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ABSTRACT: The stress-strain characteristics in small strain region for a Chinese sand were investigated under different stress paths. The 

strain contour circle method was used to simulate the small strain characteristics of the sand under various stress paths. The test results 

showed that the inherent stress-strain characteristics of the sand depend on the anisotropic initial stress state. The contraction and dilation 

behaviors of the tested sand under various K0 initial stress conditions are different from that under isotropic initial stress state conditions. The 

test results of the sand agreed with the Wong-Mitchell’s research results very well. The strain contour circle method can approximately 

simulate small stress-strain characteristics of the sand for various stress paths by using the proportion function λ  and expansion function l . 

The calculation results from the new method agree with the test results for Bothkennar clay. 
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1. INTRODUCTION  

The stress path is very complex in earth structures. For example, 

mean stress and shear stress at one point increase when 

constructing a dam and a dike, but mean stress decreases and shear 

stress increases during excavation. The strain of soil caused by load 

is normally small, which is approximately between 0.05% and 

0.1% in foundation and underground engineering (Burland, 1989). 

Many studies have been conducted on small strain behavior of clay 

(Jardine et al., 1984; Clayton & Khatrush, 1989; Atkinson et al., 

1990; Thomann & Hryciw, 1990; Simpson, 1992; Viggiani & 

Atkinson, 1995; Goto et al., 1999; Lings et al., 2000; Clayton & 

Heymann, 2001; Gasparre et al., 2007; Hight et al., 2007; Clayton, 

2011; Kim and Finno, 2012). The characteristics of sand and soft 

rock under small strain condition also drew attention (Jardine et 

al.,1985; Jardine, 1992). In existing soil test or constitutive model 

on small strain, numerous studies on nonlinear stress−strain 

relationship and stress path−dependency have been conducted 

(Shibuya et al., 1992; Smith et al., 1992; Lo Presti et al., 1997; 

Goto et al., 1997; Charles et al., 2000; Clayton & Heymann, 2001; 

Kim and Finno, 2012). The Bothkennar clay was firstly 

consolidated to in-situ stress under K0 condition. Then nine 

different test directions of stress paths were performed. 

Furthermore, the bounding surface shape and kinematic hardening 

rule of Bothkennar clay are presented in Smith et al (1992). 

Clayton & Heymann (2001) showed that the relationships between 

elastic modulus and strain acquired along two different current 

stress paths are prominently different, and the elastic modulus 

reduction with strain is different. Regarding constitutive modeling 

of small strain behavior, models of logarithmic and sinusoidal 

function mode were proposed, in which the deformation 

characteristics in small strain condition are reflected (Puzrin & 

Burland , 1998; Goto et al 1999). A model with three bounding 

surfaces and eight model parameters was proposed to simulate over 

consolidation and kinematic hardening in small strain region under 

different paths (Stallebrass & Taylor, 1997). The results were 

confirmed through centrifugal model test of circular foundation. On 

the basis of energy integral, a modified Cam-Clay model was 

presented under the condition of K0 consolidation and small strain 

(Shi et al, 2001). The results were verified through typical stress 

path controlled triaxial test results. 

In excavation and subway engineering, the behaviour of soil in 

small strain region is very important for deformation prediction and 

safety evaluation. There are many results of conventional triaxial 

tests and special stress path tests to simulate stress−strain 

relationship in scope of small strain. The stress−strain curves under 

various stress paths for clay are also presented before. However, 

the test results for sand are limited. It is necessary to modify the 

constitutive model under various stress paths.  

The objective of this paper is developing test for the Chinese 

sand and conducting stress−strain relationship under various stress 

paths. 

 

2. TEST MATERIAL AND METHOD 

2.1  Specimens preparation  

The sand is from Fujian Province in China. The main physical 

properties of the sand are shown in Table 1. 

