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Abstract 
Thailand's rice exports are currently experiencing a declining trend in relation to the proportion of rice production.  This calls for the 

need to accurately predict future developments, which holds immense importance for stakeholders involved.  Accurate predictions enable 
the formulation of effective policies and strategies to boost Thailand's rice exports in the future. To address this objective, this research aims 
to identify a suitable model for forecasting the monthly quantity of Thailand's rice exports.  A sophisticated hybrid model is proposed, 
integrating the strengths of Empirical Mode Decomposition (EMD), Seasonal Auto-Regressive Integrated Moving Average (SARIMA), 
and Support Vector Regression (SVR) .  The model's parameters are optimized using Genetic Algorithm (GA)  to ensure optimal 
performance.  To evaluate the hybrid model's effectiveness, rigorous performance criteria are employed, including Mean Absolute Error 
(MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). These metrics provide a comprehensive assessment 
of the model's predictive capabilities and overall performance.  The research findings demonstrate that the developed hybrid model 
outperforms individual models across all performance criteria.  This solidifies its reliability in generating accurate forecasts for Thailand's 
monthly rice export quantities. Consequently, the hybrid model emerges as a valuable tool for organizations seeking to proactively forecast 
and effectively manage the dynamics of Thailand's rice exports in the future. 

Keywords: Hybrid model, Empirical mode decomposition, Support vector regression, Genetic algorithm, SARIMA model 

Introduction 

Rice holds a significant position as a staple food consumed worldwide, and Thailand proudly stands as one 
of the leading exporters, accounting for one- fourth of the world's major rice exports.  The expanse of rice 
cultivation in Thailand spans an impressive 61 61 875 000 rai or 9,900,000 hectares. Analyzing the historical 
data of rice production over the past five years (from 2016 to 2020), we observe varying figures ranging from 
19.20 to 20.577 million tons. Within the country, rice consumption remains stable, ranging from 11.000 to 
1 2 . 7 0 0  million tons, while the trend in rice exports tells a different story, showing a gradual decline from 
11.615 to 5.706 million tons (Office of Agricultural Economics, 2022). The intricate interplay between rice 
production, exports, and the dynamics of the global rice market can be fascinating to explore.  Examining the 
available data from 2 0 1 6  to 2 0 2 1 , we note subtle fluctuations in Thai rice production, likely influenced by 
external factors such as ever-changing weather patterns, severe droughts, and destructive floods (Jeong, Ko, & 
Yeom, 2022). While domestic rice consumption in Thailand shows a modest upward trajectory, the consistent 
decline in rice exports poses an intriguing topic worthy of investigation. A reliable and accurate forecast of rice 
exports can prove immensely valuable, aiding relevant organizations in formulating strategies to ensure timely 
and sustainable rice imports or exports. Numerous methods exist for predicting Thai rice exports, with the prevailing 
approach relying on statistical forecasting. These techniques leverage time series data to develop models that offer 
insights into future trends, facilitating effective planning and decision-making. Notably, studies highlight the use 
of models such as Box-Jenkins, Winters, additive exponential smoothing, and combined models for forecasting 
jasmine rice exports of Thailand (Keerativibool, 2014). Furthermore, Co and Boosarawongse (2007) have 
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employed advanced artificial neural network models to forecast Thai rice exports, considering the intricate and 
non- linear nature of export data.  However, it is worth noting that creating accurate forecasting models for rice 
exports poses significant challenges (Huang, Hasan, Deng, & Bao, 2021). Conventional statistical methods like 
Auto-Regressive Integrated Moving Average (ARIMA)  or Seasonal Auto-Regressive Integrated Moving Average 
(SARIMA)  may fall short of capturing the intricate dynamics of time series data, resulting in lower forecast 
accuracy. Consequently, non-linear forecasting models such as Artificial Neural Networks (ANN) and Support 
Vector Regression ( SVR)  have gained prominence, showcasing higher accuracy and efficiency compared to 
traditional approaches (Basir Chowdhury, Islam, & Ashik-E-Rabbani, 2021 ; Chen, Chen, & Jiang, 2021 ; 
Fan, Yu, Dong, Yeh, & Hong, 2021; Feng et al., 2020; Gu et al., 2016; Liu, Ma, Wang, Lu, & Lin, 2021; 
Su, Xu, & Yan, 2 0 1 7 ; Tang, Bai, Yang, & Lu, 2 0 2 0 ; Yang, Che, Deng, & Li, 2 0 1 9 ) .  However, it is 
essential to recognize that no single forecasting model can universally predict time series data with absolute 
precision.  Hence, researchers propose hybrid models for time series forecasting, blending the strengths of both 
linear and non- linear models to enhance the precision of forecasts.  Consequently, hybrid models have gained 
popularity and widespread usage in current forecasting practices ( Abdollahi, 2 0 2 0 ; Prado, Minutolo, & 
Kristjanpoller, 2020; Zhang, Ding, & Sun, 2020). 

In situations where time series data exhibit significant variability or are influenced by various factors, the 
precision of forecasting models can be affected. Combining linear and non-linear models to address these factors 
and achieve optimal parameters poses a challenge due to the risk of overfitting.  To overcome this obstacle, 
numerous researchers have turned to the Empirical Mode Decomposition ( EMD)  method, originally proposed 
by Huang ( 1971)  and subsequently utilized by Duan, Han, Huang, Zhao, and Wang ( 2016) , Meng et al. 
(2019) , Yaslan and  Bican (2017) .  EMD offers a solution by effectively decomposing time series data into 
distinct components, thereby mitigating noise and enhancing the efficiency of forecasting ( Kao, Nawata, & 
Huang, 2020). Within the realm of time series analysis, noise elements such as trends, seasonality, and unknown 
factors can significantly impact the performance of forecasts. Consequently, to elevate the accuracy of predictions, 
forecasters must diligently address the challenges associated with managing noise in time series data. There exist 
various approaches to tackle these issues and improve forecasting models.  One such approach involves fine-
tuning hyperparameters for algorithms like the Support Vector Regression (SVR) model, which has demonstrated 
efficacy in enhancing prediction accuracy (Kao et al., 2020). Another viable strategy entails decomposing the 
time series data into components using EMD, effectively reducing noise, and subsequently utilizing the segregated 
data to generate more precise forecasts using time series models ( Kao et al. , 2020; Fan et al. , 2022; Meng 
et al., 2019). Employing this methodology effectively addresses the complexities associated with intricate time 
series data. 

