To determine the most impactful parameters on ROP, a heatmap 

was created to visually represent the correlation coefficients between 

each input parameter and ROP. Figure 12 provides this heatmap, 

which aids in understanding the strength and direction of each 

relationship: 

Thrust Force: This shows a moderate negative correlation with 

ROP (-0.5), indicating that higher thrust force tends to decrease ROP, 

possibly due to increased mechanical resistance. 

Cutterhead Torque: Exhibits a moderate positive correlation 

(0.37), suggesting that higher torque may enhance cutting efficiency 

and thus increase ROP. 

Cutterhead Speed: Displays a correlation coefficient of 0.23, 

indicating a positive relationship with ROP, though less pronounced 

compared to torque or thrust force. 

Rock Mass Type (RMT): Has a moderate positive correlation 

(0.42), implying that certain rock types may facilitate faster drilling. 

Fill with Block Model 
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Uniaxial Compressive Strength (UCS): This shows a correlation 

of -0.24, indicating that softer rocks, which have lower UCS values, 

may allow for higher ROP. 

The correlation analysis was instrumental in refining the selection 

of input parameters for the predictive model. By choosing parameters 

with statistically significant correlations to ROP, the model is better 

positioned to accurately predict tunneling performance. The selected 

parameters reflect a balance between operational variables (thrust 

force, cutterhead torque, and speed) and geological conditions (rock 

mass type and UCS), ensuring comprehensive coverage of factors that 

influence TBM effectiveness. This strategic selection process 

enhances the model’s reliability and ensures it is robust enough for 

practical application in tunneling operations, aiding in the planning 

and optimization phases of tunnel construction projects. 

 

 
Remarks: units of inputs and output parameters are followings. 

Thrust force: kN, Cutterhead torque: kN-m, 

Cutterhead Torque (RPM): Round per minute 
Rock mass type: No units, UCS: MPa and ROP: m/h 

Figure 12  Display of correlation heatmap between the input 

parameter and the output (ROP) 

 

5.4 Data Preparation before Deep Learning 

Effective data preparation is crucial for the optimal performance of 

deep learning models. This study utilizes two types of neural 

networks: Deep Feed Forward Network (DFF) and Long Short-Term 

Memory (LSTM), each requiring specific scaling techniques to 

prepare the data. 

 

5.4.1 Data Scaling for DFF and LSTM 

Before training, data for the DFF model is scaled using Standard 

Scaling, which transforms the data to have zero mean and unit 

variance. This normalization method is ideal for DFF models because 

it prevents features with larger numerical ranges from dominating the 

learning process, ensuring that each feature contributes equally to the 

model’s predictions. This is particularly beneficial when input 

features vary in their units of measurement, aiding in faster and more 

stable convergence during training. 

For the LSTM model, data is scaled using Min-Max Scaling to 

ensure that all features contribute equally to the model’s learning 

process and maintain effective internal state calculations over time. 

This scaling method transforms the data to a common scale of 0 to 1, 

aligning with the activation functions used within LSTMs, which are 

sensitive to the magnitude of input values. This helps stabilize the 

model’s learning and internal dynamics, which is especially 

important for processing sequential data where maintaining temporal 

dependencies is crucial. 

 

5.4.2 Data Arrangements 

For the DFF model, the order of data is not critical as the model does 

not process temporal sequences. However, for the LSTM model, it is 

imperative to arrange the data sequentially. For example, to predict 

performance at Ring 3000, data from Rings 2990 to 2999 must be 

organized in sequence after Min-Max Scaling, ensuring the LSTM 

model accurately captures temporal dependencies. 

5.5 Dataset Splitting 

The dataset is divided into two parts: 80% for training the machine 

learning model and 20% for validation. This equates to 240 Rings for 

training and 60 Rings for validation. 

 

5.6 Performance Evaluation Metrics 

The model’s performance is assessed using the expected accuracy 

range specified by AACE (-10% to +15%). Additionally, the Root 

Mean Square Error (RMSE) is calculated with the following 

Equation: 

𝑅𝑀𝑆𝐸 =  √∑ (𝑦�̂� − 𝑦𝑖)2𝑁
𝑖=1 𝑁⁄    (3)  

Where, 𝑦�̂� = predicted ROP values; 𝑦𝑖= achieve ROP value; N= 

the total numbers of data. 

This comprehensive methodology ensures that each step, from 

data collection through performance evaluation, is meticulously 

designed to support the study’s objectives, enabling effective 

predictions of TBM performance based on deep learning models. 

