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Abstract 
When the sample size is small, there is a possibility that the two population groups do not follow assumptions.  This includes 

population distribution and variance.  Thus, proper statistical techniques must be selected for generalisation.  This article classifies 
statistical techniques into two types:  First, classical statistics consisting of independent t- test, Welch t- test, and exact Wilcoxon-
Mann-Whitney test (WMW) and, second, alternative statistics consisting of nonparametric bootstrap t-test (NBTT), nonparametric 
bootstrap Welch t- test (NBWT) , nonparametric bootstrap Welch test based on rank (NBWR) , and an exact permutation t- test 
(PTT). The objective of this study was to propose an alternative statistical method for a small sample size study. The data simulation 
tested both normal and non- normal distributions including equal and unequal variances.  The results revealed that when the 
populations had normal or non- normal distribution and equal variances, almost all test statistics had robustness at a significance 
level of 0.05. For a significance level of 0.01, if at least one group had normal distribution, the Welch t-test was the most robust. 
If there were other distributions, the independent t- test was most robust.  For unequal variance, when at least one group had a 
normal distribution with higher variance than other groups, the Welch t- test could control type I errors in all conditions at 
significance levels of 0.05 and 0.01.  In other cases, it was non- robust.  Therefore, if a small sample size is applied, the results 
must be carefully generalized. 

Keywords:  two- sample location tests, small sample sizes, bootstrap test, permutation test, parametric test, nonparametric test, 
robustness 

Introduction 

Quantitative research, in many fields, normally applies a statistical significance test based on empirical data 
for hypothesis testing. However, observed data frequently do not follow the preliminary assumptions (Keselman 
et al. , 1998; Snyder & Thompson, 1998) For instance, the population must have a normal distribution or the 
variance of each population must be equal.  It could be said that the widely applied statistical technique for 
comparing means between two populations is an independent t- test ( Nguyen et al. , 2016) .  The independent 
t- test is a parametric test on the assumptions of a population’ s normality and equal variance.  This test was
modified by Welch (1937), specifically known as the Welch t-test, and designed for unequal variance but the
normality assumption remained ( Welch, 1937) .  Moreover, many scholars have proposed a method when the
distribution deviates from normality. The widely used non-parametric technique is the Wilcoxon-Mann Whitney
test (WMW) (Fagerland & Sandvik, 2009).  In some circumstances, these studies are based on small sample
sizes.  Ruthsatz and Urbach (2012) stated that there are many reasons why we have a small sample instead of
a large sample such as limited budget, time, or ethical constraints.  It may also be impossible for scientific
research that works on rare animal species to have a large distribution.  This situation occurs in biomedical
research including experimental designs in laboratories and pilot randomized controls in clinical studies (Dwivedi,
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Mallawaarachchi, & Alvarado, 2017) and nonparametric approaches are commonly recommended for analyzing 
data from small samples (Altman, Gore, & Gardner, 1983).  

The p-values in a nonparametric test can be obtained in two ways: First, by calculating the exact probability 
from observed data under the null hypothesis which is proper for small sample sizes; Second, by calculating the 
p- value based on an asymptotic property, which is proper for large samples.  Both methods are available for 
calculating p- values in most nonparametric tests when the assumptions of parametric tests are under suspicion 
(Siegal & Castellan, 1988; Mundry & Fischer, 1998).  However, standard exact or asymptotic nonparametric 
methods do not yield appropriate results in many environments with small sample size studies ( Dwivedi et al. , 
2017) .  For instance, if the first sample group contained 1000, 2000, and 3000 data and the second group 
contained 10000, 20000, and 30000 data, performing a WMW test to compare the location difference on  
a two- tailed test would not be possible and a significant difference would not be found.  This conforms to the 
work of Dwivedi et al. (2017) who claimed that the use of exact nonparametric tests would show an insignificant 
p-value even when there are vast differences in small sample size studies. 

Siegel (1956) authored the book titled “Nonparametric Statistics for Behavioural Sciences” which became 
the most highly cited and influential book in the statistical literature ( Winter, 2013) .  According to this book, 
conventional parametric tests could not be applied with particularly small samples.  This is because there are 
many assumptions underlying these tests. Specifically, the observation must be drawn from a normal distribution 
for both one- sample and independent two- sample t- tests but equal variances are needed for the two samples. 
Nonetheless, these assumptions could not be tested when the sample size is too small.  Additionally, conflicting 
findings were reported when using parametric and nonparametric tests.  Some nonparametric studies showed 
greater statistical power than parametric studies in small samples with non- normal distributions ( Weber & 
Sawilowsky, 2009; Bridge & Sawilowsky, 1999; Tanizaki, 1997; Posten, 1982) .  On the other hand, some 
scholars also stated that nonparametric tests showed less or no power in small samples.  Thus, the parametric 
method is recommended ( Winter, 2013; Janusonis, 2009; Stonehouse & Forrester, 1998; Sawilowsky & 
Hillman, 1993; Zimermerman & Zumbo, 1992). 

The other approaches for small sample sizes are resampling techniques such as nonparametric permutation 
and bootstrap tests.  In detail, the test statistics are obtained by resampling without a replacement in the 
permutation method while they are obtained with a replacement in the bootstrap method.  Some scholars stated 
that the permutation test does not perform appropriately in a small sample size.  On the contrary, Efron and 
Tibshirani ( 1993)  advised that the bootstrap method provides similar results to the permutation method when 
both data exist.  They claimed that the bootstrap test is more commonly utilized although it is less accurate. 
Moreover, Barber and Thompson (2000) recommended using the bootstrap method for checking the robustness 
of parametric methods or for comparing the means in moderate or large samples with skewed data.  Hall and 
Martin (1988) evaluated the properties of the bootstrap method and indicated that the bootstrap could be reliable 
when the sample size was eight or greater. The study of Dwivedi et al. (2017) revealed that the nonparametric 
pooled bootstrap t-test provided equal or greater power when comparing two means as compared to an unpaired 
t-test, Welch t-test, Wilcoxon rank sum test, and permutation test while keeping type I error probability for all 
conditions except for Cauchy and an extreme variable lognormal distribution. 

It could be said that an alternative testing method is needed.  The method would require minimal or no 
assumptions regarding the distribution for small samples, provide a considerable large or equal power to 
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parametric tests, and also be able to control type I errors. Such a method could be a nonparametric bootstrap and 
permutation test, which is named alternative statistics in this study.  The previous method, called classical 
statistics, consists of the independent t-test, Welch t-test, and exact Wilcoxon-Mann Whitney test. In summary, 
there are uncertain results between using modern and classical statistics for comparing the location between two 
populations, especially for a small sample size. Therefore, the objective of this study was to propose an alternative 
statistical method for a small sample size study.  The criteria for selecting robust statistics were based on the 
ability to control type 1 tolerances according to the established criteria. 

