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ABSTRACT: The evaluation of the seabed response, including pore pressure, effective stresses and shear stresses, is particularly important 

for coastal geotechnical engineers involved in the design of foundation around marine structures. This paper consists of two components. The 

first component focuses on analytical approximation for the seabed response, in which a new analytical solution for the seabed response due 

to combined wave and current loading is presented. Both transient and residual mechanisms are considered. Based on the new analytical 

solution, the effects of currents on the seabed response are examined and a modified J-S curve is presented. The second component will 

present an integrated model for ocean waves propagating over a submerged coastal structure. In the new model, Navier-Stoke equations, 

Biot’s poro-elastic theory, and structural mechanics theory are solved for wave propagation, seabed response and structure deformation, 

respectively. The new feature of this model is to integrate wave, soil and structure modes into one model within COMSOL Multiphysics 

environments. In this part, we first present the model of ocean wave generation over a porous seabed. Then we further consider two coastal 

engineering problems: (1) ocean waves propagating over a submerged breakwater on a porous seabed; and (2) waves over a deformable 

structure on a porous seabed, which can be applied to wave energy converter. 

 

 
1. INTRODUCTION 

 

The phenomenon of pore pressure within a seabed is an important 

feature in coastal engineering problems such as the stability of 

breakwaters and the sinking or uplifting of pipelines. It is well 

known that ocean waves/currents can generate significant dynamic 

pressures on the sea floor. This dynamic pressure further induces 

pore-water pressure and effective stresses within the seabed. With 

excess pore pressure and diminishing vertical effective stress, part of 

the seabed may become unstable or even liquefied. Once 

liquefaction occurs, the soil particles are likely to be carried away as 

a fluid by any prevailing bottom current or mass transport owing to 

the natural loadings such as waves and currents. 

This paper consists of two components: (i) analytical 

approximation for the seabed response due to dynamic loading 

(including waves and currents); and (ii) integrated numerical model 

for waves propagating over a porous seabed around marine 

structures. 

Two mechanisms of the seabed response have been observed in 

the field measurements and laboratory experiments, depending upon 

how the excess pore pressure is generated (Nago et. al, 1993). One 

is caused by the residual or progressive nature of the excess pore 

pressure, which appears in the initial stage of cyclic loading. This 

type of soil response is similar to that induced by earthquakes, 

caused by the buildup of excess pore pressure (Seed and Rahman, 

1978). The other, generated by transient or oscillatory excess pore 

pressures, is accompanied by the damping of amplitude and phase 

lag in the pore pressure, and appears as a periodic response to each 

wave (Yamamoto et. al, 1978; Jeng and Hsu, 1996). 

Numerous investigations of the wave-induced transient soil 

response have been reported, based on different assumptions of 

relative rigidity for pore fluid and soil skeleton. Among these, 

Yamamoto et al. (1978) developed an analytical solution for the 

water waves/soil interaction problem within a hydraulically 

isotropic seabed of infinite thickness. For a fully saturated seabed, 

the soil response was also found to be independent of the soil 

permeability and no phase lag was observed. On the other hand, 

pore pressure attenuates rapidly with a phase lag in an unsaturated 

seabed. Details of previous investigations of wave–seabed–structure 

interactions were summarized in Jeng (2003). 

Residual mechanisms of wave-induced pore pressure have been 

investigated since Seed and Rahman (1978). Dynamic wave 

pressures that vary harmonically in space and time will generate 

cyclic shear stresses in the soil that can cause the contraction of 

relatively loose soils and in turn lead to an increase in the mean 

excess pore-water pressure if drainage is impeded. These mean pore 

pressures are not uniquely related to instantaneous values of the 

wave-induced stresses, but depend on the accumulated action of the 

cyclic loading and the rate of pore pressure dissipation. Under this 

action, liquefaction may develop in un-drained or poorly drained 

conditions. Some recent investigations of this mechanism were 

carried out by numerous researchers (Sumer and Cheng, 1999; 

Sumer and Fredsoe, 2002; Sassa and Sekiguchi, 1999; Jeng and 

Seymour, 2007). 

It is noted that all aforementioned investigations have only 

considered wave loading, totally ignored another important natural 

loading-ocean currents. In §2, the seabed response within a porous 

seabed will be re-examined by considering the combined loadings of 

waves and currents. Both transient and residual mechanisms will be 

considered in this study. Based on the newly analytical solutions, a 

simplified approach for the predictions of liquefaction will be 

proposed for engineering practice. 