 

6. MODEL VALIDATION 

The structural configurations for the Deep Feed Forward (DFF) and 

Long Short-Term Memory (LSTM) models used in the Mae Tang - 

Mae Ngad Project (MTMG) were meticulously determined through a 

comprehensive hyperparameter tuning process. For the DFF model, 

the optimal setup finalized from Table 5 involved configuring the 

model with 5 hidden layers, each containing 7 nodes. This 

configuration was chosen after extensive testing to best capture the 

complexities of the input data relevant to tunneling performance, 

achieving a minimized RMSE and optimal performance during 

validation phases. Similarly, the LSTM model, specifically designed 

to process temporal sequences effectively, was optimized with 10 

input nodes and a single hidden layer containing 12 nodes as shown 

in Table 6. The selection of these configurations was driven by their 

superior ability to accurately predict the Rate of Penetration (ROP), 

reflecting the lowest RMSE values and highest validation ratings in 

comparative testing. These configurations are documented in Tables 

5 and 6, illustrating the step-by-step hyperparameter adjustments and 

their impact on model performance, ensuring that each model is finely 

tuned to the specific requirements of the MTMG project. 

The validation of the prediction models was rigorously conducted 

using a dataset comprised of over 300 data points spanning Ring 

numbers 2350 to 2649. The DFF model, depicted in Figure 13, and 

the LSTM model, shown in Figure 14, underwent evaluation to assess 

their predictive accuracy. The validation process involved calculating 

the Root Mean Square Error (RMSE) for both models, with results 

presented in Figure 15 and summarized in Table 7. Furthermore, the 

effectiveness of these models in different geological contexts was 

analyzed and is depicted in Figure 16 and detailed in Table 8, 

highlighting the models' performance across varying rock mass types. 

The comparative analysis between the DFF and LSTM models, 

alongside established models such as the CSM and Yagiz models, 

provides a comprehensive perspective on the effectiveness of deep 

learning techniques in tunneling operations. It is important to note 

that the comparisons made with the CSM model (Rostami, 1997) and 

the Yagiz model (Yagiz, 2006) are based on different datasets. These 

historical models were applied to other geological and operational 

conditions, which may influence the RMSE values reported. Despite 

LSTM's capability to utilize sequential data, its RMSE of 0.216 did 

not significantly outperform the DFF’s RMSE of 0.162. Compared to 

traditional models, both deep learning approaches demonstrated 

superior accuracy. For instance, the CSM model, which is theoretical, 

reported an RMSE of 0.499 for all rock mass types, with specific 

values of 0.356 for Type I (Massive) and 0.743 for Type II (Highly 
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fractured). Similarly, the empirical Yagiz model yielded RMSEs of 

0.438, 0.430, and 0.457 for all rock mass types, Type I and Type II, 

respectively, as detailed in Table 3. 

 

Table 5  The result of hyperparameter tunning process for DFF 

structures 

 
 

 

 
 

 

Figure 13  A) Structure of DFF for MTMG prediction model 

and B) An example for predicted Ring No. 3000 

 

Table 6  The result of the hyperparameter tuning process for 

LSTM structures 

 
 

 

 

Figure 14  A)Structure of LSTM for MTMG prediction model 

and B) An example for predicted Ring No. 3000, 3001, and 3002 

 

The results underscore that both DFF and LSTM models provide 

more precise predictions than these existing models, especially when 

handling varied geological conditions. DFF stands out for its ability 

to provide highly accurate predictions, leveraging its structured 

architecture and layered approach. On the other hand, LSTM 

demonstrates remarkable adaptability, particularly in scenarios 

characterized by fluctuating geological conditions and unforeseen 
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input parameters. Its recurrent neural network design allows it to 

effectively predict based on historical datasets, making it especially 

suited for handling dynamic and evolving environments. The 

combined outputs from both DFF and LSTM models, as presented in 

Table 8, reveal distinct RMSE values for different rock types, with 

0.110 for Massive (Type I) and 0.261 for highly fractured granite 

(Type II). These results demonstrate the nuanced capability of deep 

learning models to adapt to and accurately predict performance across 

different geological scenarios. The detailed analysis in Table 8 was 

crucial in evaluating the relative effectiveness of these deep learning 

techniques against varied rock masses, highlighting that deep learning 

not only offers improvements in predictive accuracy but also provides 

insights into the specific conditions under which each model excels. 

This comparative analysis is instrumental for guiding future 

applications and adjustments of the models, ensuring optimized 

performance in diverse tunneling environments. 