 
Methods and Materials 

 
Statistical Method 

The testing statistics on two sample location tests for small sample sizes consist of two categories. First, the 
classical statistics consist of the independent t- test, Welch t- test and an exact Wilcoxon- Mann- Whitney test 
(WMW). Second, the modern statistics consisting of the nonparametric bootstrap t-test (NBTT), nonparametric 
bootstrap Welch t- test ( NBWT) , nonparametric bootstrap Welch test based on rank ( NBWR) , and an exact 
permutation t-test (PTT). The details of each test are as follows: 

1) Independent sample t-test (t-test) 
The independent sample t- test ( t- test)  is used for parametric statistics with assumptions consisting of 

normal distribution and equal variance populations. The details are: (Fagerland & Sandvik, 2009) 
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2) Welch t-test  

The Welch t-test is for parametric statistics with the assumption of normal distribution. The Welch t-
test was proposed by Welch (1937) for unequal variances. The details are: 
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3) Exact Wilcoxon-Mann-Whitney test (WMW) 
The Wilcoxon-Mann-Whitney test (WMW) is mostly used for nonparametric statistics. The Wilcoxon-

Mann-Whitney test was proposed by Wilcoxon (1945) and Mann and Whitney (1947) as follows: 
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where the WMW is the statistic test for the Wilcoxon-Mann-Whitney test. 
  XR is the sum of rank for the 1n by pooled rank between 1n  and 2n   
  The reject 0H  is 2*(Probability of WMW)   

4) Nonparametric bootstrap t-test (NBTT) 
The nonparametric bootstrap t- test ( NBTT)  is developed by the bootstrap concept, with replacement 

sampling, integrated with an independent sample t- test.  The procedure is computed as follows:  ( Efron & 
Tibshirani, 1993)  
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(5) Repeat steps 3 and 4 for B times (in this paper, B is 1,000 times) 
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 The reject 0H  is P value    
5) Nonparametric bootstrap Welch t-test (NBWT) 

The nonparametric bootstrap Welch t- test (NBWT) is integrated with the bootstrap and Welch t- tests. 
It is described as follows: (Efron & Tibshirani, 1993) 
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6) Nonparametric bootstrap welch t-test based on rank (NBWR) 
The nonparametric bootstrap Welch t- test based on rank ( NBWR)  is integrated with the bootstrap test 

and the Welch t- test based on rank.  The procedure is computed as follows:  ( Efron & Tibshirani, 1 993 ; 
Reiczigel, Zakarias, & Rozsa, 2005) 
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   The reject 0H  is P value    
(7) Exact Permutation t-test (PTT) 
      The exact Permutation t- test ( PTT)  is integrated without replacement sampling and the Welch  

t-test. The procedure is computed as follows: (Efron & Tibshirani, 1993)  

(1) Evaluate test statistics:  1 2
2 2
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(2) The observation of sample 1 and sample 2 is combined so that the sample size is 1 2n n  . 
(3) Draw two samples, without replacement sampling, with sample sizes  1n  and 2n   from the sample 

size 1 2n n  

(4) Evaluate test statistics:  
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   The reject 0H  is P value    
 

Methodology 
 
Program R version 3.2.1 was designed to generate random data sets obtained from two populations.  Those 

populations were different in several conditions but had equal and unequal means.  The data set was tested with 
classical statistics including an independent t-test, Welch t-test, exact Wilcoxon-Mann-Whitney test (WMW) 
and with modern statistics including a nonparametric bootstrap t- test (NBTT) , nonparametric bootstrap Welch 
t- test ( NBWT) , nonparametric bootstrap welch t- test based on rank( NBWR)  and exact permutation t- test 
(PTT). The data sets were varied in three different conditions, which were population distribution, sample sizes, 
and variances. The details were: 

1) Population distributions were a normal distribution using the function 2Norm( , )   , lognormal 
distribution using the function 2log Norm( , )   and gamma distribution using the function 
Gamma( , )    both identically distributed and non-identically distributed. 

2) Population variances were equal and unequal variances. For the unequal variance, the ratio was 1:9 given 
the F-ratio between the two data sets was also 9, which showed to be statistically significant for all used sample 

sizes. 
3) Small sample sizes. For each data set, sample sizes were (3,3) (3,5) (5,3) (5,5) (7,7) (7,10) 

(10,7), and (10,10). 
4) The robustness of testing statistics considered from maintained type I errors.  All combinations of 

conditions were tested and each case was repeated 10,000 times.  After that, results from the seven testing 
statistics were compared by considering type I errors. 

- The probability of type I error (alpha) was calculated by focusing on the frequency of rejection 0H by 
fixing the same mean ratio for both groups (the fraction of the P-value formula) divided 10,000 times. Bradley’s 
( 1978)  standard criterion was applied to evaluate the differences between the actual type I error rate and the 
nominal significance level.  This criterion has been applied to the robustness of investigations, such as Haidous 
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and Sawilowsky ( 2013)  and Nguyen et al.  ( 2016) .  The actual rate of probability of type I errors between 
0.05 and 0.01 was considered acceptable. In detail, if the probability of type I error was between 0.025-0.075 
or 0.005- 0.015, it could be said that the test statistics could control the type I error at a significant level of 
0.05 or 0.01 or the statistical test is robust. 

 
Results 

 
The results of the simulation are presented in the type I error at significance levels of 5% and 1% with the 

details as follows: 
Table 1 shows the type I error probability ( significance level of 5%) for the independent t- test, Welch t- test, 

exact Wilcoxon- Mann- Whitney test, nonparametric bootstrap t- test, nonparametric bootstrap Welch t- test, 
nonparametric bootstrap welch t-test based on rank, and permutation t-test. Almost all tests could control type I errors 
when variances were equal for both populations.  However, when the sample size was smallest (3,3) , it was found 
that the Wilcoxon-Mann-Whitney test and permutation t-test could not control type I errors.  

Table 2 shows the type I error probability ( significance level of 1%)  that if at least one group of the 
population has a normal distribution, the Welch t- test could control the type I error on almost all conditions. 
When considered in detail, it was found that both populations had a normal distribution.  Both an independent 
sample t-test and a Welch t-test therefore could control the type I error on all conditions. However, if the first 
group had normal distribution and the second had lognormal, the Welch t- test was more prominent than other 
test statistics. In the case where the first group had a normal distribution and the second had a gamma distribution, 
the Welch t-test could control the type I error under almost all conditions. On the other hand, if both groups had 
non- normal distribution, their distributions could be either lognormal distribution, gamma distribution, or 
lognormal distribution and gamma distribution. It was found that the independent sample t-test was the best for 
controlling the type I error followed by a nonparametric bootstrap t- test.  However, when the sample size was 
smallest ( 3,3) , it was found that the Wilcoxon- Mann- Whitney test nonparametric bootstrap t- test, 
nonparametric bootstrap Welch t- test, nonparametric bootstrap Welch t- test based on rank, and permutation t-
test could not control type I error. 