Considering this discussion, it is evident that a hybrid model combining EMD and other techniques can 
effectively address the challenges posed by volatile and complex time series data, resulting in improved 
forecasting accuracy. Therefore, the research team proposed a new hybrid model that integrates EMD, SARIMA, 
Genetic Algorithm (GA), and SVR to forecast Thai rice exports. This model provides an alternative solution for 
relevant organizations to forecast rice exports in the future.  The hybrid model involves decomposing Thai rice 
export time series data into intrinsic mode functions (IMFs) and a residual term using EMD. IMFs represent the 
oscillatory components of the time series data, and the IMFs, along with the residual term, are used to build the 
SARIMA model.  However, when the time series data exhibit non- linear characteristics, the SARIMA model's 
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forecasting accuracy is compromised.  To address this limitation, the SVR model, known for its effectiveness in 
predicting non-linear time series data, is utilized (Kao et al., 2020). Nevertheless, the SVR model's forecasting 
accuracy heavily depends on setting suitable parameters. Therefore, the Genetic Algorithm (GA) is employed to 
find the optimal parameters for the SVR model (Xu & Zhang, 2021; Kao et al., 2020). This research study 
combines EMD, SARIMA, GA, and SVR to create a hybrid model that forecasts the IMFs of Thai rice export 
data, and the forecasts from each component are aggregated in the final step. 

The study focuses on three sets of Thai rice export data:  jasmine rice, Pathum Thani rice, and sticky rice. 
These rice varieties are widely grown and exported in large quantities by Thailand.  The models used in this 
research study include SARIMA, GA- SVR, EMD- SARIMA, EMD- GA- SVR, and EMD- SARIMA-GA-
SVR. The selection of the appropriate model is based on evaluation criteria such as Mean Absolute Error (MAE), 
Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). By using these criteria, the 
differences in forecasting accuracy among the proposed models can be assessed.  The model with the lowest 
MAE, RMSE, and MAPE values indicates higher accuracy and suitability for future rice export predictions in 
Thailand. 
 

Methods and Materials 
 

1. Data used in the experiment 
Three time series datasets of Thailand’s rice exports, namely jasmine rice, Pathum Thani rice, and sticky 

rice ( Unit:  kg)  from January 2011 to March 2022 published on the website of the Office of Agricultural 
Economics, Ministry of Agriculture and Cooperatives, a total of 135 values, were used in the experiment (Office 
of Agricultural Economics, 2022) as presented in Figure 1. The data were divided into 2 sets. The first set was 
the training dataset, which was the data from January 2011 to December 2019, with 108 values.  This dataset 
was used to create the model. The second set was the testing dataset, which was the data from January 2020 to 
March 2022, with 27 values. This dataset was used for model testing. The criteria for dividing data to measure 
forecast performance ( cross- validation)  were based on 80%  and 20%  according to the concept of Gholamy 
Kreinovich, and  Kosheleva (2018) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Original three time series datasets of Thailand’s rice exports from January 2011 to March 2022 
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2. Seasonal autoregressive integrated moving average (SARIMA) 
SARIMA is the most popular linear model for forecasting seasonal time series, presented by Box Jenkins. 

The forecast equation is as follows (Box, Jenkins, Reinsel, & Ljung, 2008): 
 

( ) ( )(1 ) (1 ) ( ) ( )s d s D s
p P t q Q tB B B B Y B B                       (1) 

 ( ) ( )s
p PB B                  (2) 
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p pB B B B                      (3) 
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1 2( ) 1 ...s s s Ps
P PB B B B                   (4) 

2
1 2( ) 1 ... q

q qB B B B                      (5) 
2

1 2( ) 1 ...s s s Qs
Q QB B B B                   (6) 

tY  is the observed value at a time t , t  is the noise component assumed to be NID 2(0, ) , and t  is 
the time ranging from 1 to n . s is the time unit in 1 season, d and D are the orders of differences and 
seasonal differences.  B is a backward operator.  s

t t sB Y Y  and 1t tBY Y   , ( )p B  is non– seasonal 
autoregressive operator of order p .  ( )s

P B is the seasonal autoregressive operator of order P .  ( )q B is 
non–seasonal moving average operator of order q . ( )s

Q B is the seasonal moving average operator of order 
Q . 

To create a SARIMA model, SARIMA ( p,d,q) ( P,D,Q) s must be defined.  The researchers wrote the 
commands using an R programming language with the auto.arima() function in the Package “forecast” (R Core 
Team, 2021) to define the suitable ARIMA(p,d,q)(P,D,Q)s.  The model construction process consisted of 4 
following steps. 

Step 1: The time series consistency must be checked by considering the graphs of that time series. If the 
time series graphs have a tend component, that is, the data increase or decrease proportionally to time and is 
unevenly distributed, the time series data are inconsistent.  In this study, the data inconsistency was tested by 
Augmented Dickey–Fuller (ADF).  If the test result is not statistically significant, it means that the time series 
data are inconsistent. Therefore, it must be converted to consistent data by finding out the logarithm of the data 
and differentiating it to stabilize the time series data before it is used to define the model. 