 

Table 1 Physical properties of the tested sand 

Dry density (g/cm3) 1.65 

Specific gravity 2.67 

Void ratio 0.618 

Relative density 0.63 

Particle size (mm) 0.5～1 

Coefficient of permeability (cm/s) 1.43×10-2 

 

Specimens of the reconstituted Chinese sand are tested. The friction 

angle of the sand φ, obtained from conventional triaxial 

consolidated drained (CD) test, is 36°. The dry density of the 

specimens is controlled as 1.65g/cm3. The height and diameter of 

test specimens are 80 mm and 38 mm, respectively. Firstly, the 

sand samples were mixed with de-aired water, boiled through sand 

bath, then cooled before specimen installation. 

The test instrument is a standard triaxial stress path apparatus 

manufactured by GDS Company in UK. For specimen installation, 

firstly, sand and water were mixed evenly in a bowl. Then the 

mixture was put into a split mould in 9 portions and each portion of 

mixture was compacted lightly twice. 

The small strain was measured by a Hall effect sensor (Clayton 

& Khatrush, 1989). Before installation of the sensor, a negative 

pressure of 4 kPa was applied on the specimen to ensure stability of 

specimen during installation. A special glue was used to seal the 

needle of Hall effect sensor and rubber membrane quickly and was 

applied on the rubber membrane within approximately half of 

specimen height from the middle section of specimen. Then the 

glue was smeared on the thrusting needles of Hall effect sensor, and 

the needles were pushed lightly into the specimen. The other parts 

of Hall effect sensor were installed 10 minutes later.  
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2.2 Stress path tests 

The K0 value of the sand, obtained from consolidation test under 

zero lateral strain, is 0.37. Before shear test, all specimens were 

consolidated along K0 line to 'p =150kPa and q =162.93kPa. After 

consolidation the drained shear tests were conducted under a stress 

control mode at a stress increment rate of 0.5 kPa / min. (Sultan et 

al,2010).The eight directions of the stress path are shown in              

Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Stress path diagram 

 

The stress path was controlled by the change of or/and to 90kPA 

The stress path was controlled by the change of 'p∆  or/and 

q∆  to 90 kPa. The test time of each stress path is 3 hours. During 

shear tests, the changes of horizontal and vertical stresses are 

shown in Table 2. 

 

3. TEST RESULTS AND DISCUSSION 

3.1  Relationship between deviatoric stress and shearing strain 

When deviatoric stress increment q∆ is positive, the specimens for 

stress path K90° and K135° fail before reaching the corresponding 

target deviatoric stress increment, i.e., 90kPa. The stress- strain 

relationship for shearing strain sε  within 1％ can be obtained in 

test and it is already met for small strain research. When q∆  is 

negative, the shearing strain sε of the specimen is approximately 

-0.06%, the test results of q∆  versus sε are shown in Figure 2(a) 

and (b) respectively.  

In Figure 2(a), q∆  of the stress path K45°, K90° and K135° 

are 90kPa, and 'p∆ are 90kPa, 0kPa and -90kPa respectively. As 

shown in K90° test results with zero 'p∆ , sε  increases with 

increasing q∆ . By comparing with zero 'p∆ , it can be seen that 

sε decreases when 'p∆  is positive. 

In Figure 2 (b), the final q∆  of stress path K225°, K270° and 

K315° are -90kPa, 'p∆ are 90kPa, 0kPa and -90kPa respectively. 

Similarly, sε  increases with increasing of q∆ . By comparison 

with zero 'p∆ , sε  decreases when 'p∆  is positive. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 （a） q∆ versus 
sε  for positive q∆  

 

 

 

 

 

 

 

 

 

 

 

 

 （b） q∆ versus 
sε  for negative q∆  

 

Figure 2 Relationship between deviatoric stress and shearing strain 

 

 

q∆  of stress path K0° and K180° are zero, and 'p∆  is 

positive for stress path K0°. The results show that sε decreases. 