 
Table 1 The type I error probability (nominal level=0.05) for location difference testing statistics between two populations under   
           equal variances and various distributions and sample sizes 

Sample 
size 

 

Normal Distribution vs. Normal Distribution Normal Distribution vs. Lognormal Distribution 

t Welch WMW NBTT NBWT NBWR PTT t Welch WMW NBTT NBWT NBWR PTT 

3,3 0.0503 0.0364 0.0000 0.0603 0.0596 0.0076 0.0000 0.0692 0.0434 0.0000 0.0812 0.0806 0.0084 0.0000 

3,5 0.0489 0.0462 0.0368 0.0510 0.0506 0.0404 0.0362 0.0999 0.0545 0.0761 0.1089 0.0774 0.0817 0.0902 

5,3 0.0513 0.0472 0.0358 0.0529 0.0515 0.0403 0.0367 0.0368 0.0502 0.0377 0.0371 0.0531 0.0416 0.0261 

5,5 0.0507 0.0433 0.0314 0.0522 0.0529 0.0459 0.0462 0.0638 0.0498 0.0490 0.0679 0.0692 0.0634 0.0662 

7,10 0.0479 0.0468 0.0416 0.0488 0.0487 0.0490 0.0473 0.0780 0.0490 0.0724 0.0818 0.0615 0.0708 0.0853 

10,7 0.0500 0.0486 0.0409 0.0504 0.0500 0.0495 0.0436 0.0426 0.0562 0.0489 0.0454 0.0586 0.0672 0.0534 

10,10 0.0529 0.0509 0.0431 0.0534 0.0528 0.0505 0.0537 0.0628 0.0576 0.0655 0.0662 0.0658 0.0738 0.0818 

 Normal Distribution vs. Gamma Distribution Lognormal Distribution vs. Lognormal Distribution 

3,3 0.0591 0.0409 0.0000 0.0710 0.0706 0.0074 0.0000 0.0314 0.0188 0.0000 0.0411 0.0399 0.0058 0.0000 

3,5 0.0685 0.0457 0.0487 0.0730 0.0580 0.0538 0.0567 0.0325 0.0215 0.0328 0.0389 0.0300 0.0369 0.0330 
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and Sawilowsky ( 2013)  and Nguyen et al.  ( 2016) .  The actual rate of probability of type I errors between 
0.05 and 0.01 was considered acceptable. In detail, if the probability of type I error was between 0.025-0.075 
or 0.005- 0.015, it could be said that the test statistics could control the type I error at a significant level of 
0.05 or 0.01 or the statistical test is robust. 

 
Results 

 
The results of the simulation are presented in the type I error at significance levels of 5% and 1% with the 

details as follows: 
Table 1 shows the type I error probability ( significance level of 5%) for the independent t- test, Welch t- test, 

exact Wilcoxon- Mann- Whitney test, nonparametric bootstrap t- test, nonparametric bootstrap Welch t- test, 
nonparametric bootstrap welch t-test based on rank, and permutation t-test. Almost all tests could control type I errors 
when variances were equal for both populations.  However, when the sample size was smallest (3,3) , it was found 
that the Wilcoxon-Mann-Whitney test and permutation t-test could not control type I errors.  

Table 2 shows the type I error probability ( significance level of 1%)  that if at least one group of the 
population has a normal distribution, the Welch t- test could control the type I error on almost all conditions. 
When considered in detail, it was found that both populations had a normal distribution.  Both an independent 
sample t-test and a Welch t-test therefore could control the type I error on all conditions. However, if the first 
group had normal distribution and the second had lognormal, the Welch t- test was more prominent than other 
test statistics. In the case where the first group had a normal distribution and the second had a gamma distribution, 
the Welch t-test could control the type I error under almost all conditions. On the other hand, if both groups had 
non- normal distribution, their distributions could be either lognormal distribution, gamma distribution, or 
lognormal distribution and gamma distribution. It was found that the independent sample t-test was the best for 
controlling the type I error followed by a nonparametric bootstrap t- test.  However, when the sample size was 
smallest ( 3,3) , it was found that the Wilcoxon- Mann- Whitney test nonparametric bootstrap t- test, 
nonparametric bootstrap Welch t- test, nonparametric bootstrap Welch t- test based on rank, and permutation t-
test could not control type I error. 

 
Table 1 The type I error probability (nominal level=0.05) for location difference testing statistics between two populations under   
           equal variances and various distributions and sample sizes 

Sample 
size 

 

Normal Distribution vs. Normal Distribution Normal Distribution vs. Lognormal Distribution 

t Welch WMW NBTT NBWT NBWR PTT t Welch WMW NBTT NBWT NBWR PTT 

3,3 0.0503 0.0364 0.0000 0.0603 0.0596 0.0076 0.0000 0.0692 0.0434 0.0000 0.0812 0.0806 0.0084 0.0000 

3,5 0.0489 0.0462 0.0368 0.0510 0.0506 0.0404 0.0362 0.0999 0.0545 0.0761 0.1089 0.0774 0.0817 0.0902 

5,3 0.0513 0.0472 0.0358 0.0529 0.0515 0.0403 0.0367 0.0368 0.0502 0.0377 0.0371 0.0531 0.0416 0.0261 

5,5 0.0507 0.0433 0.0314 0.0522 0.0529 0.0459 0.0462 0.0638 0.0498 0.0490 0.0679 0.0692 0.0634 0.0662 

7,10 0.0479 0.0468 0.0416 0.0488 0.0487 0.0490 0.0473 0.0780 0.0490 0.0724 0.0818 0.0615 0.0708 0.0853 

10,7 0.0500 0.0486 0.0409 0.0504 0.0500 0.0495 0.0436 0.0426 0.0562 0.0489 0.0454 0.0586 0.0672 0.0534 

10,10 0.0529 0.0509 0.0431 0.0534 0.0528 0.0505 0.0537 0.0628 0.0576 0.0655 0.0662 0.0658 0.0738 0.0818 

 Normal Distribution vs. Gamma Distribution Lognormal Distribution vs. Lognormal Distribution 

3,3 0.0591 0.0409 0.0000 0.0710 0.0706 0.0074 0.0000 0.0314 0.0188 0.0000 0.0411 0.0399 0.0058 0.0000 

3,5 0.0685 0.0457 0.0487 0.0730 0.0580 0.0538 0.0567 0.0325 0.0215 0.0328 0.0389 0.0300 0.0369 0.0330 

 

 

Table 1 (Cont.) 

*Bold entries indicate a type I error that is controlled. 
 