Marine structures on a porous seabed have been widely 

constructed for the coastal protections, oil production transport and 

offshore wind farm foundation. The existence of these structures 

(such as breakwaters, vertical walls, pipelines and mono-piles, etc.) 

will largely interact with the water surface waves, and consequently 

affect the wave-induced seabed responses around the marine 

structures. 

In the past few decades, considerable effort has been devoted to 

the wave-soil-structure interaction (WSSI) phenomenon. The major 

reason for this growing interest is that many marine structures have 

been damaged by the wave-induced seabed response, rather than 

from the construction deficiencies (Christian et. al, 1974; Smith and 

Gordon, 1983; Lundgren et. al, 1989). To have a better 

understanding of the functionality and stability of marine structures, 

the wave motion and seabed responses around these structures must 

be determined. 

Numerous investigations for the wave-seabed-structure 

interactions have been carried out since the 1980s. A detailed review 

of previous research in the area can be found in (Jeng, 2003). Most 

of them have been focused on the individual approaches (Mase et. 

al, 1994; Jeng, et. al, 2000; Magda, 2000), rather than an 

integrations of wave, seabed and structure models. However, the 

phenomenon of the wave-seabed-structure interactions will not been 

fully captured without a consideration of all components together. 

In §3, based on COMSOL Multiphysics, is to develop an 

integrated model for ocean waves propagating over a marine 

structure on a porous seabed.  
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2. WAVE/CURRENT INDUCED SEABED RESPONSE 

 

2.1 Wave field 

 

 
(a) Plan view 

h
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(b) Cross view 

 

Figure 1.  Sketch of wave-current propagating over a seabed 

 

Considering combining wave and current loadings along a porous 

seabed, as shown in Fig. 1, the angle between waves and currents 

are denoted as 
1 , and angle between the direction of wave 

propagation and the x-direction is  . Based on potential flow 

theory, the velocity potential ( ) satisfies the conservation of mass, 

leads to, 

 

 2 0  , (1) 

 

in which the velocity of fluid is defined as 

 

 ( , , )u v w    (2)  

 

The velocity potential (  ) in (1) satisfies the free surface 

boundary conditions,  

 

 Dynamic free surface boundary conditions: 

 

22 2
1

( )
2

g d C
t x y z

   


        
           

         
 (3) 

where   is the water elevation,  d is water depth, and C is the 

Bernoullis’ coefficients. 

 

 Kinematic free surface boundary condition: 

 
z t x x y y

          
   
     

 (4) 

 

The velocity potential and wave profile can be obtained by 

solving (1) with linearised (3) and (4), and expressed as: 

 

 cos( )
2

H
mkx nky t     (5) 

  0 1 1 1 1( ) ( )U mm nn x nm mn y       

 
0 1

cosh
sin( )

2 (1 )cosh

gH kz
mkx nky t

U m k
kd






  



 (6) 

 

where k is the wave number, and cosm  , sinn  , 
1 1cosm  , 

1 1sinn  . The detailed derivations can be found in appendix. 

The wavelength can be determined by the wave dispersion 

relation given by: 

 

  
2

1 0 tanhmU k gk kd    (7) 

 

It is noted that an addition variable “m1” appears in (7), which 

only exists for the combing wave and current loadings. For the case 

with waves only, m1=0. 

Based on the above potential theory for combined wave and 

current loading, the dynamic wave pressure can be expressed as: 

 

 
cosh

cos( )
2 cosh

d

gH kz
P mkx nky t

kd


   . (8) 

 

2.2 Poro-elastic model-transient mechanism 

 
Figure 2.  Mechanism of wave-induced pore pressure (not in scale) 

 

For the problem of wave-seabed interaction, as shown in Fig. 2, the 

Biot consolidation theory (Biot, 1941) has been generally adopted to 

model the dynamic response of marine sediments for various 

applications. In general, the wave-induced pore pressure within 

marine sediments consists of two components: oscillatory ( p ) and 

residual ( p ) mechanisms, which can be expressed as (see Fig. 2): 

 

 ppp  ~ , (9) 

 

where p is the pore water pressure, p  represents the oscillatory pore 

pressure that leads to momentary liquefaction, while u represents the 

period-averaged pore pressure that leads to residual liquefaction, 

and is defined by: 

 

 
1 t T

t
p pdt

T



  , (10) 

 

where T is the wave period and t is the time.   

