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ABSTRACT: Cement treated soil, which is commonly utilized to prevent liquefaction and/or to increase the bearing capacity of soft clay 

foundations, is characterized by four basic properties: 1) its strength is greater than that of untreated soil, yet less than that of concrete,               

2) it exhibits nonlinear behavior close to its peak strength, 3) softening occurs after its peak strength has been exceeded, and 4) the extension 

strength is found while the soil is not considered. In this study, the subloading surface model introduced by Hashiguchi was incorporated into 

a modified Drucker-Prager criterion, and undrained triaxial compression tests of cement treated soil were performed under constrained 

pressures of 0.1 and 0.4 MN/m2, after which bending tests and simulations were performed. The numerical results of these tests agreed well 

with the actual results of element wise and boundary condition testing.  
 

 
1. INTRODUCTION 

Recently, increasing numbers of construction projects are being 

erected on soft clay and medium loose sand. In the case of soft clay, 

settlement stability or load bearing capacity is the most relevant 

concern, while the potential for liquefaction is the most important 

consideration in the case of medium loose sand. Among the various 

soil improvement methods is the deep mixing method, in which soil 

is strengthened by mixing it with cement. Thus, there are now 

numerous examples of construction sites where cement treated soil 

has been used (Saito, et. al, 1996, Yu, et al., 1998, Lee, et al., 2004, 

Koseki, et al., 2005, Namikawa and Koseki, 2006, Horpibulsuk, et 

al., 2010, Suebsuk, et al., 2010). 

The four typical features of cement treated soils are as follows 

(Kaneda, et al., 2012) 

1) Its strength is greater than that of conventional soil, yet less 

than that of concrete. 

2) It exhibits nonlinear behavior close to its peak strength. 

3) Softening occurs after the peak strength has been surpassed. 

4) The extension strength is found while the soil is not considered.  

Although the strength of cement treated soil is relatively high, in 

Japan, the method has been used primarily to provide foundations 

for temporary structures because such soil lacks the strength that can 

be obtained via steel or concrete pilings. However, cement treated 

soil is gaining increased attention for use in the foundations of 

permanent structures because it provides greater strength than 

untreated soils, and is more economical than steel or concrete 

pilings (Yamashita, et al., 2011, Uchida, et al., 2012).  

This increased attention has stimulated demands for cement 

treated soil types with greater bearing capacity, which will be 

needed to support the tall and / or heavy structures envisioned for 

construction, along with demands for more detailed information on 

the earthquake resistance of such soil types. These expected 

demands have thus highlighted the need for a constitutive model for 

cement treated soil. 

Previous investigations into cement treated soil have focused on 

methods of applying the constitutive equations for concrete, 

applying the Mohr-Coulomb criteria to failure energy (Namikawa 

and Koseki, 2007), and applying the Cam-clay model to consider 

extension strength (Hashiguchi and Mase, 2007). Furthermore, 

softening has not previously been considered in the approach based 

on the constitutive equations for concrete, and there are difficulties 

in determining the parameters in the approach based on the                

Cam-clay model.  

This aim of this study is to create new simplified constitutive 

equations for cement treated soil that contain fewer parameters. To 

accomplish this, undrained triaxial compression tests were 

performed on cement treated soil under constrained pressures of 0.1 

and 0.4 MN/m2, after which bending tests were conducted as a 

boundary condition problem to investigate the performance of the 

model. 

 

2. CEMENT TREATED SOIL MODELING 

This new model is based on a modified Drucker-Prager criterion and 

is combined with the subloading yield concept. 

 

2.1 Normal-yield function 

The modified Drucker-Prager criterion, introduced by Tanabe et al., 

1994, was developed as a constitutive equation for concrete                  

(Chen, 1982). While the Drucker-Prager criterion is very simple, the 

yield curve shape is not smooth at J2=0, and the extension strength 

is overestimated. The modification introduced by Tanabe et al. 

(shown in the equations below) results in a smoothened yield curve 

shape at J2=0, and at high compression stress, this model approaches 

the original Drucker-Prager yield surface.  
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are the first invariant and second deviator invariant of the stress 

tenor, respectively, c is the cohesion, φ  is the friction angle, y is a 

variable determining the yield shape, and 1φ  and η  are material 

constants. In this study, it is assumed that y=-1 (Compression 

strength at Mohr-Coulomb criterion) and φφ =
1 . The material 

constant η  is related to the extension strength. 