Table 2 The type I error probability (nominal level=0.01) for location difference testing statistics between two populations under    

      equal variances and various distributions and sample sizes 

Sample 
size 

 

Normal Distribution vs. Normal Distribution Normal Distribution vs. Lognormal Distribution 

t Welch WMW NBTT NBWT NBWR PTT t Welch WMW NBTT NBWT NBWR PTT 

 Normal Distribution vs. Gamma Distribution Lognormal Distribution vs. Lognormal Distribution 

5,3 0.0458 0.0528 0.0391 0.0468 0.0534 0.0437 0.0349 0.0353 0.0237 0.0353 0.0435 0.0333 0.0399 0.0383 

5,5 0.0585 0.0488 0.0411 0.0612 0.0608 0.0588 0.0583 0.0304 0.0186 0.0300 0.0396 0.0397 0.0490 0.0470 

7,10 0.0607 0.0488 0.0581 0.0638 0.0532 0.0644 0.0627 0.0315 0.0307 0.0402 0.0420 0.0413 0.0495 0.0506 

10,7 0.0513 0.0590 0.0504 0.0535 0.0619 0.0619 0.0545 0.0309 0.0282 0.0394 0.0420 0.0404 0.0468 0.0405 

10,10 0.0523 0.0482 0.0564 0.0554 0.0539 0.0647 0.0563 0.0338 0.0278 0.0434 0.0419 0.0423 0.0489 0.0501 

 Lognormal Distribution vs. Gamma Distribution Gamma Distribution vs. Gamma Distribution 

3,3 0.0495 0.0322 0.0000 0.0614 0.0606 0.0079 0.0000 0.0418 0.0256 0.0000 0.0505 0.0512 0.0070 0.0000 

3,5 0.0342 0.0255 0.0281 0.0394 0.0308 0.0325 0.0351 0.0402 0.0300 0.0343 0.0455 0.0396 0.0387 0.0354 

5,3 0.0609 0.0504 0.0705 0.0668 0.0684 0.0769 0.0557 0.0424 0.0334 0.0363 0.0485 0.0416 0.0418 0.0367 

5,5 0.0406 0.0289 0.0413 0.0478 0.0476 0.0594 0.0554 0.0404 0.0292 0.0326 0.0475 0.0458 0.0549 0.0503 

7,10 0.0314 0.0320 0.0418 0.0367 0.0418 0.0577 0.0341 0.0417 0.0373 0.0430 0.0472 0.0473 0.0515 0.0494 

10,7 0.0533 0.0404 0.0640 0.0613 0.0532 0.0642 0.0519 0.0402 0.0377 0.0436 0.0460 0.0456 0.0513 0.0418 

10,10 0.0420 0.0363 0.0600 0.0479 0.0476 0.0690 0.0400 0.0442 0.0383 0.0458 0.0494 0.0500 0.0519 0.0509 

Sample size 
 

Normal Distribution vs. Normal Distribution Normal Distribution vs. Lognormal Distribution 

t Welch WMW NBTT NBWT NBWR PTT t Welch WMW NBTT NBWT NBWR PTT 

3,3 0.0109 0.0064 0.0000 0.0000 0.0000 0.0000 0.0000 0.0196 0.0103 0.0000 0.0001 0.0000 0.0000 0.0000 

3,5 0.0118 0.0090 0.0000 0.0103 0.0077 0.0000 0.0000 0.0360 0.0147 0.0000 0.0352 0.0195 0.0001 0.0000 

5,3 0.0107 0.0090 0.0000 0.0096 0.0074 0.0000 0.0000 0.0079 0.0113 0.0000 0.0070 0.0094 0.0003 0.0000 

5,5 0.0094 0.0073 0.0076 0.0099 0.0095 0.0095 0.0076 0.0177 0.0110 0.0164 0.0186 0.0179 0.0200 0.0164 

7,10 0.0088 0.0097 0.0094 0.0107 0.0099 0.0106 0.0090 0.0240 0.0101 0.0214 0.0282 0.0167 0.0229 0.0291 

10,7 0.0098 0.0102 0.0087 0.0103 0.0104 0.0102 0.0083 0.0092 0.0133 0.0133 0.0103 0.0176 0.0178 0.0155 

10,10 0.0100 0.0090 0.0099 0.0108 0.0116 0.0112 0.0096 0.0171 0.0134 0.0190 0.0190 0.0188 0.0216 0.0291 

 Normal Distribution vs. Gamma Distribution Lognormal Distribution vs. Lognormal Distribution 

3,3 0.0150 0.0090 0.0000 0.0000 0.0000 0.0000 0.0000 0.0065 0.0029 0.0000 0.0000 0.0000 0.0000 0.0000 

3,5 0.0215 0.0111 0.0000 0.0182 0.0106 0.0002 0.0000 0.0066 0.0036 0.0000 0.0074 0.0036 0.0000 0.0000 

5,3 0.0087 0.0124 0.0000 0.0076 0.0092 0.0000 0.0000 0.0068 0.0041 0.0000 0.0060 0.0041 0.0003 0.0000 

5,5 0.0165 0.0113 0.0117 0.0163 0.0157 0.0144 0.0117 0.0038 0.0019 0.0067 0.0034 0.0037 0.0089 0.0067 

7,10 0.0158 0.0105 0.0150 0.0172 0.0136 0.0172 0.0162 0.0040 0.0020 0.0086 0.0064 0.0047 0.0108 0.0089 

10,7 0.0122 0.0167 0.0144 0.0133 0.0176 0.0174 0.0134 0.0033 0.0020 0.0083 0.0051 0.0044 0.0097 0.0060 

10,10 0.0132 0.0110 0.0130 0.0142 0.0143 0.0153 0.0166 0.0047 0.0026 0.0083 0.0075 0.0080 0.0105 0.0098 

 Lognormal Distribution vs. Gamma Distribution Gamma Distribution vs. Gamma Distribution 

3,3 0.0114 0.0059 0.0000 0.0000 0.0000 0.0000 0.0000 0.0107 0.0062 0.0000 0.0000 0.0000 0.0000 0.0000 

3,5 0.0067 0.0051 0.0000 0.0064 0.0048 0.0000 0.0000 0.0078 0.0046 0.0000 0.0077 0.0044 0.0002 0.0000 

5,3 0.0156 0.0094 0.0000 0.0140 0.0099 0.0002 0.0000 0.0103 0.0051 0.0000 0.0095 0.0053 0.0000 0.0000 

5,5 0.0077 0.0048 0.0116 0.0085 0.0080 0.0142 0.0116 0.0070 0.0039 0.0080 0.0070 0.0072 0.0103 0.0080 

7,10 0.0053 0.0035 0.0088 0.0071 0.0063 0.0114 0.0054 0.0060 0.0035 0.0096 0.0090 0.0070 0.0096 0.0106 

10,7 0.0104 0.0079 0.0161 0.0147 0.0117 0.0169 0.0106 0.0070 0.0059 0.0101 0.0085 0.0099 0.0112 0.0079 

10,10 0.0083 0.0054 0.0141 0.0114 0.0109 0.0168 0.0080 0.0072 0.0049 0.0104 0.0100 0.0107 0.0118 0.0112 