For the transient soil response in a saturated seabed, the Biot’s 

consolidation equation is commonly used as the governing equation, 

i.e., 
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2 2 2

2 2 2
0wp p p

x y z k t

    
   

   
 (11) 

where the volume strain is defined by: 
 

 

u v w

x y z


  
  
  

 (12) 

The equations of force balance can be expressed as: 
 

 

xyx xz p

x y z x

   
  

   
 (13)

 

 

xy y yz p

x y z y

     
  

   
 (14)

 

 

xy yz z p

x y z z

     
  

   
 (15)

 

 

Based on Biot’s poro-elastic theory, the stress-strain relations 

are given as: 

 

 

2
1 2

x

u
G

x






 
   

  
, (16) 

  2
1 2

y

v
G

y






 
   

  
 (17)

 

 

2
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z

w
G

z






 
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,  (18) 

 

xz

u w
G

z x


  
    

 (19)

 

 

yz

v w
G

z y


  
  

  
,  (20) 

 

xy

u v
G

y x


  
  

  
 (21)

 

 

Substituting (16)-(21) into (13)-(15), the equations of force 

balance can be expressed as: 

 

 

2

(1 2 )

G p
G u

x x





 
  
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 (22)

 

 

2

(1 2 )

G p
G v

y y





 
  
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 (23)

 

 

2

(1 2 )

G p
G w

z z





 
  
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 (24)

 

 

To solve the seabed response, including pore pressure and soil 

displacements, the following boundary conditions are required, 

 

 At the surface of the seabed, the pore pressure is equal to the 

dynamic pressure generated by wave and currents, and the 

vertical effective normal stress and shear stresses vanish; 

 

 
0z xz yz     

 (25)
 

 
0

cos( )
2cosh

cos( )

wH
p mkx nky t

d

p mkx nky t








  

    (26) 

 At the bottom of the infinite seabed, the soil displacements and 

pore pressure vanish, i.e., 

 

 
0u v w p      as  z   (27) 

 

Following the framework proposed in Jeng (1997), the pore 

pressure and soil displacements in a saturated porous seabed due to 

combined wave and current loading can be expressed as: 

 

 
0

2
exp( )cos( )

Gku
mkz kz mkx nky t

p
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 (28)

 

 
0

2
exp( )sin( )

Gkv
nkz kz mkx nky t

p
   

 (29)

 

 

 
0

2
1 exp( )cos( )

Gkw
kz kz mkx nky t

p
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 (30)

 

 0 exp( )cos( )p p kz mkx nky t  
 (31) 

 

Then, effective normal stresses and shear stresses can be 

expressed as: 

 

 
2

0 exp( )cos( )x m p kz kz mkx nky t     
 (32)

 

 
2

0 exp( )cos( )y n p kz kz mkx nky t     
 (33) 

 0 exp( )cos( )z p kz kz mkx nky t    
 (34) 

 0 exp( )cos( )xz mp z z m x n y t        
 (35) 

 0 exp( )cos( )yz np kz kz mkx nky t    
 (36) 

 0 exp( )cos( )xy mnp kz kz mkx nky t    
 (37) 

 

2.3 Poro-elastic model-resident mechanism 

The residual pore pressure ( p ) in a homogenous, isotropic soil can 

be derived from the one-dimensional Biot's consolidation equation: 

 

 

2

2
( )v

p p
c f z

t z

 
 

 
 (38) 

where f is the mean accumulation pore pressure source term 

associated with the surface water waves. In (38), vc  is the 

coefficient of consolidation, given by: 

 

 

2 (1 )

(1 2 )
v

w

GK
c



 





 (39) 

 

The source term, ( )f z , is defined by (Seed and Rahman, 1978): 

 

 

1/

0

0

f
T






 
  

 
 (40) 

 

in which the amplitude of shear stress is determined by oscillatory 

seabed response, 

 

 

2 2 2 2 2

0| | (1 )xz yz xy m n p kz       
 (41) 

 

Combing (40) and (41)，the source term can be expressed as: 

 

 
( ) exp( )f z Az kz 

 (42) 
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where, 

 

 

1/
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03 (1 )(1 2 )
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o

o

m n p kK
A

T K
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 

  
 
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k



   and  

s w    
 (44) 

 

To solve (38), the following boundary and initial conditions are 

required: 

 

 
(0, ) ( ,0) 0p t p z  , and ( , ) 0p t  . (45) 

 

Then, the residual pore pressure is calculated using a Laplace 

transformation as: 

 

 

3
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2
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2
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( 1)

v

v

A z
p z

c

rc t
r z dr

r r










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2.4 Effects of currents on the wave-induced soil response 

 

One of new contributions of this study is the consideration of ocean 

currents in the existing seabed response model. Most previous 

models for the wave-seabed interactions have been limited to wave 

loading only. In this paper, we consider an additional loading from 

ocean currents. In this section, we first investigate the effects of 

ocean currents on the wave-induced soil response in a porous seabed. 