 

2.2 Subloading yield function 

The subloading yield surface was introduced by Hashiguchi 

(Hashiguchi, 1989), and is shown in Figure 1. This surface is inside 

of the normal-yield surface, and the center of similarity is origin. 

)10( ≤≤ RR  is the ratio of the normal-yield surface to the subloading 

yield surface. The subloading yield surface is determined via the 

following equations: 
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When R approaches 0, strong elastic behavior is exhibited. In 

contrast, when R reaches 1, the subloading yield surface coincides 

with the normal-yield surface. R0, which is the “elastic limit”, is then 

introduced. When R is less than R0, pure elastic behavior is 

indicated. 
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Figure 1 Two yield surfaces 

 

2.3 Compatibility condition and flow rule 

The time differentiation of equation (4) is satisfied using Prager’s 

compatibility condition, as seen below: 
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The associate flow rule is then assumed. 
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where, F is the plastic potential,

 
λ  is the plastic multiplier and pε&  is 

the plastic strain rate. 

 

2.4 Evolution law 

The evolution law for R are given as follows: 
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When 0,0 == R
p &&ε  

pUR ε&& =  (9) 

where,U is a positive function when )10( ≤≤ R ,as shown in Figure 2. 

The function U is given by: 

RmU ln−=   when  0
RR >  (10) 

R0 is the elastic limit. When R0>R, pure elastic behavior is 

exhibit.  

The subloading coefficient m is a material constant, which can 

be determined from experimental results. m is the rate of approach 

to the normal-yield surface under plastic deformation. When m is 

extremely large, strong elastic behavior is exhibited until the 

subloading yield surface reaches the normal-yield surface. In 

contrast, when m is small, nonlinearity occurs at the beginning of 

deformation. 

R

U

0 1  
Figure 2 Function U 

 

2.5 Plastic multiplier 

When equations (7) and (9) are substituted into equation (6), the 

plastic multiplierλ  is given by: 
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2.6 Elasto-plastic constitutive equation 

The following decomposition of strain is assumed: 

pe
εεε +=  (12) 

The elastic response is  

εEσ && =  (13) 

Equation (13) is then substituted into equation (11). 
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where, E is the elastic stiffness tenor, and eε and pε  are the elastic 

and plastic strain, respectively.  

Finally, the elasto-plastic constitutive equation is written as follows:  
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2.7 Loading criterion 

The loading criterion 

 

0)( >=Λ λ  (16) 

effectively guarantees that the numerator of equation (14) is also 

positive. Thus, the loading criterion can be given as: 

 

0>Λ : loading 

0<Λ : unloading (17) 

 

2.8 Softening/hardening parameter 

The softening/hardening parameter )(κk  is given as follows: 

 

( ) κκ ack +=  (18) 

dtp
σε ⋅∫= &κ  (19) 

where, a is a material constant and c is the cohesion. When a is 

positive, hardening is indicated. In contrast, when a is negative, 

softening is indicated. When a is larger, the larger softening 

behaviour is exhibited after peak. The range of ( )κk  is determined 

by the parameter b. For example, b is presented by the residual 

stress when a is negative. 

( ) bk ≤κ  : a is positive 

( ) bk ≥κ  : a is negative  (20) 

After the peak, the load declines, and the structure is considered to 

become unstable due to the development of a shear band. In this 

study, it is considered that softening results from the properties of 
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the material itself. Furthermore, when softening is taken into 

consideration, a dependence on the analysis mesh occurs. These 

issues will be addressed in future studies.  