Step 2: The forecasting model was defined. 
Step 3: The parameters were estimated, and the suitability of the model was verified. When obtaining a 

suitable model, before applying the model to forecasting, it must be checked with 4 diagnostic checking lists. 
(1) Zero mean error was tested by the t-test. (2) The normal distribution error was tested by the Kolmogorov–
Smirnov. (3) The interdependence of the error was tested by Ljung–Box Q-statistics. (4) The error must have 
constant variance determined by plotting the graph to consider the distribution between the error and the forecast 
value. If the graph is distributed with no pattern, the error has constant variance. 

Step 4: The suitable model was used to forecast Thailand’s monthly rice exports. 
3. Empirical mode decomposition (EMD) 

EMD is an empirical signal processing algorithm used for extracting features of nonlinear data.  Since 
EMD does not need to set the parameters, it can automatically fit into the rice export data.  To reduce the 
parameters of the proposed model and improve the robustness of the proposed model, in this paper, EMD is 
selected to decompose the export rice data into several sub- layers.  The computational steps of EMD can be 
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described as follows (Duan et al., 2016; Qiu, Ren, Suganthan, & Amaratunga, 2017; Meng et al., 2019; Mi, 
Liu, & Li, 2019; Yaslan & Bican, 2017): 

(1) Determine all the local extremes of the rice export data ( )X t . 
( 2)  Connect all the local maxima to calculate the upper envelope ( )UX t  by using a cubic spline line. 

Similarly, connect all the local minima to calculate the lower envelope ( )LX t . 
(3) Compute the mean envelope ( )M t : 

( ) [ ( ) ( )] / 2U LM t X t X t         (7) 
(4) Calculate the variable ( )Y t : 

( ) ( ) ( )Y t X t M t           (8) 
If ( )Y t is the IMF (Intrinsic Mode Function), set ( ) ( )c t Y t ; otherwise, replace ( )X t  by ( )Y t , and 

repeat steps (1) – (4), until the termination condition is satisfied. 
(5) Calculate the residual ( )R t : 

( ) ( ) ( )R t X t C t          (9) 
replace ( )X t with ( )R t , and repeat steps (1) – (5), until all the IMF are found. 

 
4. Support vector regression (SVR) 

At present, the SVR method is one of the most popular and high-accuracy methods (Chen et al., 2021; 
Gu et al. , 2016; Fan et al. , 2021; Feng et al. , 2020; Su et al. , 2017; Tang et al. , 2020) , introduced by 
Vapnik (1998) .  It minimizes structural risks by adjusting the low-dimension dataset on the input space to be 
in the high-dimension dataset on the feature space using a kernel function as presented in the forecast Equation 
(10) 

bxwxf T  )()(                              (10) 
When w  is the vector weight, and b  is the error of the regression line, the values of w  and  b  are 

determined by investigating the minimum value from Equation (11). 

 2

1

1 1(C) . ( )
2

N

i
i

R w C y f x
n 



                         (11) 

Using the SVR method to predict the output value from the input vector, an epsilon tube is constructed using 
various types of loss functions, with the most popular being  - insensitive introduced by Vapnik ( 1998) 
because it is a common loss function used in time series forecasting (Chen et al., 2021; Fan et al., 2021; Feng 
et al., 2020; Tang et al., 2020). The  -insensitive loss function is shown in Equation (12). 

0 ( )
( )

( )





 
 







if y f xi
y f xi y f x otherwisei

                 (12) 

i  and *
i  are the slack variables and are away from the edge of epsilon (  -tube) as shown in Figure 2. 
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Figure 2 Boundary of Support Vector Regression 
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i causes Equation 
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Solving Equation 13 with the constrained condition of Equation 14 can be done by converting it to the dual 
problem with Lagrange multipliers as shown in Equation 15 and the condition as in Equation 16. 
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(16) 
When ,i jx x  are the input data, *,i i   are Lagrange multipliers, C  is constant.  N  is the number of 

support vectors.  If the input is a support vector, *, 0i i   .  If the input vector is not a support vector, 
*, 0i i   . After calculating i  and *

i  from the learning dataset, the SVR equation can be created to predict 
the output from the input vector as shown in Equation 17. 
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5. Genetic algorithm (GA) 
 GA is part of the metaheuristic method used to discover suitable parameters for a forecasting model, in 

particular, forecasting by machine learning methods ( Prado et al. , 2020; Kao et al. , 2020) , to increase the 
accuracy of forecasting values.  GA is a concept proposed by Holland (1975). Optimal answer determinations 
begin with a solution randomly assigned to the initial population.  Each answer is encoded and called a 
chromosome.  Each chromosome contains a gene, which is the parameter that needs to be optimized.  Then the 
answer from the previous generation of the population, known as the parent, will be used to create the next 
generation, known as the offspring. Genetic operators can be divided into two types: crossover and mutation. In 
the processing, the offspring will then replace the parent and this will be repeated until the stop condition is 
reached. To create forecast equations using SVR, three important parameters affect forecast accuracy: parameter 
C , parameter and parameter  . The process of investigating suitable parameters of the SVR method by GA 
can be carried out as follows. 

 5.1 Chromosome representation: This is the process of identifying the gene under chromosomes. When 
it is used to find the appropriate parameters for the SVR method, each chromosome contains the gene representing 
the parameter.  The chromosome is encoded as the floats chromosome.  Then a random initial population is 
generated for further fitness evaluation. 

 5.2 Fitness evaluation: This is the evaluation of the suitability of each chromosome for the selection of 
offspring chromosomes to be the next generation of the population. 

 5.3 Selection operation: This is the step in selecting the offspring chromosomes to be the next generation 
of the population. 

 5.4 Crossover:  This is the creation of offspring chromosomes by using two parent chromosomes to 
perform crossover at a specified rate of crossover. 