The value of 'p∆  is negative for stress path K180°, and sε  

increases as shown in Figure 3. There are no changes for q∆  of 

stress path of K0° and K180°. The increase in 'p∆  causes the 

decrease in shear strain. The change of sε  is not only related 

to q∆  but is also affected by 'p∆ . 

 

 

 

 

 

 

 

 

 

Figure 3 Relationship between mean stress and shearing strain 
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Table 2 Changes of horizontal and vertical stresses (kPa) 

Stress path K0° K45° K90° K135° K180° K225° K270° K315° 

Horizontal stress 90 150 60 -30 -90 -150 -60 30 

Vertical stress 90 60 -30 -120 -90 -60 30 120 
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3.2 Relationship between mean stress and volumetric strain 

The relationship between mean stress increment and volumetric 

strain is shown in Figure 4. The results indicate that vε  is 

contraction when 'p∆  increases. vε  is dilation when 'p∆  

reduces. 

Regarding the relationship between q∆  and vε , the 'p∆  of 

stress path K315°, K0° and K45° are all increased by 90kPa. The 

values of vε  in the three specimens are all in contraction. q∆  of 

stress path of K45° is increased by 90kPa, and q∆  of stress path 

of K315° is reduced by 90kPa. q∆  of K0° is 0, and vε  is in 

contraction. The 'p∆  of stress path of K135°, K180° and K225° 

are all reduced by 90kPa, and the values of vε  of the three 

specimens are all in dilation. q∆  of stress path K135° is increased 

by 90kPa. q∆  of stress path K225° is reduced by 90kPa. q∆  of 

stress path K180° is 0 and the values of vε  are all in dilation. 

Volumetric strain vε  is mainly subjected to effect of 'p∆ . 

When the values of 'p∆  of stress path K90° and K270° keep 

zero, the value of q∆  of the stress path K90° increases and vε  is 

dilative. While q∆  of the stress path K270° decreases and vε  is 

contractive. As shown in Figure 5, when 'p∆  of stress path K90° 

and K270° remain unchanged, the increase of shear stress q∆  

leads to the dilation of volumetric strain vε . The stress-strain and 

volumetric relationships for the stress paths K45°, K135°, K225° 

and K 315o are shown in Figures 2 and 4, respectively. There is no 

normal shear contraction and dilatation for the stress path K90° and 

K270°, which results from anisotropic initial stress state before 

shear. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 （a） 'p∆ versus 
vε  for positive 'p∆  

 

 

 

 

 

 

 

 

 

 

 

 

 

 （b） 'p∆ versus 
vε  for negative 'p∆  

 

Figure 4 Relationship between mean stress and volumetric 

 

 

 

 

 

 

 

 

 

 

Figure 5 Relationship between deviatoric stress and                 

volumetric strain 

 

It is known that the direction of plastic strain is normal to 

bounding surface according to plastic mechanics. The bounding 

surfaces from Modified Cam-Clay model, Wong & Mitchell (1975) 

and Shi et al. (2001) are shown in Figure 6. When the K0° stress 

path reaches the bounding surface, the shear strain is negative and 

volumetric strain is contractive on the bounding surfaces of 

Wong-Mitchell and Shi. However, the shear strain is positive and 

volumetric strain is contractive on the bounding surfaces of 

Modified Cam-Clay model. From the test results of K0° stress path, 

the measured shear strain and volumetric strain (as shown in   

Figure 3 and Figure 4(a)) are identical with those on the bounding 

surfaces of Wong-Mitchell and Shi. Figure 6 also shows the other 

seven stress paths conducted in this study. Similar to K0° stress 

path, the measured shear strain and volumetric strain of these stress 

paths agree with those on the bounding surfaces of Wong-Mitchell 

and Shi. 
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Figure 6 Relationship between plastic strain and bounding surface 

 

The bounding surface of modified Cam-clay model is 

symmetrical, but the sand specimens of this study are under 

anisotropic initial stress state and the deformation is unsymmetrical. 