The vertical distributions of the maximum amplitude of the 

wave-induced soil response versus the soil depth for various current 

velocities are illustrated in Figs. 3 to 5. The input data for numerical 

examples presented in the figures are tabulated in Table 1. As shown 

in the figures, the vertical displacement (w) is greater than 

horizontal soil displacements (u and v), and the vertical effective 

normal stress (
z  ) is greater than horizontal normal stresses (

x   

and y  ). Furthermore, the vertical shear stress (
xz ) is greater than 

other shear stresses ( yz  and xy ). 

One of new features of this solution is the inclusion of currents. 

Figs. 6 and 7 illustrate the vertical distributions of the pore pressures 

and vertical effective normal stresses for various current velocities. 

In the figures, the pore pressure and vertical effective normal stress 

increases as the velocity of currents increases. It is noted that the 

special case, 
0 0U  , is the case without currents, i.e., the solution 

of Hsu et al. (1883). 

 

 

Figure 3.  Vertical distributions of the wave/current-induced soil 

displacements and pore pressure in a porous seabed 

 
Figure 4.   Vertical distributions of the wave/current-induced  

effective normal stresses in a porous seabed 

 

 
Figure 5. Vertical distributions of the wave/current-induced shear 

stresses in a porous seabed 

 

Table 1.  Input data for numerical examples 

Wave Characteristics 

Wave period 12.5 sec  

Water depth 10 m 

Wave height 2 m 

Current velocity 3 m/sec or 

various 

Wave obliquity ( ) 30o 

Angle between wave and currents ( 1) 60o 

Soil Characteristics 

Coefficient of consolidation 0.01 

Residual parameter α 0.246 

Residual parameter β 0.8 

Unit weight of soil 26500 N/m3 
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Figure 6.  Vertical distributions of the wave/current-induced pore 

pressure in a porous seabed for various current velocities 

  
Figure 7. Vertical distributions of the wave/current-induced vertical 

effective normal stresses in a porous seabed for various current 

velocities (The legend is the same as that in Fig. 6) 

 

2.5 Simplified formulation for wave-induced liquefaction  

For engineers, the most important task is to examine where 

liquefaction will occur and how deep it is. The well-known criterion 

of residual liquefaction is: 

 

 
0

1resP





 (47) 

 

which results in: 
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Let
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B

A
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

, (49) 

We have: 

 

1 1 exp( )
2

L
L L

z
z B z


 

  
     
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 (50)

 

 

Based on (50), the relationship the maximum liquefied depth 

(
Lz ) and the parameter B is presented in Fig. 8.  This relation, so-

called J-S curve, was first proposed by Jeng and Seymour (2007) for 

the case of wave loading. In Fig. 8, the currents are included. For 

engineering applications, given waves, currents and soil conditions, 

we can determine the parameter B from (49). The maximum 

liquefied depth can then be easily determined from Fig. 8. 

 

 

Figure 8. Modified J(eng)-S(eymour) curve fro wave/current  

induced  liquefaction 

3. INTEGRATED MODEL FOR WAVE-SEABED-

STRUCTURE INTERACTIONS 

 

An integrated model for WSSI is developed in this section. An 

assumption is made that the poro-elastic deformations in seabed are 

very small and do not affect the wave transformations or its induced 

pressure on the surface of the poro-elastic seabed (Mizutani et. al, 

1998). This assumption simplifies the boundary conditions at the 

seabed interface where the water pressure and shear stress calculated 

from the wave field are passed into the seabed. This integrated 

model includes three main components: (i) wave mode on the basis 

of the Navier-Stokes (N-S) equations; (ii) seabed mode on the basis 

of the Biot’s consolidation equations with poro-elastic theory; and 

(iii) structure mode on the basis of structural mechanics theory. 