 5.5 Mutation:  It is the creation of offspring chromosomes by using one parent chromosome to perform 
mutation. 

 5.6 Replacement: It is to replace the original population with a new, more suitable population. Steps 5.2 to 
5.6 are repeated until the GA stop condition is reached. 

6. Hybrid model 
The combination of the SARIMA and SVR models represents a powerful and efficient approach for 

forecasting time series data.  Each model exhibits distinct strengths.  SARIMA excels in accurately predicting 
linear time series data while facing limitations when it comes to non-linear and non-stationary data. To address 
these challenges, the EMD technique is applied, enabling the transformation of non-linear data into a stationary 
form.  Subsequently, SARIMA is utilized to forecast the decomposed components obtained through EMD. 
Although EMD effectively handles non-linearity and reduces complexities in the time series data, there are often 
hidden factors that impact its accuracy. To enhance the performance of the EMD-SARIMA model, this research 
integrates SVR to forecast the residuals and incorporates them into a comprehensive hybrid model called EMD-
SARIMA- SVR.  As the SVR model necessitates appropriate parameter tuning, the GA method is employed to 
identify optimal parameter settings, ultimately refining the effectiveness of the hybrid model. The overall process 
of model development can be summarized as follows. 
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6.1 EMD-SARIMA model 

To develop the EMD- SARIMA hybrid model, the researchers analyzed the data on rice exports 
using the EMD method (details presented in Section 3) .  The objective was to decompose the non- linear time 
series data into a stationary form, known as the Intrinsic Mode Function ( IMFs)  and residual.  Each separated 
component is then divided into two sets: a training dataset of 108 values and a testing dataset of 27 values (details 
provided in Section 1 ) .  The training dataset is utilized for forecasting using the SARIMA model ( details in 
Section 2) .  Once a suitable model is obtained, it is used to forecast 27 future values.  These predicted values 
from all components are then combined in the final step.  Subsequently, performance metrics are calculated and 
sequentially presented in Table 5. 

6.2 EMD-GA-SVR model 
To develop the EMD- GA-SVR hybrid model, the researchers analyzed the data on rice exports 

using the EMD method, similar to the EMD-SARIMA model. The objective was to decompose the non-linear 
time series data into a stationary form. Subsequently, the researchers obtained the IMF (Intrinsic Mode Functions) 
and residuals.  These components were divided into two sets:  a training dataset of 1 0 8  values and a testing 
dataset of 27 values (details provided in Section 1). The training dataset was utilized to make predictions using 
the SVR model (details in Section 4). The following steps can be followed: 

6 . 2 . 1  The training dataset was transformed into a dataset   1
( , ) n

t t i
D x y


  by rearranging the 

time series data into a lagged matrix form with m columns as follows (Sujjaviriyasup, 2021). 
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m m m
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From the metrics, the data are displayed backwards from column 1  to column 1m , used as input data, and 
the column m  is the target data. This is done to enable the SVR model to learn and create a predictive function 
for the characteristics of the data. This research selects several columns ranging from 2 to 12, as the researchers 
collected monthly data. There are 12 periods to reflect the calendar cycle. If a large volume of backward data is 
used, the forecasted values may not be appropriate.  The SVR model is implemented by programming in the R 
language, which has the SVM() function in the e1072 package presented by Meyer et al. (2015) , and the GA 
method, which is implemented by the GA package published by Scrucca (2013) , is used to search for the most 
suitable parameters for the SVR model. The process of finding the appropriate parameter values is described in detail 
(as shown in Figure 3). 

(1)  Initial Population is defined by randomly selecting chromosomes to be members of 
the population, with a total of 100 chromosomes.  Each chromosome consists of 3 genes, where each gene 
represents the parameter values of the SVR model (C , 2 , and  ). 
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(1)  Initial Population is defined by randomly selecting chromosomes to be members of 
the population, with a total of 100 chromosomes.  Each chromosome consists of 3 genes, where each gene 
represents the parameter values of the SVR model (C , 2 , and  ). 

 

(2) Randomize parameters for experimental use with data to obtain the most appropriate 
values.  This research is divided into 5 parts ( 5- fold cross- validation on the training dataset)  and each part 
randomly tests the data with parameters to obtain the most suitable parameters for the data. 

(3) Assess the fitness value of chromosomes to select offspring to form the next 
generation population.  The evaluation function is defined using the RMSE ( Root Mean Square Error)  as a 
measure of suitability. 

(4) Check the termination condition of the GA method.  This research project specifies the 
termination condition when the population has reached 100 generations. 

(5) If the termination condition of the GA method's execution has not been met, proceed with 
the selection process, which is a step to select offspring chromosomes to become the population in the next generation. 

(6) Perform Crossover, which is the process of creating offspring chromosomes by 
crossing over the parental chromosomes, specifically using 3 chromosomes.  The Crossover probability is set to 
0.80. 

(7) Perform mutations, which involve generating offspring chromosomes by taking one 
chromosome from both parents. The mutation rate is set to 0.1. 

(8) Replacement is the process of replacing the original population with a new population 
that is better suited. It involves replacing the parental chromosomes with offspring chromosomes according to a 
crossbreeding rate of 0.80. 

(9) The search boundaries forC , 2 and are within the intervals [ 101, 102] , [ 10-4, 
10-3], and [10-5, 10-4] respectively. 

(10) Generate the next generation of the SVR model using the GA method and repeat steps 
2.2 - 2.9 until reaching the termination condition of the GA method. 

6.2.2  Obtain the optimal parameter values of the SVR method from the GA method, then construct 
the best SVR model using the training dataset. 

6.2.3  Predict the components of IMFs and the data residuals for each set using the input vectors of 
the testing dataset, consisting of 27 values, from the SVR model obtained in step 3. 