*Bold entries indicate a type I error that is controlled. 
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Tables 3 and 4 also show the interaction between heteroscedastic and non- normal distributions, which affects 
type I errors.  For instance, when both populations are lognormal distributions, none of the test statistics could 
control type I errors at significance levels of 5%  and 1%.  Moreover, the Wilcoxon- Mann- Whitney test and 
nonparametric bootstrap Welch t- test Based on Rank have a high type I error rate ( 24.41%- 25.76%)  and 
10.12%-11.33% at significance levels of 5% and 1% respectively when the sample size is highest in a small 
group ( 10,10) .  Regarding the least population to have a normal distribution and a higher variance than other 
groups, the Welch t-test could control type I errors in all conditions at significance levels of 5% and 1%. When 
considered specifically at a significance level of 0.05, both groups had a normal distribution. It was found that 
the Welch t- test could control the type I error on all conditions followed by the independent t- test and 
nonparametric bootstrap Welch t- test respectively.  In the case where the first group had lognormal and the 
second had a normal distribution with higher variance, it was found that the Welch t-test could control the type 
I error on all conditions followed by independent t- test, the Wilcoxon- Mann- Whitney test and nonparametric 
bootstrap Welch t-test respectively, and in the case where the first group had gamma distribution and the second 
had normal distribution with higher variance, it was found that Welch t-test could control the type I error on all 
conditions followed by independent t-test, exact Wilcoxon-Mann-Whitney test, nonparametric bootstrap t-test, 
nonparametric bootstrap Welch t-test, and permutation t-test. When considered specifically at significance level 
0.01, the first condition was both groups had a normal distribution. The second condition was that the first group 
had a lognormal distribution and the second group had a normal distribution with higher variance.  The last 
condition was the first group had a gamma distribution and the second group had a normal distribution with 
higher variance. The results showed that the Welch t-test could control the type I error on almost all conditions. 
By contrast, if the populations had other distributions, most-test statistics could not control the type I error both 
at the significance levels of 0.05 and 0.01. Finally, when the distributions and the variance ratio were reversed, 
the outcome was different. For instance, when the first population had a normal distribution and the second had 
a lognormal distribution with higher variance, Welch t- test statistics could not control type I errors.  However, 
when the condition was reversed the Welch t- test could control type I errors on all conditions at 5%  and 1% 
significance levels. Nevertheless, if the sample sizes were unequal, the smaller group that had the higher variance 
was more capable of controlling the type I error. 
 
Table 3   The type I error probability (nominal level=0.05) for location difference testing statistics between two populations under 

unequal variances and various distributions and sample sizes 
Sample size 

 
Normal Distribution vs. Normal Distribution Normal Distribution vs. Lognormal Distribution 

t Welch WMW NBTT NBWT NBWR PTT t Welch WMW NBTT NBWT NBWR PTT 

3,3 0.0744 0.0543 0.0000 0.0865 0.0848 0.0104 0.0000 0.1158 0.0846 0.0000 0.1314 0.1297 0.0109 0.0000 

3,5 0.0272 0.0430 0.0272 0.0291 0.0429 0.0309 0.0180 0.1034 0.0790 0.0667 0.1044 0.0874 0.0732 0.0782 

5,3 0.1424 0.0680 0.1002 0.1581 0.1036 0.1080 0.1333 0.1394 0.1395 0.1082 0.1416 0.1423 0.1164 0.1040 

5,5 0.0689 0.0538 0.0471 0.0757 0.0750 0.0680 0.0717 0.1240 0.1137 0.0893 0.1270 0.1262 0.1170 0.1197 

7,10 0.0312 0.0517 0.0434 0.0328 0.0547 0.0657 0.0256 0.0988 0.1005 0.1387 0.0980 0.1013 0.1755 0.0858 

10,7 0.1055 0.0513 0.0796 0.1103 0.0710 0.0741 0.0696 0.1457 0.1365 0.1602 0.1477 0.1398 0.1593 0.1248 

10,10 0.0589 0.0488 0.0597 0.0603 0.0604 0.0666 0.0277 0.1244 0.1223 0.1799 0.1261 0.1252 0.1969 0.0926 

 Normal Distribution vs. Gamma Distribution Lognormal Distribution vs. Normal Distribution 

3,3 0.1174 0.0887 0.0000 0.1293 0.1283 0.0099 0.0000 0.0860 0.0528 0.0000 0.1059 0.1043 0.0121 0.0000 

3,5 0.0726 0.0690 0.0472 0.0709 0.0707 0.0518 0.0506 0.0289 0.0464 0.0382 0.0302 0.0508 0.0402 0.0209 

5,3 0.1705 0.1321 0.1247 0.1767 0.1515 0.1339 0.1398 0.1672 0.0590 0.1441 0.1888 0.1180 0.1504 0.1728 
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Tables 3 and 4 also show the interaction between heteroscedastic and non- normal distributions, which affects 
type I errors.  For instance, when both populations are lognormal distributions, none of the test statistics could 
control type I errors at significance levels of 5%  and 1%.  Moreover, the Wilcoxon- Mann- Whitney test and 
nonparametric bootstrap Welch t- test Based on Rank have a high type I error rate ( 24.41%- 25.76%)  and 
10.12%-11.33% at significance levels of 5% and 1% respectively when the sample size is highest in a small 
group ( 10,10) .  Regarding the least population to have a normal distribution and a higher variance than other 
groups, the Welch t-test could control type I errors in all conditions at significance levels of 5% and 1%. When 
considered specifically at a significance level of 0.05, both groups had a normal distribution. It was found that 
the Welch t- test could control the type I error on all conditions followed by the independent t- test and 
nonparametric bootstrap Welch t- test respectively.  In the case where the first group had lognormal and the 
second had a normal distribution with higher variance, it was found that the Welch t-test could control the type 
I error on all conditions followed by independent t- test, the Wilcoxon- Mann- Whitney test and nonparametric 
bootstrap Welch t-test respectively, and in the case where the first group had gamma distribution and the second 
had normal distribution with higher variance, it was found that Welch t-test could control the type I error on all 
conditions followed by independent t-test, exact Wilcoxon-Mann-Whitney test, nonparametric bootstrap t-test, 
nonparametric bootstrap Welch t-test, and permutation t-test. When considered specifically at significance level 
0.01, the first condition was both groups had a normal distribution. The second condition was that the first group 
had a lognormal distribution and the second group had a normal distribution with higher variance.  The last 
condition was the first group had a gamma distribution and the second group had a normal distribution with 
higher variance. The results showed that the Welch t-test could control the type I error on almost all conditions. 
By contrast, if the populations had other distributions, most-test statistics could not control the type I error both 
at the significance levels of 0.05 and 0.01. Finally, when the distributions and the variance ratio were reversed, 
the outcome was different. For instance, when the first population had a normal distribution and the second had 
a lognormal distribution with higher variance, Welch t- test statistics could not control type I errors.  However, 
when the condition was reversed the Welch t- test could control type I errors on all conditions at 5%  and 1% 
significance levels. Nevertheless, if the sample sizes were unequal, the smaller group that had the higher variance 
was more capable of controlling the type I error. 
 