 

3.1 Wave mode 

Navier-Stokes (N-S) equations are utilized to describe motion of the 

water liquid phase. Starting with the momentum balance in terms of 

stresses, the generalized equations in terms of transport properties 

and velocity gradients are: 

 

 

[ ( ( ) )]

( )

T

f

u
u u

t

u u p F

 




   



   
   (51) 

 0u   (52) 

 

where  is the dynamic viscosity of fluid,  is the fluid density, 

u is the velocity field, fp
is the pressure, t is the time, and F is a 

volume force such as gravity. 

  
3.2 Seabed mode 

The consolidation equation for the flow of a compressible pore fluid 

in a compressible porous medium can be given as (Christian et. al, 

1974): 

 

 
( ) s

w w

p
K p n

t t


  


   

   (53) 

 

where 
p

is the pore pressure, K is the permeability matrix of the 

soil, w is the unit weight of pore water, n is the soil porosity, and 

s su 
(where su

 is the soil displacement) is the volume strain 

of soil matrix. The compressibility of pore fluid (  ) is defined as: 

 

 0

1 1

w w

S

K P



 

  (54) 

 

in which wK
is the true modulus of elasticity of water (taken as 

2×109N/m2), 0wP
 is the absolute water pressure and S is the degree 

of saturation. 

The relationships between soil displacement and pore pressure 

are given as: 

 

 

2

1 2
s s

s

G
G u p


    


 (55) 

 

where G is the shear modulus related to the Young’s modulus ( E ) 

and the Poisson’s ratio ( s ) in the form of 
/ (2(1 ))sE 

. 
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3.3 Structure mode 

Based on the small-displacement assumption, the relationships 

between strain components and displacement at a point of marine 

structure are given as follows: 
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The strain tensor  and stress tensor  are: 
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The stress-strain relationship for linear conditions reads: 

 

 mD 
 (63) 

 

where mD
is the elasticity matrix. 

The structural mechanics theory in this study is based on a weak 

formulation of the equilibrium equations expressed in the global 

stress components. 

 

 mF 
 (64) 

 

in which mF
denotes the volume forces (body forces). 

 
3.4  Wave generation  

In this numerical model, a piston wave generator is used. According 

to (Dean and Dalrymple, 1991), the expression of the movement of 

the wave maker is: 

 

 ( ) cos
2

S
U t t


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where, the S  and   are the stroke and the frequency of the wave 

maker respectively. The fluid evaluation ( )x  is donated as: 
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where, the 
0k  and 

mk  are the wave number. The depth and gravity 

of water are donated by d and g. The ratio of wave height (H) to 

stroke as following: 
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In order to induce the wave energy dissipation and reduce the 

wave reflection from the right wall, a sponge (wave absorbing) 

boundary is needed. In this numerical model, in the last 100m on the 

right sides, the viscosity of the fluid is increased of approximately 

10000times (with a smoothing exponential window). 

 

3.5   Boundary conditions  

When solving the governing equations, appropriate boundary 

conditions at external boundaries and internal interfaces for these 

three modes are required (see Fig. 9). 

 

 
Figure 9.   Locations for specification of boundary condition 

 

In the wave mode, a piston wave maker is used in the left-hand-

side boundary ( 1 ) of computational domain to generate wave and 

a sponge layer is located in the right-hand-side boundary ( 2 ) to 

avoid/reduce the wave reflection. Zero pressure is applied on the 

water free surface ( 3 ), while no-slip condition is adopted at the 

solid surface, such as sea floor ( 4 ) and surface of marine structure 

( 5 ). In the case of a deformable structure, the impact of the 

structure deformation on wave motion is considered in term of a 

deformation of boundary shape ( 5 ).  

In the seabed mode, it is commonly accepted that vertical 

effective normal stresses vanish at the seabed surface while the 

wave pressure and shear stresses obtained from wave mode are 

imposed as boundary conditions of seabed surface ( 4 ). In this 

study, the seabed is considered as a porous medium of a finite 

thickness and rests on an impermeable rigid bottom, indicating that 

zero displacements, zero gradient of pore pressure and no vertical 

flow occur at the horizontal bottom ( 6 ). When two side 

boundaries ( 7  and 8 ) of seabed are far away from the concerned 

region (such as the region around a marine structure), they can be 

assumed to have zero displacement. 

In the structure mode, the displacement and velocity at the 

surface ( 5 ) of a deformable structure are dominated by the wave 

pressure acting on the wave-structure interface. For the embedded 

part ( 9 ) of a structure, it is assumed to have same displacement 

and velocity as those of ambient soil (updated from seabed mode). 