6.2.4  Combine the forecast values of each component to obtain the forecast data of Thailand's rice 
exports for all three datasets. Then, proceed to compare the forecasts in the next order. The details are shown in 
Table 5 

6.3 EMD-SARIMA-GA-SVR model 
To construct the EMD- SARIMA-GA- SVR model, the researchers synergistically combined the 

capabilities of the SARIMA and SVR models for accurate forecasting.  The model creation process entails analyzing 
the time series data of rice exports using the EMD method, mirroring the methodologies employed in the EMD-
SARIMA and EMD- GA- SVR models, to transform the inherent non- linear characteristics into a stationary 
format. The acquired Intrinsic Mode Functions (IMFs) and residual values are subsequently partitioned into two 
distinct sets:  a training dataset of 108 values and a testing dataset of 27 values.  Subsequently, the training 
dataset is employed to generate forecasts using the SARIMA- GA- SVR model, as illustrated in Figure 4.  The 
detailed steps of the model creation process are as follows: 
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6.3.1 Analyze the data using the Empirical Mode Decomposition (EMD) method to separate the 
components of the original time series into a set containing the Intrinsic Mode Functions (IMFs) and residual 
values. 

6.3.2 Divide the obtained IMFs and residual values into two segregated sets: a training dataset of 
108 values and a testing dataset of 27 values. 

6.3.3 Leverage the SARIMA model, expounded upon in Section 2, to forecast the training 
dataset, thereby capturing the linear characteristics of the data. 

6.3.4 Calculate the residuals by deducting the actual values from the forecasts, facilitating the 
creation of a non-linear relationship function. This function accurately elucidates the non-linear relationship 
characteristics of the residuals obtained from the well-suited SARIMA model. 

6.3.5 Utilize the residuals derived from step 6.3.4 to construct the GA-SVR model, 
meticulously explicated in Section 6.2, and effectively forecast 27 future values. 

6.3.6 Merge the forecasts derived from steps 6.3.3 and 6.3.5, subsequently computing the performance 
metrics. Comprehensive details about these metrics are sequentially presented in Table 5 and Table 6. 

7. The benchmarks for evaluating the performance of the model 
The performance of the model was evaluated by the following 3 benchmarks (Chen et al., 2021): 
7.1 mean absolute error (MAE) 
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If MAE, RMSE, and MAPE values are low, the model is highly efficient. 
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Figure 3 GA-SVR Optimization 
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Figure 4 The Flowchart of the proposed hybrid forecasting system 
 

Results 
 

1. Data analysis results and basic statistics 
The average monthly export volume of jasmine rice was nearly 156,000 tonnes with a standard deviation 

of 46,263 tonnes. The highest export volume was 336,287 tonnes while the lowest export volume was 67,000 
tonnes.  The average monthly export volume of Pathum Thani rice was 24,100 tonnes and the highest export 
volume was 92,643 tonnes while the lowest export volume was 3,238 tonnes.  The average monthly export 
volume of sticky rice was 29,032 tonnes with the highest export volume of 112,791 tonnes while the lowest 
export volume was 5,458 tonnes, as presented in Table 1 (in kgs). 

 
Table 1 Descriptive summary of three datasets of Thailand rice exports  

Data set data Number Mean Std. Max. Min. Median 
Jasmine 

rice 
All sample 135 155,644,571 46,263,254 336,287,581 66,999,988 149,362,875 
Training 108 164,420,544 43,015,954 336,287,581 94,499,283 154,523,230 
Testing 27 120,540,677 120,540,677 258,171,543 66,999,988 115,421,782 

Pathum 
Thani 
rice 

All sample 135 24,100,100 19,453,575 92,643,362 3,237,788 17,426,207 
Training 108 19,627,715 16,088,573 69,002,316 3,237,788 14,202,282 
Testing 27 41,989,637 21,674,035 92,643,362 3,877,297 38,970,697 

Sticky 
rice 

All sample 135 29,032,243 15,917,441 112,790,516 5,458,431 26,595,443 
Training 108 30,298,285 16,708,481 112,790,516 5,458,431 27,578,702 
Testing 27 23,968,074 11,117,908 52,985,167 9,312,299 22,371,168 
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2. Data analysis results of the SARIMA model 
2.1 When considering the 3 sets of Thailand’s rice export volume data (Figure 1), the graph tended to 

be a component with uneven distribution, indicating that the data were inconsistent.  The results of the data 
consistency test with Augmented Dickey–Fuller (ADF) (Table 2) revealed that the ADF values of the 3 datasets 
were not statistically significant ( p- value > 0.05) , indicating that all 3 datasets had trends or seasonality 
components. When these three time series datasets were shown to be inconsistent, the data were transformed by 
identifying the logarithm of, and the differences between, the datasets before creating the SARIMA model. The 
results of the ADF analysis ( Table 2)  revealed that after transforming all 3 sets of data, they were consistent, 
and the ADF values were statistically significant (p-value < 0.05) .  Therefore, the data can be used to define 
the model. 
 

Table 2 Augmented Dickey – Fuller (ADF) of the three datasets 

data Pre data transformation Post data transformation 
ADF p-value ADF p-value 

Jasmine rice -3.1875 0.0936 -6.1166 0.01 
Pathum Thani rice -2.7276 0.2748 -5.3941 0.01 

Sticky rice -2.3531 0.4302 -6.9574 0.01 
 
2.2 To define the pattern of the SARIMA model, ( p,d,q)  and ( P,D,Q) s must be specified.  The R 

programing language with an auto.arima()  function in the Package “ forecast”  for determining the appropriate 
(p,d,q) and (P,D,Q)s was used to define the pattern of the SARIMA model. The results of the data analysis are 
presented in Table 3. 
 