Table 3   The type I error probability (nominal level=0.05) for location difference testing statistics between two populations under 

unequal variances and various distributions and sample sizes 
Sample size 

 
Normal Distribution vs. Normal Distribution Normal Distribution vs. Lognormal Distribution 

t Welch WMW NBTT NBWT NBWR PTT t Welch WMW NBTT NBWT NBWR PTT 

3,3 0.0744 0.0543 0.0000 0.0865 0.0848 0.0104 0.0000 0.1158 0.0846 0.0000 0.1314 0.1297 0.0109 0.0000 

3,5 0.0272 0.0430 0.0272 0.0291 0.0429 0.0309 0.0180 0.1034 0.0790 0.0667 0.1044 0.0874 0.0732 0.0782 

5,3 0.1424 0.0680 0.1002 0.1581 0.1036 0.1080 0.1333 0.1394 0.1395 0.1082 0.1416 0.1423 0.1164 0.1040 

5,5 0.0689 0.0538 0.0471 0.0757 0.0750 0.0680 0.0717 0.1240 0.1137 0.0893 0.1270 0.1262 0.1170 0.1197 

7,10 0.0312 0.0517 0.0434 0.0328 0.0547 0.0657 0.0256 0.0988 0.1005 0.1387 0.0980 0.1013 0.1755 0.0858 

10,7 0.1055 0.0513 0.0796 0.1103 0.0710 0.0741 0.0696 0.1457 0.1365 0.1602 0.1477 0.1398 0.1593 0.1248 

10,10 0.0589 0.0488 0.0597 0.0603 0.0604 0.0666 0.0277 0.1244 0.1223 0.1799 0.1261 0.1252 0.1969 0.0926 

 Normal Distribution vs. Gamma Distribution Lognormal Distribution vs. Normal Distribution 

3,3 0.1174 0.0887 0.0000 0.1293 0.1283 0.0099 0.0000 0.0860 0.0528 0.0000 0.1059 0.1043 0.0121 0.0000 

3,5 0.0726 0.0690 0.0472 0.0709 0.0707 0.0518 0.0506 0.0289 0.0464 0.0382 0.0302 0.0508 0.0402 0.0209 

5,3 0.1705 0.1321 0.1247 0.1767 0.1515 0.1339 0.1398 0.1672 0.0590 0.1441 0.1888 0.1180 0.1504 0.1728 

 

 

Table 3  (Cont.)  

* Bold entries indicate a type I error that is controlled. 
 
Table 4   The type I error probability (nominal level=0.01) for location difference testing statistics between two populations under 

unequal variances and various distributions and sample sizes 

Sample size 
 

Normal Distribution vs. Normal Distribution Normal Distribution vs. Lognormal Distribution 

t Welch WMW NBTT NBWT NBWR PTT t Welch WMW NBTT NBWT NBWR PTT 

 Normal Distribution vs. Gamma Distribution Lognormal Distribution vs. Normal Distribution 

5,5 0.1085 0.0970 0.0736 0.1089 0.1105 0.0957 0.1019 0.0698 0.0501 0.0489 0.0774 0.0794 0.0614 0.0797 

7,10 0.0668 0.0814 0.1033 0.0684 0.0824 0.1398 0.0552 0.0316 0.0484 0.0531 0.0329 0.0553 0.0789 0.0238 

10,7 0.1446 0.1091 0.1513 0.1485 0.1182 0.1417 0.1120 0.1126 0.0501 0.0937 0.1201 0.0747 0.0859 0.0707 

10,10 0.0997 0.0942 0.1474 0.1011 0.1012 0.1603 0.0636 0.0554 0.0460 0.0701 0.0591 0.0586 0.0780 0.0240 

 Lognormal Distribution vs.  Lognormal Distribution Lognormal Distribution vs. Gamma Distribution 

3,3 0.1442 0.1069 0.0000 0.1618 0.1621 0.0143 0.0000 0.1383 0.1047 0.0000 0.1578 0.1562 0.0155 0.0000 

3,5 0.1014 0.0848 0.0796 0.1061 0.0934 0.0856 0.0849 0.0748 0.0795 0.0667 0.0764 0.0815 0.0699 0.0589 

5,3 0.2018 0.1581 0.2099 0.2180 0.2024 0.2153 0.1934 0.2134 0.1312 0.2040 0.2318 0.1890 0.2079 0.2127 

5,5 0.1447 0.1289 0.1131 0.1525 0.1507 0.1391 0.1539 0.1180 0.1036 0.0840 0.1237 0.1227 0.1019 0.1239 

7,10 0.1010 0.1046 0.1909 0.1047 0.1122 0.2434 0.0884 0.0664 0.0825 0.1315 0.0680 0.0856 0.1673 0.0533 

10,7 0.1699 0.1431 0.2285 0.1779 0.1590 0.2142 0.1479 0.1466 0.0992 0.1632 0.1547 0.1183 0.1529 0.1104 

10,10 0.1281 0.1227 0.2441 0.1330 0.1346 0.2576 0.0884 0.0939 0.0877 0.1622 0.0976 0.0970 0.1736 0.0540 

 Gamma Distribution vs. Normal Distribution Gamma Distribution vs. Lognormal Distribution 

3,3 0.0784 0.0544 0.0000 0.0942 0.0943 0.0093 0.0000 0.1090 0.0761 0.0000 0.1220 0.1241 0.0125 0.0000 

3,5 0.0299 0.0461 0.0331 0.0306 0.0486 0.0367 0.0192 0.0956 0.0612 0.0662 0.1014 0.0778 0.0714 0.0808 

5,3 0.1446 0.0646 0.1165 0.1625 0.1058 0.1215 0.1433 0.1525 0.1515 0.1615 0.1627 0.1737 0.1674 0.1300 

5,5 0.0676 0.0521 0.0496 0.0743 0.0754 0.0641 0.0742 0.1263 0.1134 0.0997 0.1331 0.133 0.1318 0.1323 

7,10 0.0327 0.0516 0.0482 0.0344 0.0567 0.0746 0.0259 0.0902 0.0878 0.1550 0.0930 0.0944 0.2008 0.0770 

10,7 0.1045 0.0510 0.0874 0.1116 0.0709 0.0789 0.0711 0.1480 0.1347 0.1992 0.1561 0.1419 0.1868 0.1303 

10,10 0.0619 0.0531 0.0677 0.0637 0.0643 0.0755 0.0289 0.1201 0.1168 0.2148 0.1244 0.1236 0.2292 0.0837 

 Gamma  Distribution vs. Gamma Distribution        

3,3 0.1225 0.0881 0.0000 0.1372 0.1388 0.0115 0.0000        

3,5 0.0742 0.0690 0.0542 0.0743 0.0715 0.0590 0.0544        

5,3 0.1863 0.1338 0.1717 0.2010 0.1713 0.1775 0.1759        

5,5 0.1124 0.1017 0.0810 0.1156 0.1159 0.1040 0.1126        

7,10 0.0617 0.0734 0.1138 0.0634 0.0775 0.1517 0.0523        

10,7 0.1360 0.0990 0.1575 0.1407 0.1114 0.1437 0.1046        

10,10 0.0870 0.0825 0.1476 0.0910 0.0903 0.1590 0.0533        

Sample size 
 

Normal Distribution vs. Normal Distribution Normal Distribution vs. Lognormal Distribution 

t Welch WMW NBTT NBWT NBWR PTT t Welch WMW NBTT NBWT NBWR PTT 

3,3 0.0200 0.0109 0.0000 0.0000 0.0000 0.0000 0.0000 0.0384 0.0219 0.0000 0.0001 0.0000 0.0000 0.0000 

3,5 0.0056 0.0068 0.0000 0.0042 0.0047 0.0002 0.0000 0.0389 0.0235 0.0000 0.0349 0.0236 0.0002 0.0000 

5,3 0.0500 0.0234 0.0000 0.0500 0.0275 0.0005 0.0000 0.0426 0.0475 0.0000 0.0370 0.0395 0.0004 0.0000 