 

3.6 Numerical model  

These three numerical modes are integrated by using COMSOL 

Multiphysics (3.5a version). The main features of COMSOL 
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Multiphysics adopted to set up the integrated model are listed as 

follows: 

(1) 2D space dimension; 

(2) Plane strain mode of structural mechanics; 

(3) Coefficient form of PDE mode for seabed mode; 

(4) Incompressible Navier-Stokes mode of fluid dynamics; 

(5) Arbitrary Lagrangian-Eulerian (ALE) method for mesh 

movement. 

 

3.7  Wave-seabed Interaction  
 

As a starting point, this integrated model is applied to predict the 

wave-seabed interaction without the inclusion of a marine. In the 

example, a computational domain with a length ( 200L  m) is used. 

The original of the Cartesian coordinate system is located at left-

hand-size edge point of sea floor. The incident linear wave is 

generated with wave height ( 0.5wH  m), wave period ( 6.0T  sec) 

and still water depth ( 10.0d  m). For the porous seabed, the seabed 

thickness, soil porosity, permeability and degree of saturation are 

taken as 25.0sd  m, 0.4n  , 0.01K  m/sec and 0.98S  , 

respectively.  

Figure 10 shows an example of the distributions of wave-

induced pore fluid pressure ( p ) and vertical effective normal stress 

( z ) within the seabed at time 43.0t  sec. The magnitude of pore 

pressure decreases with depth increases. The magnitude of vertical 

effective normal stress increases firstly, and then decreases 

gradually. The comparisons between numerical results and 

analytical solutions of water elevation (Jeng, 1997), maximal pore 

water pressure and vertical effective normal stress (Magda, 2000) at 

cross-section 100x  m are shown in Figs. 11 to 13, respectively. In 

general, there is a good agreement between numerical simulation 

and analytical theory. It is noted that the wave model used in the 

previous analytical solutions was based on the potential flow theory, 

which has no shear stresses along the seabed surface, while the 

present wave model was based on N-S equations. 

 

 
(a) pore pressure 

 
(b) Vertical effective normal stress 

 

Figure 10. Distributions of (a) pore fluid pressure and (b) vertical 

effective normal stress with wave profile and velocity field at time 

43.0t  sec. 

 

 
 

Figure 11.  Comparison of simulated water elevation with analytical 

solution at the cross-section 100x  m. 

 

 
 

Figure 12. Comparison of simulated maximal pore pressure with 

analytical solution at the cross-section 100x  m. 

 

 
 

Figure 13. Comparison of simulated maximal vertical effective 

normal stress with analytical solution at the cross-section 100x  m. 

 

3.8  Wave-seabed Interaction around a Rigid 

Submerged Breakwater  

 
In this section, a rigid, impermeable and submerged breakwater with 

a rectangular shape is considered, and its impacts on wave motion 

and seabed response are analyzed by the integrated model. The 

structure is 20 m wide and 3 m high, and its central point of bottom 

line is located at the point (105, 0). Figure 14 shows the distribution 

of the wave-induced pore fluid pressure around the structure at time 

43.0t  sec. As one can expect, the existence of structure can 

largely affect the wave motion around the submerged breakwater 

(see Fig. 15) and consequently leads to a different distribution of 

pore pressure from that without a marine structure (see Fig. 10(a) 

and Fig. 14). As shown in Fig. 15, an obvious wave deformation 

takes place due to wave-structure interaction when the wave is over 

the submerged breakwater.  
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Figure 14.  Distributions of the wave-induced pore pressure in a 

porous seabed at time 43.0t  sec. 

 

 
 

Figure 15.  Comparsions of the simulated water elevation with and 

without the presence of a submerged breakwater at time 43.0t  sec. 

 

3.9 Wave-seabed Interaction around a Deformable 

Structure  

This integrated model has also been used to study the wave 

propagation and seabed response around a deformable impermeable 

structure (such as wave energy converter). Two types of structure 

with different embedded depths are investigated, as depicted in Fig. 

16. One is simply fixed on the sea floor with zero embedded depth, 

and the other is embedded into the seabed with an embedded depth 

of 2 m. The width and height above seabed are kept the same in 

these structures, and they are taken as 1 m and 5 m, respectively. 