The test results are different from the modified Cam-clay model 

under the stress path K0°, K90° and K270°. The test results of the 

sand are identical with the unsymmetrical bounding surface 

proposed by Shi for seven stress paths (K0°, K45°, K135°, K180°, 

K225°, K270° and K315°). The only difference lies in the K90° 

stress path, and the bounding surface model proposed by Shi is 

almost consistent with the measured deformation characteristics of 

soil. 

For stress paths K0°, K90°, K180° and K270°, the test results 

of Figures 3 and 5 can be explained by the unsymmetrical 

bounding surface of Wong-Mitchell and Shi in Figure 6. In       

Figure 3, 'p∆  increases and q∆  keeps constant (K0° stress path), 

the shear strain is negative. For the stress path K180°, 'p∆  

decreases and q∆  keeps constant. The shear strain is positive, 

02040
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which is identical with the bounding surface of Wong-Mitchell and 

Shi. In Figure 5, q∆  increases and 'p∆  keeps constant (K90° 

stress path). The volumetric strain is dilative. For the stress path 

K270° it is only identical with the bounding surface of 

Wong-Mitchell, q∆  decreases and 'p∆  keeps constant, the 

volumetric strain is contractive, it can be identical with the 

bounding surface of Wong-Mitchell and Shi.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 (a) Secant shear modulus and stress path 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Secant bulk modulus and stress path 

Figure 7 Relationship between secant modulus and stress path 

 

The relationship between shear and bulk modulus under 

different stress paths and strains are calculated and shown in        

Figure 7. The trend is similar with the shear modulus of 

Bothkennar clay (Smith et al, 1992) .  

The results of the sand are identical with the bounding surface 

of Wong & Mitchell. It is indicated that the test results are credible. 

 

3.3 Simulation of deformation characteristics in small strain 

range considering stress path 

Jardine (1992) found that the small strain region of sandy soil is 

approximately 0.01%. In accordance with the results of stress path 

tests, the contour of axial strain less than 0.01% can be obtained, as 

shown in Figure 8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 q-p curve of axial strain contour within 0.01% strain 

Results in Figure 8 can be illustrated from three aspects: (1) 

The closer the strain contour is to critical state line, the smaller the 

distance between contour is, the smaller the stress gradient is, the 

smaller the elastic modulus is along the stress path direction due to 

the same strain increment. In direction parallel with the critical 

state line and apart from critical state line, the larger the stress 

gradient is, the larger the elastic modulus is. (2) The strain contour 

has similar circular shape under different strain values, which can 

be expressed with equation of the same mode; (3) With the increase 

in axial strain, the trace of contour center approaches a straight line. 

Therefore, it is assumed that the contour equation is circular, and is 

named as the strain contour circle. The strain contour circle center 

moves along a straight line. The choice of gradient of this line is to 

ensure that the strain contour is always expanding with increasing 

strain. The distance from the center to the critical state line is larger 

than the radius of strain contour circle. The slope is in the range 

from -1.0 to -5.0 and is adopted as tan(45 / 2)tk ϕ= − +  in small 

strain condition (Lai, 2005), which is shown in Figure 9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Diagram of simplified calculation of strain contour circle 

motion 

 

Regarding the expansion of strain contour circle, in accordance 

with the test results presented in Jardine (1992), it can be drawn 

that the sum of Young’s modulus of elasticity in compression and 

that in extension is approximately proportional to the mean stress 

when the extension and compression reach the same strain, for 

example, at axial strain 0.01％. The function ( )af ε  is assumed to 

be constant under various stress paths at the same axial strain, and 

decreases with increasing axial strain.  

 
0

( )
'

sc se
a

E E
f

p
ε

+
=                                 (1)  

where scE  is the Young’s modulus of elasticity in compression for 

given mean stress; seE  is the Young’s modulus of elasticity in 

extension for the same mean stress; 0'p  is the mean stress at the 

stress point; ( )af ε  is a function of axial strain aε , and is a 

constant corresponding to a given aε  on different stress paths. 