5,5 0.0167 0.0122 0.0164 0.0179 0.0179 0.0202 0.0164 0.0499 0.0406 0.0343 0.0481 0.0461 0.0402 0.0343 

7,10 0.0062 0.0110 0.0097 0.0071 0.0116 0.0136 0.0041 0.0445 0.0395 0.0490 0.0437 0.0414 0.0601 0.0315 

10,7 0.0330 0.0116 0.0225 0.0378 0.0220 0.0212 0.0175 0.0666 0.0674 0.0610 0.0665 0.0678 0.0613 0.0463 

10,10 0.0136 0.0095 0.0140 0.0151 0.0160 0.0155 0.0039 0.0574 0.0546 0.0685 0.0568 0.0568 0.0759 0.0318 

 Normal Distribution vs. Gamma Distribution Lognormal Distribution vs. Normal Distribution 

3,3 0.0396 0.0237 0.0000 0.0000 0.0000 0.0000 0.0000 0.0297 0.0139 0.0000 0.0000 0.0002 0.0000 0.0000 

3,5 0.0256 0.0195 0.0000 0.0213 0.0178 0.0000 0.0000 0.0055 0.0080 0.0000 0.0040 0.0065 0.0002 0.0000 
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Table 4 (Cont.)  

* Bold entries indicate a type I error that is controlled. 
 
 Discussion 

 
In this research, location testing between two populations was performed when the sample size was small 

with normal and non- normal distributions and equal variance.  The results revealed that the test statistics based 
on a bootstrap could control a type I error in the same way as classical statistics. This is consistent with Dwivedi 
et al. (2017) who analyzed small sample sizes utilizing the nonparametric pooled bootstrap test with a pooled 
resampling method. The type I error probability for the Independent t-test was examined in this study. The test 
statistics were the Welch t- test, exact Wilcoxon rank sum test, asymptotic permutation test, and nonparametric 
bootstrap t- test.  All the tests practically controlled type I error probability when variances were equal between 
groups, regardless of normal or skew-normal distribution. Nonetheless, the permutation t-test could not perform 
well enough compared to bootstrap test statistics. (Ahad, Abdullah, Lai, & Ali, 2012). 

Sample size 
 

Normal Distribution vs. Normal Distribution Normal Distribution vs. Lognormal Distribution 

t Welch WMW NBTT NBWT NBWR PTT t Welch WMW NBTT NBWT NBWR PTT 

 Normal Distribution vs. Gamma Distribution Lognormal Distribution vs. Normal Distribution 

5,3 0.0648 0.0557 0.0000 0.0587 0.0498 0.0004 0.0000 0.0723 0.0199 0.0000 0.0795 0.0400 0.0005 0.0000 

5,5 0.0453 0.0385 0.0315 0.0410 0.0425 0.0364 0.0315 0.0207 0.0104 0.0284 0.0234 0.0219 0.0313 0.0284 

7,10 0.0276 0.0319 0.0341 0.0271 0.0304 0.0428 0.0171 0.0052 0.0083 0.0137 0.0058 0.0129 0.0188 0.0040 

10,7 0.0685 0.0536 0.0540 0.0709 0.0577 0.0520 0.0386 0.0377 0.0119 0.0271 0.0483 0.0266 0.0222 0.0212 

10,10 0.0438 0.0407 0.0511 0.0427 0.0439 0.0565 0.0175 0.0130 0.0079 0.0178 0.0166 0.0161 0.0215 0.0035 

 Lognormal Distribution vs.  Lognormal Distribution Lognormal Distribution vs. Gamma Distribution 

3,3 0.0524 0.0298 0.0000 0.0000 0.0000 0.0000 0.0000 0.0586 0.0356 0.0000 0.0002 0.0002 0.0000 0.0000 

3,5 0.0361 0.0260 0.0000 0.0312 0.0239 0.0002 0.0000 0.0278 0.0273 0.0000 0.0226 0.0221 0.0001 0.0000 

5,3 0.0896 0.0678 0.0000 0.0910 0.0782 0.0006 0.0000 0.1069 0.0606 0.0000 0.1130 0.0812 0.0009 0.0000 

5,5 0.0668 0.0525 0.0699 0.0676 0.0672 0.0746 0.0699 0.0537 0.0416 0.0561 0.0541 0.0550 0.0579 0.0561 

7,10 0.0437 0.0422 0.0708 0.0460 0.0468 0.0922 0.0297 0.0272 0.0315 0.0413 0.0274 0.0336 0.0532 0.0166 

10,7 0.0834 0.0718 0.1014 0.0931 0.0861 0.0806 0.0701 0.0694 0.0444 0.0649 0.0764 0.0600 0.0479 0.0444 

10,10 0.0594 0.0552 0.1012 0.0661 0.0662 0.1133 0.0309 0.0391 0.0350 0.0568 0.0416 0.0427 0.0629 0.0160 

 Gamma Distribution vs. Normal Distribution Gamma Distribution vs. Lognormal Distribution 

3,3 0.0233 0.0122 0.0000 0.0002 0.0002 0.0000 0.0000 0.0300 0.0172 0.0000 0.0001 0.0000 0.0000 0.0000 

3,5 0.0056 0.0076 0.0000 0.0045 0.0058 0.0000 0.0000 0.0315 0.0148 0.0000 0.0282 0.0150 0.0003 0.0000 

5,3 0.0565 0.0219 0.0000 0.0567 0.0288 0.0005 0.0000 0.0458 0.0486 0.0000 0.0392 0.0430 0.0004 0.0000 

5,5 0.0212 0.0131 0.0222 0.0224 0.0222 0.0244 0.0222 0.0417 0.0315 0.0445 0.0444 0.0446 0.0488 0.0445 

7,10 0.0066 0.0110 0.0113 0.0067 0.0130 0.0152 0.0055 0.0354 0.0268 0.0536 0.0409 0.0326 0.0686 0.0241 

10,7 0.0349 0.0105 0.0267 0.0427 0.0233 0.0212 0.0172 0.0595 0.0631 0.0796 0.0672 0.0701 0.0693 0.0512 

10,10 0.0153 0.0105 0.0180 0.0175 0.0176 0.0212 0.0043 0.0509 0.0483 0.0825 0.0548 0.0561 0.0924 0.0265 

 Gamma  Distribution vs. Gamma Distribution        

3,3 0.0377 0.0213 0.0000 0.0000 0.0000 0.0000 0.0000        

3,5 0.0256 0.0192 0.0000 0.0228 0.0155 0.0002 0.0000        

5,3 0.0775 0.0558 0.0000 0.0758 0.0610 0.0004 0.0000        

5,5 0.0463 0.0367 0.0425 0.0463 0.0468 0.0457 0.0425        

7,10 0.0219 0.0242 0.0332 0.0214 0.0249 0.0457 0.0123        

10,7 0.0639 0.0486 0.0577 0.0688 0.0571 0.0462 0.0400        

10,10 0.0374 0.0348 0.0524 0.0384 0.0397 0.0564 0.0142        
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* Bold entries indicate a type I error that is controlled. 
 