Table 3 Estimation of SARIMA of the three datasets  
data Estimate Std. Error z-value p-value 

Jasmine rice 
SARIMA(1,1,1)(0,0,2)12 

AR(1) 0.2453 0.1225 2.0022 0.045267 
MA(1) -0.8475 0.0656 -12.9152 < 0.001 
SMA(1) 0.2136 0.0962 2.2197 0.026440 
SMA(2) 0.2854 0.1014 2.8150 0.004877 

Pathum Thani rice 
SARIMA(0,1,1)(0,0,1)12 

MA(1) -0.7017 0.0705 -9.9581 < 0.001 
SMA(1) 0.3627 0.1079 3.3606 < 0.001 

Sticky rice 
SARIMA(1,1,0)(0,0,1)12 

AR(1) 0.37139 0.088970 4.1743 < 0.001 
SMA(1) 0.1826 0.093159 1.9601 0.04998 

 
2.3 From Table 4  and Figure 4 , the examination of the preliminary agreement of the SARIMA model 

revealed that the mean error value was zero.  The errors were normally distributed, independent, and had constant 
variance.  It can be concluded that the SARIMA model is suitable for forecasting the 3 datasets of Thailand’ s rice 
export. 
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Table 4 Examining the basic assumption of the SARIMA model of the three datasets 

Models 

The mean error 
value is 0 

The error value is a normal 
distribution 

The errors 
are dependent 

Ljung – Box Q-statistics 

t-value p-value Shapiro-Wilk
test p-value Q-statistics df p-value

Jasmine rice 
SARIMA(1,1,1)(0,0,2)12 

0.65228 0.5156 0.99455 0.9491 12.299 19 0.8725 

Pathum Thani rice 
SARIMA(0,1,1)(0,0,1)12 

0.43801 0.6623 0.98212 0.1559 14.413 19 0.7591 

Sticky rice 
SARIMA(1,1,0)(0,0,1)12

-0.60027 0.5496 0.98656 0.354 29.308 19 0.0613 

Figure 5 Plot residuals and fitted value of the three datasets 

3. Results of the hybrid model
The researchers followed Step 6 in their quest to construct a sophisticated hybrid model. In the initial stage (Step

1) , a meticulous analysis of the data was carried out using the EMD technique.  This method effectively dissected the 
original time series into Intrinsic Mode Functions (IMF) and residuals, represented in Figure 6, as an example of EMD 
data analysis.  Subsequently, the researchers carefully fashioned the hybrid model by making predictions for both the 
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Intrinsic Mode Functions ( IMF) and the residuals, as showcased in Figures 3 and 4. The repertoire of hybrid models 
presented in this research comprises the distinguished models GA-SVR, EMD-SARIMA, EMD-GA-SVR, and EMD-
SARIMA- GA- SVR.  Finally, the selection of the most fitting model for forecasting Thailand's rice exports was 
accomplished through comparisons of their performance, as illustrated in Tables 5-6 , along with visual representations 
displayed in Figures 7-9. 

 
Figure 6 EMD components of export Jasmine rice dataset 

 
Table 5 Comparison of the performance of the forecasting model of the three datasets 

Data set Models MAE  RMSE  MAPE  
Jasmine rice SARIMA 29074934 38655587 23.94064 

GA-SVR 32970291 40916406 30.17244 
EMD-SARIMA 20077642 25718196 16.67498 
EMD-GA-SVR 21463307 26798637 18.01193 
EMD-SARIMA-GA-SVR 19069569 25183275 15.49313 

Pathum 
Thani rice 

SARIMA 15918746 21660669 97.06039 
GA-SVR 18210309 23973779 105.8153 
EMD-SARIMA 9637982 12157813 28.91725 
EMD-GA-SVR 10212778 12562637 44.70585 
EMD-SARIMA-GA-SVR 8284756 10529064 21.26478 

Sticky rice SARIMA 7750526 9671567 43.31443 
GA-SVR 7185445 10174671 28.47212 
EMD-SARIMA 8343842 10765820 47.59635 
EMD-GA-SVR 7392057 9358540 39.69793 
EMD-SARIMA-GA-SVR 5127419 6878225 23.44107 
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The researchers followed Step 6 in their quest to construct a sophisticated hybrid model. In the initial stage (Step 
1) , a meticulous analysis of the data was carried out using the EMD technique.  This method effectively dissected the 
original time series into Intrinsic Mode Functions (IMF) and residuals, represented in Figure 6, as an example of EMD 
data analysis.  Subsequently, the researchers carefully fashioned the hybrid model by making predictions for both the 
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Table 6 Percentage improvement of the EMD-SARIMA-GA-SVR model in comparison with those of other forecasting models 
Data set Models MAE  RMSE  MAPE  

Jasmine rice SARIMA 34.41233951 34.85217286 35.28523047 
GA-SVR 42.16135672 38.45188896 48.65138517 
EMD-SARIMA 5.020873467 2.079932045 7.087564723 
EMD-GA-SVR 11.15269888 6.027776711 13.98406501 

Pathum 
Thani rice 

SARIMA 47.95597593 51.39086424 78.09118632 
GA-SVR 54.50513223 56.08091657 79.90387023 
EMD-SARIMA 14.0405533 13.39672686 26.46333936 
EMD-GA-SVR 18.87852649 16.18746924 52.43401031 

Sticky rice 
 
 
 

SARIMA 33.84424489 28.8820002 45.88161497 
GA-SVR 28.64159422 32.39855127 17.67009271 
EMD-SARIMA 38.54846484 36.11053315 50.75027812 
EMD-GA-SVR 30.63610034 26.50322593 40.95140477 
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Figure 7 Original data and forecast results of jasmine rice from January 2020 to March 2022 
 

years

Ex
po

rt
ric

e
(U

ni
t:

Ki
lo

gr
am

)