The relationships between Young’s modulus of elasticity in 

compression/extension and mean stress are summarized in Table 3.  

Table 3 shows that the Young’s modulus of elasticity in 

compression and in tension, and their sum decreases with 

increasing axial strain.  

0' ( )c e a aq q p f lε ε− = ⋅ ⋅ =                           (2)  

where cq  and eq  correspond to the deviatoric stress in 

compression and extension for an axial strain of aε . They are 

equivalent to OA and OB in Figure 10 and l is named as an 

expansion function. 

0200400600800100012001400
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-1.57 0 1.57 3.14 4.71θ(Radian)K/p' εv=0.005%εv=0.01%
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0( ) / 'sc seE E p+  and aε  can be expressed by a hyperbolic 

relationship as shown in Figure 11.  

0

1 2

'a
a

a

l p
c c

ε
ε

ε
= ⋅ ⋅

+
                              (3)  

where c1 and c2 are intercept and gradient of straight line in         

Figure 10, respectively. The best-fit values of c1 and c2 are 0.0 and 

1.47×10-4 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Calculation of strain contour circle equation and position 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 Relationship between (Esc+Ese)/p’0 and εa  

 

If the proportion of OA to OB corresponding to a certain stress 

can be determined, the strain contour circle can be determined 

uniquely. The proportion of OA to OB is actually the ratio of 

Young’s modulus of elasticity in compression to that in extension 

for a mean stress of 0'p . 

c sc

e se

OA q E

OB q E
λ = = =

−
                             (4)  

 

 

 

 

 

 

 

 

 

 

 

The value of λ  represents the change of Young’s modulus of 

elasticity in compression and that in extension with respect to axial 

strain. The relationship between ln( / )  and  ln( )sc se aE E ε can be 

calculated and shown in Figure 12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 Relationship between Esc/Ese and εa 

 

Due to the fact that their relationship is approximate linearity in 

logarithm coordinates, the proportion function λ  can be 

expressed as: 

b

a
aλ ε=                                        (5)  

where a and b are fitting coefficients. The best-fit values of a and b 

are 0.01789 and -0.1773, respectively. 

The change in λ  is not large with increasing axial strain 

within the small strain region ( 0.01%aε < ). When the initial stress 

point is under compression state, the deviatoric stress is positive. 

The value of λ  is usually less than 1 due to the fact that the 

elastic modulus in compression is smaller than that in extension. In 

the analysis, it can be taken as: 

01 / cM Mλ = −                                  (6)  

where 0 0 0/ 'M q p= , is the stress ratio of the initial consolidation 

line and cM  is the stress ratio of the critical state line,                     

Mc = 6sinφ′/(3-sinφ′). 

Therefore, the basic equation of strain contour circle is expressed 

as:  

2 2 2( ) ( ' )y xq c p c R− + − =                          (7)  

where xc  and yc  are co-ordinates of the center of circle, R is 

radius. The straight-line equation of circle center is: 

 0 0( ')y t xc k c p q= − +                             (8)  

where 0 'p  and 0q  are initial stresses.  

Table 3 Change of Young’s modulus of elasticity in different stress path directions 

Axial strain εa/% 0.002 0.004 0.006 0.008 0.01 

qc/kPa 4 5 6 7 8 
Sample K90o 

Ec/MPa 200 125 100 88 80 

qe/kPa -33 -46 -60 -73 -88 
Sample K270o 

Ee/MPa 1650 1150 1000 913 880 

(Ec+Ee)/p'0 12333 8500 7333 6667 6400 

εa / ((Ec+Ee)/p'0) 1.6e-7 4.7e-7 8.2e-7 1.2e-6 1.6e-6 

Ec/Ee 0.1212 0.1087 0.1000 0.0959 0.0909 

 