  

 
Figure 16.  The sketch vertical structure and seabed model 

 

Figure 17 illustrates the effects of structure obstacle on fluid 

velocity field, from which significant changes of velocity pattern 

around the structure can been observed. Furthermore, in this 

example, the wave crest arrives at the structure, which creates a 

positive pressure on the seabed surface, and result in compaction of 

the seabed.  

Figure 18 shows the effects of embedded depth on the 

distribution of wave-induced pore pressure around foundation. As 

shown in the figure, there is about 2% of increment of the pore 

pressure amplitude in case 1, compare with case 2. The comparison 

indicates the embedded part of structure may disturb/block the 

development of pore pressure. This implies that the embedded pile 

will reduce the pore pressure, and enhance the stability of the 

structure. 

 

 
Figure 17.  The sketch of velocity profile in the system of wave -

vertical wall-soil interactions-Case 2(wave period=8s, wave 

height=0.5m).  

 

 
(a) Case 1 

 
(b) Case 2 

Figure 18.  Effect of embedded depth of deformable structure on 

pore pressure. 

 

In addition to the wave field and seabed, another new feature of 

this study is the structure components in the integrated model. Here, 

we consider the horizontal displacements at the top of the wall, 

which also indicate the oscillatory of the structure. It is noted the 

horizontal displacements presented here is generated by the wave 

loading, not artificial oscillating loading. As shown in Fig. 19, the 

patterns of the horizontal displacements at the top of the wall are 

similar for both cases. It is important to note that the horizontal 

displacement at the top of the wall in case 2 is two order higher than 

case 1. This implies that the design of case 2 can stand for two-order 

higher deformation of the pile than case 1. 
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(a) Case 1 

 
(b) Case 2 

Figure 19.  The horizontal displacements at the top of the wall (a) 

case 1 and (b) case 2 

 

 
(a) Case 1 

 
(b) Case 2 

Figure 20. The first principal stress at point 1 (a) case 1 and (b) case 

2 

 

 
(a) Case 1 

 
(b) Case 2 

Figure 21.  The von Mises stress at point 1(a) case 1 and (b) case 2 

 

Figure 20 illustrates the first principal stress at point 1 (see Fig. 

16) for both cases. As show in the figure, the first principal stresses 

at point 1 for case 1 is one-order higher than that in case 2. This 

implies that the bottom of the structure will received higher stresses 

in case 1, which required more intensive design for the structure. 

For von Mises stress at point 1 (Fig. 21), the highest vale is about 
49 10  for case 1 and 51.2 10  for case 2. They can be considered 

as in the same order of magnitudes.  

Based on results presented in Figs. 18 to 21, the design of case 2 

provide a better design for the deformable pile in the wave-seabed-

pile interaction system. 

 

4. CONCLUSIONS 

 

In this paper, we first present a new analytical solution for the 

wave/current-induced soil response in a porous seabed. Both 

oscillatory and residual mechanisms are considered in this study. 

Then, we present a numerical model for the simulations of wave 

propagating over a porous seabed around marine structures. Based 

on the numerical examples presented, the following conclusions can 

be drawn. 

1. For the combined loading of waves and currents, the soil 

response increases as the current velocity increases. 

2. A modified J-S Curve is established by including currents for 

the prediction of the liquefaction potential, which provides 

engineers a effective tool. 

3. An integrated model, based on COMSOL Multiphysics, has 

been developed to study the WSSI phenomenon in this study. To 

validate this model, the simulated wave profile, pore fluid 

pressure and vertical effective normal stress in the case without 

any marine structure are compared with those from analytical 

theory. The comparison results show a good agreement between 

numerical simulation and analytical theory.  

4. The numerical results show that the existence of a marine 

structure may significantly increase the wave crest height and its 

induced pore pressure within seabed. 
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5. The embedded depth of a deformable structure slightly affect the 

wave propagation but has a large impact on pore pressure around 

the structure foundation. 

 

5.  REFERENCES 

 

Biot, M.A. 1941. General theory of three-dimensional consolidation. 

Journal of Applied Physics. 12(2):155–164. 

Christian, J.T., Taylor, P.K., Yen, J.K.C. and Erali, D.R. 1974. 

Large diameter underwater pipeline for nuclear power plant 

designed against soil liquefaction. Proceeding of Offshore 

Technology Conference, Dallas. 597-606. 

Dean, R. G. and Dalrymple, R. 1991. Water wave Mechanics for 

Engineers and Scientists, World Scientific.  