 Discussion 

 
In this research, location testing between two populations was performed when the sample size was small 

with normal and non- normal distributions and equal variance.  The results revealed that the test statistics based 
on a bootstrap could control a type I error in the same way as classical statistics. This is consistent with Dwivedi 
et al. (2017) who analyzed small sample sizes utilizing the nonparametric pooled bootstrap test with a pooled 
resampling method. The type I error probability for the Independent t-test was examined in this study. The test 
statistics were the Welch t- test, exact Wilcoxon rank sum test, asymptotic permutation test, and nonparametric 
bootstrap t- test.  All the tests practically controlled type I error probability when variances were equal between 
groups, regardless of normal or skew-normal distribution. Nonetheless, the permutation t-test could not perform 
well enough compared to bootstrap test statistics. (Ahad, Abdullah, Lai, & Ali, 2012). 

Sample size 
 

Normal Distribution vs. Normal Distribution Normal Distribution vs. Lognormal Distribution 

t Welch WMW NBTT NBWT NBWR PTT t Welch WMW NBTT NBWT NBWR PTT 

 Normal Distribution vs. Gamma Distribution Lognormal Distribution vs. Normal Distribution 

5,3 0.0648 0.0557 0.0000 0.0587 0.0498 0.0004 0.0000 0.0723 0.0199 0.0000 0.0795 0.0400 0.0005 0.0000 

5,5 0.0453 0.0385 0.0315 0.0410 0.0425 0.0364 0.0315 0.0207 0.0104 0.0284 0.0234 0.0219 0.0313 0.0284 

7,10 0.0276 0.0319 0.0341 0.0271 0.0304 0.0428 0.0171 0.0052 0.0083 0.0137 0.0058 0.0129 0.0188 0.0040 

10,7 0.0685 0.0536 0.0540 0.0709 0.0577 0.0520 0.0386 0.0377 0.0119 0.0271 0.0483 0.0266 0.0222 0.0212 

10,10 0.0438 0.0407 0.0511 0.0427 0.0439 0.0565 0.0175 0.0130 0.0079 0.0178 0.0166 0.0161 0.0215 0.0035 

 Lognormal Distribution vs.  Lognormal Distribution Lognormal Distribution vs. Gamma Distribution 

3,3 0.0524 0.0298 0.0000 0.0000 0.0000 0.0000 0.0000 0.0586 0.0356 0.0000 0.0002 0.0002 0.0000 0.0000 

3,5 0.0361 0.0260 0.0000 0.0312 0.0239 0.0002 0.0000 0.0278 0.0273 0.0000 0.0226 0.0221 0.0001 0.0000 

5,3 0.0896 0.0678 0.0000 0.0910 0.0782 0.0006 0.0000 0.1069 0.0606 0.0000 0.1130 0.0812 0.0009 0.0000 

5,5 0.0668 0.0525 0.0699 0.0676 0.0672 0.0746 0.0699 0.0537 0.0416 0.0561 0.0541 0.0550 0.0579 0.0561 

7,10 0.0437 0.0422 0.0708 0.0460 0.0468 0.0922 0.0297 0.0272 0.0315 0.0413 0.0274 0.0336 0.0532 0.0166 

10,7 0.0834 0.0718 0.1014 0.0931 0.0861 0.0806 0.0701 0.0694 0.0444 0.0649 0.0764 0.0600 0.0479 0.0444 

10,10 0.0594 0.0552 0.1012 0.0661 0.0662 0.1133 0.0309 0.0391 0.0350 0.0568 0.0416 0.0427 0.0629 0.0160 

 Gamma Distribution vs. Normal Distribution Gamma Distribution vs. Lognormal Distribution 

3,3 0.0233 0.0122 0.0000 0.0002 0.0002 0.0000 0.0000 0.0300 0.0172 0.0000 0.0001 0.0000 0.0000 0.0000 

3,5 0.0056 0.0076 0.0000 0.0045 0.0058 0.0000 0.0000 0.0315 0.0148 0.0000 0.0282 0.0150 0.0003 0.0000 

5,3 0.0565 0.0219 0.0000 0.0567 0.0288 0.0005 0.0000 0.0458 0.0486 0.0000 0.0392 0.0430 0.0004 0.0000 

5,5 0.0212 0.0131 0.0222 0.0224 0.0222 0.0244 0.0222 0.0417 0.0315 0.0445 0.0444 0.0446 0.0488 0.0445 

7,10 0.0066 0.0110 0.0113 0.0067 0.0130 0.0152 0.0055 0.0354 0.0268 0.0536 0.0409 0.0326 0.0686 0.0241 

10,7 0.0349 0.0105 0.0267 0.0427 0.0233 0.0212 0.0172 0.0595 0.0631 0.0796 0.0672 0.0701 0.0693 0.0512 

10,10 0.0153 0.0105 0.0180 0.0175 0.0176 0.0212 0.0043 0.0509 0.0483 0.0825 0.0548 0.0561 0.0924 0.0265 

 Gamma  Distribution vs. Gamma Distribution        

3,3 0.0377 0.0213 0.0000 0.0000 0.0000 0.0000 0.0000        

3,5 0.0256 0.0192 0.0000 0.0228 0.0155 0.0002 0.0000        

5,3 0.0775 0.0558 0.0000 0.0758 0.0610 0.0004 0.0000        

5,5 0.0463 0.0367 0.0425 0.0463 0.0468 0.0457 0.0425        

7,10 0.0219 0.0242 0.0332 0.0214 0.0249 0.0457 0.0123        

10,7 0.0639 0.0486 0.0577 0.0688 0.0571 0.0462 0.0400        

10,10 0.0374 0.0348 0.0524 0.0384 0.0397 0.0564 0.0142        

 

 

Nevertheless, with the same criteria but unequal variance, the outcome of the highest-test statistics is the 
Welch t-test. This is similar to Boos and Brownie (1988) and Dwivedi et al. (2017) who both claimed that 
the Welch t-test has the highest test outperformance followed by the nonparametric bootstrap t-test under a 
normal population distribution. Also, the highest outperformance of the Welch t-test was greater than the 
nonparametric bootstrap t (pooled t statistic and Welch t statistics) under a non-normal population distribution. 

 
Conclusion and Suggestions 

 
In summary, firstly, when a population has a normal distribution, lognormal distribution, gamma distribution 

and homogeneity variances, classical statistics ( Independent t- test, Welch t- test, Wilcoxon- Mann- Whitney 
test)  and alternative statistics ( nonparametric Bootstrap t- test, nonparametric bootstrap welch t- test, 
nonparametric bootstrap Welch t based on rank, Permutation t-test ) could control type I errors. Secondly, when 
at least one population has a normal distribution and higher variance than another group, the Welch t-test could 
best control type I errors. Thirdly, if the small sample size was (3,3), the results showed that many test statistics 
could not reject a null hypothesis which is affected by type I errors. Finally, it could be concluded that hypothesis 
testing with small sample sizes must be careful when generalizing the results of the research.  This is because 
some cases may present a problem in maintaining a type I error, especially in cases of interaction between non-
normal distribution and unequal variances. 
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