 

 

 
Remarks: Overpredict – Predict ROP higher than Actual ROP 

      Underpredict – Predict ROP lower than Actual ROP 

Figure 15  Predicted ROP value by DFF and LSTM network 

 

Table 7  Output of Prediction Models on Validation Set 

Model Number 

of 

datasets 

Model evaluation 

RMSE AACE Range (-10% to +15%) 

(m/h) In 

range 

Over 

perform 

Under 

perform 

DFF 60 0.162 44 

(73%) 

9  

(15%) 

7 

(12%) 

LSTM 

(t) 

58 0.216 36 

(62%) 

8 

(14%) 

14 

(24%) 
Remarks: The LSTM model is designed to predict the next three periods based on 

sequential data. Consequently, the validation dataset for the LSTM model includes 

only 58 of the 60 datasets allocated. This adjustment is necessary because the last 
two datasets of the sequence lack sufficient subsequent data points to complete the 

required three-period prediction cycle. This ensures the integrity and accuracy of 

the LSTM’s predictive performance. 

 

 
Remarks: Overpredict – Predict ROP higher than Actual ROP 

Underpredict – Predict ROP lower than Actual ROP 

Figure 16  Predicted ROP on massive and highly fractured 

granite 

 

Table 8  Output of prediction model on massive and highly 

fracture granite rock  

Rock 

Mass 

Type 

Number 

of 

datasets 

Model evaluation 

RMSE AACE Range (-10% to +15%) 

(m/h) In 

range 

Over 

perform. 

Under 

perform. 

Type I  

- DFF  

 

- LSTM 

 

Sum. 

 

35 

 

36 

 

71 

 

0.094 

 

0.125 

 

0.110 

 

25 

(71%) 

23 

(64%) 

48 

(68%) 

 

6 

(17%) 

6 

(17%) 

12  

(17%) 

 

4 

(12%) 

7 

(19%) 

11 

(15%) 

Type II 

- DFF 

 

- LSTM 

 

Sum. 

 

 

15 

 

3 

 

18 

 

0.179 

 

0.669 

 

0.261 

 

10 

(67%) 

- 

(0%) 

10 

(56%) 

 

3 

(20%) 

- 

(0%) 

3 

(17%) 

 

2 

(13%) 

3 

(100%) 

5 

(28%) 

Remarks: Rock Type I – Massive Granite Rock,  

Rock Type II – Highly Fracture Granite Rock.  

 
7. CONCLUSIONS 

The comprehensive evaluation of the Deep Feed Forward (DFF) and 

Long Short-Term Memory (LSTM) models within this study 

illustrates their distinctive advantages in predicting the Rate of 

Penetration (ROP) during tunnel excavation. The DFF model, with its 

structured architecture and multiple hidden layers, has demonstrated 

high accuracy in scenarios where geological conditions are 

consistent, such as massive rock formations. This precision 

underscores DFF’s strength in leveraging well-defined patterns in 

static data inputs. 

Legends: Validation (DFF), AACE Range (-10 to 15%) 

Legends: Validation (LSTM), AACE Range (-10 to 15%) 

Overpredict 
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Underpredict 

Underpredict 

+15% 

-10% 

Legends: DFF Model, x LSTM Model, AACE Range (-10 to 15%) 

+15% 

-10% 

Legends: DFF Model, x LSTM Model, AACE Range (-10 to 15%) 
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Conversely, the LSTM model excels in dynamic environments 

characterized by fluctuating geological conditions and variable input 

parameters. Its ability to incorporate historical data through its 

recurrent neural network design enables it to adapt and predict future 

outcomes effectively, making it particularly valuable for 

environments like highly fractured granite, where geological 

variables are less predictable. 

A crucial insight from this study is the comparative analysis of 

model performance across different geological contexts. It was 

observed that both models show enhanced performance in massive 

rock compared to highly fractured granite. This differentiation 

highlights the models’ capability to identify and learn from complex 

patterns within more uniform geological structures, which allows for 

more accurate predictions in these settings. Furthermore, when 

comparing our integrated approach of using block models combined 

with deep learning techniques to traditional theoretical and empirical 

models, our method offers substantial improvements. The integration 

enhances the adaptability and accuracy of predictions, especially in 

complex geological conditions that traditional models struggle to 

interpret effectively. For example, while the CSM and Yagiz models 

provided foundational insights, our approach reduces RMSE 

significantly, indicating more precise and reliable predictions. 

Ultimately, the findings from this research lay the groundwork for 

the future development of an advanced ROP prediction framework 

specifically designed for diverse tunneling scenarios. By harnessing 

the strengths of both DFF's precision and LSTM's flexibility, this 

proposed framework promises to revolutionize tunnel excavation 

planning and execution. It offers the potential not only to improve 

project efficiency and cost-effectiveness but also to enhance safety 

and risk management by providing more accurate and timely 

predictive insights. 

This study's implications extend beyond immediate project 

applications, suggesting broader utility in geotechnical engineering 

and construction management. The integration of such deep learning 

models into standard practice could provide substantial benefits, from 

strategic project planning to real-time decision support, marking a 

significant step forward in the field of tunnel construction. 
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