Hsu, J.R.C., Jeng, D.S. and Tsai, C.P. 1993. Short-crested wave-

induced soil response in a porous seabed of infinite thickness. 

International Journal for Numerical and Analytical Methods in 

Geomechanics. 17(8): 553–576. 

Jeng, D.S. and Hsu, J. R. C. 1996. Wave-induced soil response in a 

nearly saturated seabed of finite thickness. Géotechnique. 46(3): 

427–440. 

Jeng, D. S. and Seymour, B.R. 2007. A simplified analytical 

approximation for pore-water pressure build-up in a porous 

seabed. Journal of Waterway, Port, Coastal and Ocean 

Engineering, ASCE. 133(4): 309–312. 

Jeng, D. S. 1997. Wave-induced seabed response in front of a 

breakwater. PhD thesis, University of Western Australia. 

Jeng, D. S. 2003. Wave-induced seafloor dynamics. Applied 

Mechanics Review. 56(4): 407–429. 

Jeng, D. S., Cha, D.H., Lin, Y.S. and Hu, P.S. 2000. Analysis on 

pore pressure in a porous seabed in the vicinity of a caisson. 

Applied Ocean Research. 22: 317–329. 

Lundgren, H., Lindhardt, J.H.C. and Romhild, C.J. 1989. Stability 

of breakwaters on porous foundation. Proceedings of 12th 

International Conference on Soil Mechanics and Foundation 

Engineering.1: 451-454.  

Madga, W. 2000. Wave-induced cyclic pore-pressure perturbation 

effects in hydrodynamic uplift force acting on submarine 

pipeline buried in seabed sediments. Coastal Engineering. 39: 

243–272.  

Mase, H., Sakai, T., and Sakamoto, M. 1994. Wave-induced 

porewater pressure and effective stresses around breakwater. 

Ocean Engineering. 21: 361–379. 

Mizutani, N., Mostafa, A.M. and Iwata, K. 1998. Nonlinear regular 

wave, submerged breakwater and seabed dynamic interaction. 

Coastal Engineering. 33: 177-202. 

Nago, H., Maeno, S., Matsumoto, T. and Hachiman, Y. 1993. 

Liquefaction and densification of loosely deposited sand bed 

under water pressure variation. Proc of 3rd International 

Offshore and Polar Engineering Conf, Singapore. 578–584. 

Sassa, S. and Sekiguchi, H. 1999. Wave-induced liquefaction of 

beds of sand in a centrifuge. Geotechnique. 49(5): 621–638. 

Seed, H. B. and Rahman, M. S. 1978. Wave-induced pore pressure 

in relation to ocean floor stability of cohesionless soils. Marine 

Geotechnology. 3(2): 123–150. 

Smith, A.W. and Gordon, A.D. 1983. Large breakwater toe failures, 

Journal of Waterway. Harbor and Coastal Engineering, ASCE. 

109(2): 253-255. 

Sumer, B. M. and Cheng, N. S. 1999. A random-walk model for 

pore pressure accumulation in marine soils. The 9th 

International Offshore and Polar Engineering Conf (ISOPE99), 

Brest France. 1: 521–528. 

Sumer, B. M., Fredsoe, J. 2002. The Mechanics of Scour in the 

Marine Environment. World Scientific: Singapore. 536. 

Yamamoto, T., Koning, H. L., Sellmejjer, H. and Hijum, E.V.  1978. 

On the response of a poro-elastic bed to water waves. Journal 

of Fluid Mechanics. 87: 193–206. 

 

APPENDIX: WAVE AND CURRENT –INDUCED DYNAMIC 

PRESSURE 

 

In this appendix, we provide detailed information of wave/current-

induced dynamic pressure along the seabed surface. To satisfy the 

governing equation (1) and bottom boundary condition, we have 

velocity potential as: 
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where A is an unknown coefficient and the water surface elevation 

as: 
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Substituting (A1) and (A2) into the dynamic free surface 

boundary (3), and take the linear terms, we have: 
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which leads to 
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Then, we have the velocity potential 
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Introducing (A3) and (A5) into kinematic boundary condition 

(4), we have the dispersion relation as: 

 

  
2

1 0 tanhmU k gk kd    (A6) 

 

Which will be used to determine the wavelength 2 /L   . 
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Again, taking the linear term, we have the dynamic wave pressure 

(
dP ) as: 

 

 
cosh

cos( )
2 cosh

w
d

H kz
P mkx nky t

kd


   . (A8) 

 