2020 2021 2022

2e
+0

7
4e

+0
7

6e
+0

7
8e

+0
7

actual
SARIMA
GA-SVR
EMD-SARIMA
EMD-GA-SVR
EMD-SARIMA-GA-SVR

 
 

Figure 8 Original data and forecast results of Pathum Thani rice from January 2020 to March 2022 
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Figure 9 Original data and forecast results of sticky rice from January 2020 to March 2022 

 
Discussion 

 
In light of the test results obtained from the advanced forecasting model designed for predicting the quantity 

of rice exports in Thailand, a comprehensive analysis was conducted using separate datasets for jasmine rice, 
Pathum Thani rice, and sticky rice. The model itself was meticulously constructed through the integration of the 
Empirical Mode Decomposition ( EMD)  technique with the SARIMA and SVR models, representing a novel 
approach in this field of study.  Following the model's development, a comparative analysis of its performance 
and accuracy was undertaken against a univariate time series model. This approach allowed for a comprehensive 
assessment of the forecasting model's efficacy and precision. The findings are discussed as follows: 

1. The data utilized in this research comprises three datasets:  jasmine rice, Pathum Thani rice, and sticky 
rice.  All three datasets represent univariate time series data with monthly intervals.  Plotting these datasets on a 
time series line graph, as illustrated in Figure 1, revealed that they exhibit similar movement patterns. 
Specifically, they demonstrate recurring seasonal patterns when tested for stationarity. However, upon thorough 
examination, it was determined that all three datasets are non-stationary time series. This implies that their mean 
and variance vary throughout the observed period.  To address this issue, differencing the data is necessary to 
create a new time series before constructing the forecasting model. The test results for stationarity align with the 
appropriate analysis of the SARIMA model for the three time series patterns, as evidenced by Table 2 and Table 3. 

2. The SARIMA and GA-SVR models: As shown in Table 5, the analysis of the time series data for rice exports 
from the three datasets using the SARIMA and GA-SVR models revealed that the SARIMA model outperformed 
the GA-SVR model for both the jasmine rice and Pathum Thani rice datasets. This finding aligns with the comparison 
graph depicting the forecasts made by the SARIMA model and the actual values within the same time intervals 
for the two datasets (as shown in Figures 7 and 8). It suggests that the SARIMA model effectively captures the 
movement patterns of both datasets, indicating a more pronounced linear relationship compared to a non- linear 
relationship.  Consequently, the SARIMA model demonstrates superior performance in linear time series forecasting 
when compared to the GA- SVR model.  However, the time series data for sticky rice exports showed that the 
GA-SVR model outperformed the SARIMA model, consistent with the comparison graph of forecasts made by the 
GA-SVR model and the actual values (Figure 9) .  This indicates that the time series data for sticky rice exports 
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Figure 8 Original data and forecast results of Pathum Thani rice from January 2020 to March 2022 
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exhibit more prominent non-linear relationships rather than linear relationships. Therefore, the GA-SVR model, 
renowned for its proficiency in non-linear time series forecasting, offers a more accurate explanation of the data 
characteristics compared to the SARIMA model. These findings corroborate the accuracy of the SARIMA model 
in linear time series forecasting (Basir et al., 2021) and the GA-SVR model in non-linear time series forecasting 
(Chen et al., 2021; Fan et al., 2021; Feng et al., 2020), as reported in the literature. 

3. EMD- SARIMA, EMD- GA- SVR, and EMD- SARIMA- GA-SVR models:  Based on the results of 
comparing the forecasting values of all three models for predicting the volume of rice exports from Thailand, as 
presented in Table 5 and Figure 7-9, it was determined that the EMD-SARIMA-GA-SVR model yielded the 
lowest error among the three sets.  This indicates that utilizing the EMD method for data analysis reduces the 
volatility of time series data.  Next, the decomposed components were forecasted using the SARIMA model, 
known for its strengths and efficiency in linear time series forecasting. The residual component from the SARIMA 
model was then further forecasted using the SVR model, which performs well in non- linear time series 
forecasting. Finally, the forecasts from both models were combined in the last step, resulting in highly accurate 
predictions and effectively reducing forecast errors in predicting the quantity of rice exports from Thailand. 
Considering the improvement percentages in Table 6 ( specifically MAPE values) , it was observed that the 
EMD- SARIMA- GA- SVR model achieved a greater reduction in forecast errors compared to the EMD-
SARIMA and EMD- GA- SVR models for all three datasets.  For Dataset 1 ( Hom Mali rice) , the percentage 
change values were 7.087564723 and 13.98406501.  For Dataset 2 ( Pathum Thani rice) , the percentage 
change values were 26.46333936 and 52.43401031.  As for Dataset 3, the percentage change values were 
50.75027812 and 40.95140477. These findings align with the research conducted by Kao et al. (2020) on 
Predicting Primary Energy Consumption Using Hybrid ARIMA and GA-SVR Based on EEMD Decomposition, 
which concluded that the EEMD-ARIMA-GA-SVR model exhibited higher accuracy than other hybrid models. 
Similarly, Fan et al.  ( 2022)  investigated the Applications of Hybrid EMD with PSO and GA for an SVR-
Based Load Forecasting Model and found that the EMD- PSO- GA- SVR model outperformed the SVR- PSO 
and SVR-GA models. 

When comparing the EMD- SARIMA and EMD- GA- SVR models ( Table 5) , it was observed that the 
EMD- SARIMA model demonstrated higher accuracy than the EMD- GA- SVR model for Dataset 1 ( Jasmine 
rice) and Dataset 2 (Pathum Thani rice) with MAPE values of 16.67498 and 28.91725, respectively. These 
findings suggest that these two datasets exhibit a more pronounced linear relationship, and the EMD- SARIMA 
model, known for its proficiency in linear forecasting, provides highly accurate predictions. However, for Dataset 
3 (Sticky rice), the EMD-GA-SVR model outperformed the EMD-SARIMA model, indicating a stronger non-
linear relationship in this dataset that favors the accuracy of the EMD-GA-SVR model (MAPE = 39.69793). 