y = 0.000147003 xR2 = 0.964445015
0.0E+004.0E-078.0E-071.2E-061.6E-062.0E-06

0 0.002 0.004 0.006 0.008 0.01 0.012εa/%

εa·[(E sc+E se)/p' 0]-1
/%

y = -0.1773x - 4.0231
-2.48-2.40-2.32-2.24-2.16-2.08

-11.2 -10.8 -10.4 -10 -9.6 -9.2 -8.8ln(εa)ln(Esc/Ese)
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In case of strain aε , the distance of circle center ordinate 

motion is calculated using Eq. (8). The geometrical relation 

according to Figure 9 is as following: 

 

0

1
'

2 (1 )
x

t

c p l
k

λ

λ

−
= −

+
                            (9)  

According to the Eq. (9), change of circle radius R with axial 

strain using the geometrical relation is shown as following: 

 

2 2 2
1/ 2

2 2

(1 )
[ ]
4 (1 ) 4

t

l l
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λ

−
= +

+
                        (10)  

The comparison between the predicted strain contour circles and 

the measured values is presented in Figure 13. The characteristics 

of strain contour circle under different axial strains can be 

reflected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 Comparison of strain contour circle from calculation and 

measurement 
 

For a given strain aε  and a direction of stress path that forms 

an angle θ  with the p-axis, by combining Eqs. (3), (5) or (6) and 

(10), the increment in deviatoric stress q∆  can be expressed as: 

0( ) {( ' )(cos sin )x tq c p kθ θ θ∆ = − +   

                                             (11) 

 

The parameters are listed in Table 4. 

 

Table 4 Parameters in Eq. (11) 

Parameters c1 c2 A B φ(°) 

Value 0.0 1.47×10-4 0.01789 -0.1773 36 

 

From Eq. (11) and strain aε  in stress path direction that forms 

angle θ  with axis p, the secant Young’s modulus of elasticity 

along any stress path direction can be calculated by ratio of 

deviatoric stress with strain aε , it is seen as the following: 
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( )s

a

q
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θ
θ

ε

∆
=                                                                  

2 2 2 2 2 2 1/2sin {( 1) (cos sin ) [(1 ) (cos cos sin 2 ) (1 ) ] }

2 (1 )

t t t t

t a

l k k k k

k

θ λ θ θ λ θ θ θ λ

ε λ

− ⋅ + − − − + + +
=

+

                                             (12) 

                                                   

 

Figure 14 shows a comparison between the predicted deviatoric 

stresses using Eq. (11) and the measured values under different 

directions of stress path and axial strains. 

Figure 15 depicts the predicted secant Young’s modulus of 

elasticity using Eq. (12) under different directions of stress path 

and axial strains. 

Comparing Figures 14 and 15, it can be seen that Eqs. (11) and 

(12) can reflect the effects of small strain and stress path on the 

deviatoric stress and secant Young’s modulus of elasticity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

C: calculation, T: test 

 

Figure 14 Relationship of the calculated and measured deviatoric 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15 Effect of stress path direction on secant Young’s modulus 

of elasticity 

 

4. CONCLUSIONS 

Through shear tests in the small strain region and the strain contour 

circle method for eight different triaxial stress paths for sands, the 

conclusions are as following: 

1.  The test results corresponding to eight stress paths are 

identical with the bounding surface of Wong-Mitchell, 

which indicates that the test results are credible. The 

inherent stress strain characteristics of soil are controlled 

by its anisotropic initial stress state, which has prominent 

difference from shear contraction and dilatation 

behaviour under isotropic initial stress condition. 

2.  The strain contour has similar circular shape under 

different strain values, the motion trace of contour center 

approaches a straight line. By using the proportion 

function λ  and expansion function l , the strain 

contour circle method can consider all stress paths. The 

results are close to results of existing researches. The 

strain contour circle method can simulate small strain 

characteristics of stress path rationally. 
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