Nevertheless, despite the EMD- SARIMA- GA- SVR model developed in this research exhibiting high 
accuracy when compared to all the studied forecasting models, it possesses limitations in terms of computational 
time and model complexity. It requires more processing time and involves additional steps in model development 
to achieve lower errors compared to the original models.  Furthermore, an intriguing observation is that when 
applying the EMD method to reduce data volatility before constructing the forecasting model, forecasting time 
series data may result in unusually high values of MAE, RMSE, and MAPE.  This can be attributed to the 
forecasting of multiple intrinsic mode functions (IMFs), which contributes to cumulative forecast errors. 
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exhibit more prominent non-linear relationships rather than linear relationships. Therefore, the GA-SVR model, 
renowned for its proficiency in non-linear time series forecasting, offers a more accurate explanation of the data
characteristics compared to the SARIMA model. These findings corroborate the accuracy of the SARIMA model 
in linear time series forecasting (Basir et al., 2021) and the GA-SVR model in non-linear time series forecasting 
(Chen et al., 2021; Fan et al., 2021; Feng et al., 2020), as reported in the literature.

3. EMD- SARIMA, EMD- GA- SVR, and EMD- SARIMA- GA-SVR models: Based on the results of
comparing the forecasting values of all three models for predicting the volume of rice exports from Thailand, as 
presented in Table 5 and Figure 7-9, it was determined that the EMD-SARIMA-GA-SVR model yielded the
lowest error among the three sets.  This indicates that utilizing the EMD method for data analysis reduces the
volatility of time series data.  Next, the decomposed components were forecasted using the SARIMA model, 
known for its strengths and efficiency in linear time series forecasting. The residual component from the SARIMA
model was then further forecasted using the SVR model, which performs well in non- linear time series 
forecasting. Finally, the forecasts from both models were combined in the last step, resulting in highly accurate
predictions and effectively reducing forecast errors in predicting the quantity of rice exports from Thailand. 
Considering the improvement percentages in Table 6 ( specifically MAPE values) , it was observed that the
EMD- SARIMA- GA- SVR model achieved a greater reduction in forecast errors compared to the EMD-
SARIMA and EMD- GA- SVR models for all three datasets.  For Dataset 1 ( Hom Mali rice) , the percentage 
change values were 7.087564723 and 13.98406501.  For Dataset 2 ( Pathum Thani rice) , the percentage 
change values were 26.46333936 and 52.43401031.  As for Dataset 3, the percentage change values were
50.75027812 and 40.95140477. These findings align with the research conducted by Kao et al. (2020) on
Predicting Primary Energy Consumption Using Hybrid ARIMA and GA-SVR Based on EEMD Decomposition, 
which concluded that the EEMD-ARIMA-GA-SVR model exhibited higher accuracy than other hybrid models. 
Similarly, Fan et al.  ( 2022)  investigated the Applications of Hybrid EMD with PSO and GA for an SVR-
Based Load Forecasting Model and found that the EMD- PSO- GA- SVR model outperformed the SVR- PSO
and SVR-GA models.

When comparing the EMD- SARIMA and EMD- GA- SVR models ( Table 5) , it was observed that the
EMD- SARIMA model demonstrated higher accuracy than the EMD- GA- SVR model for Dataset 1 ( Jasmine 
rice) and Dataset 2 (Pathum Thani rice) with MAPE values of 16.67498 and 28.91725, respectively. These
findings suggest that these two datasets exhibit a more pronounced linear relationship, and the EMD- SARIMA
model, known for its proficiency in linear forecasting, provides highly accurate predictions. However, for Dataset
3 (Sticky rice), the EMD-GA-SVR model outperformed the EMD-SARIMA model, indicating a stronger non-
linear relationship in this dataset that favors the accuracy of the EMD-GA-SVR model (MAPE = 39.69793).

Nevertheless, despite the EMD- SARIMA- GA- SVR model developed in this research exhibiting high 
accuracy when compared to all the studied forecasting models, it possesses limitations in terms of computational
time and model complexity. It requires more processing time and involves additional steps in model development 
to achieve lower errors compared to the original models.  Furthermore, an intriguing observation is that when 
applying the EMD method to reduce data volatility before constructing the forecasting model, forecasting time
series data may result in unusually high values of MAE, RMSE, and MAPE.  This can be attributed to the
forecasting of multiple intrinsic mode functions (IMFs), which contributes to cumulative forecast errors.

Conclusion and Suggestions 

The results of from the study showed that the EMD-SARIMA-GA-SVR hybrid model outperforms the 
SARIMA, GA-SVR, EMD-SARIMA, and EMD-GA-SVR models in all performance metrics. In essence, the 
proposed EMD- SARIMA- GA-SVR hybrid model proved to be highly accurate in forecasting Thailand's rice 
export data.  However, it should be noted that this hybrid model is more complex, involving multiple 
computational steps and longer processing time compared to the other models mentioned. Despite this limitation, 
if accuracy is a priority for organizations involved in rice export forecasting in Thailand, the hybrid model 
presents an intriguing option.  Researchers and interested individuals can further develop or explore alternative 
hybrid models by incorporating EMD with ANN models or applying it alongside Variational Mode 
Decomposition ( VMD)  for SVR models, along with the use of the GA method.  These approaches have the 
potential to enhance the accuracy of the forecasts.  It is worth noting that when aiming for high accuracy, 
researchers must exercise caution in selecting input variables for model learning, as these factors greatly influence 
the forecasting model's precision. 
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