 

3. CEMENT TREATED SOIL EXPERIMENTS AND 

 SIMULATIONS 

3.1 Test soil production 

Cement treated soil was made by mixing marine deposit clay with 

blast furnace cement B in the laboratory. Figure 3 shows the grain 

size distribution, while Table 1 shows the results of physical tests 

conducted on the marine deposit clay. This is clarified to be sandy 

clay with a high degree of liquidity. The total sand content is 

approximately 6.7%. Cement content was added at 300 and 400 

kg/m3 using a 60 and 70% water-cement ratio, respectively, which 

was expected to produce relatively high-strength specimens. For 

these experiments, cylindrical specimens with a diameter of 5 cm 

and a height of 10 cm were cast and then cured under constant 

temperature and humidity conditions for 7 or 28 days.  
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Figure 3 Gain size distribution of marine deposit clay 

 

Table 1 Physical and chemical properties of marine deposit clay  

Density of soil particle ρ t g/cm3 2.620 

Natural water content w % 129.3 

Consistency    

Liquid limit wL % 94.9 

Plastic limit wP % 29.9  

Plasticity index IP  65.0 

pH of soils   7.9 

 

3.2 The unconfined compression tests 

Unconfined compression testing was performed on cylindrical 

specimens with a diameter of 3.5 cm and a height of 7.0 cm that had 

been cured for seven days. Two specimen types were produced, one 

with a cement content of 300 kg/m3 and another with a content of 

400 kg/m3, which were labeled low- and high-strength specimens, 

respectively. The rate of loading was set at 0.01%/min. 

Table 2 shows the test results while Figure 4 shows the 

relationship between stress and strain. Strain was measured using an 

external displacement gauge. The unconfined compression strength 

of the low-strength sample was 3.02 and 3.16 MN/m2, the average 

of these two results was 3.09 MN/m2. The unconfined compression 

strength of the high-strength sample was 3.52~3.86 MN/m2, which 

resulted in an average of 3.71 MN/m2.  

It is considered that extending the curing period from 7 to 28 

days would result in a strength increase of 1.2~1.7. Therefore, the 

strength of specimens after 28 days of curing was assumed to be 

3.52~3.86 and 3.71~5.25 MN/m2 for low- and high-strength 

specimens, respectively.  

In general, the design strength of cement treated soil by the grid 

shape soil improvement for the liquefaction is 2.0 MN/m2 in Japan. 

Relatively high-strength cement treated soil was used in this study. 

 

 

 

 

 

Table 2 Results of unconfined compression test 

Secimen No. 300-1 300-2 400-1 400-2 400-3 400-4

Cement content kg/m
3

Water content w % 91.1 91.1 84.1 87.0 85.9 85.5

 Unconfined compressive strength q u MN/m
2

3.02 3.16 3.69 3.52 3.86 3.78

Failure strain ε f % 1.14 1.50 0.86 1.55 1.29 1.29

Modulos of deformation E 50 MN/m
2

548 508 617 506 741 646● ○ ▲ △ ■ □Mark at the peak

300 400（Average value） (3.09) (3.71)
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Figure 4 Relationship between stress and strain 

 

3.3 Results of undrained triaxial compression tests and 

 simulations 

Undrained triaxial compression tests of low- and high-strength 

specimens were performed at confining pressures of 0.1 and 0.4 

MN/m2, a 0.01%/min loading rate, and under constant cell pressure 

conditions. In this test phase, cylindrical specimens with a diameter 

of 5.0 cm and a height of 10 cm that had been cured for 28 days 

were utilized. The strain was measured by LDT (Local displacement 

transducer, Goto, et al., 1991) on the side of the sample.  

Simulations were then performed using the new constitutive 

equations for cement treated soil. Table 3 shows the simulation 

parameters while Figure 5 shows the results of both the experiments 

and the simulations. The figure is divided into four sections: (a) the 

relationship between deviator stress and strain, (b) the relationship 

between deviator stress and mean effective stress, (c) the 

relationship between R (the ratio between the normal-yield surface 

and the subloading yield surface) and strain, and (d) the relationship 

between excess pore water pressure and strain in the experiments. 

The simulations were performed while paying strict attention to the 

nonlinearity up to the peak and to the peak strength. Those 

parameters were determined by the undrained triaxial and/or the 

unconfined compression tests. The extension strength Tf  assumed to 

be almost 10% of compression strength.  

 

Table 3 Material constants 

 

 

 

 

 

 

Constraint pressure (MN/m
2
) 0.1 0.4 0.1 0.4

Young Modulous  E  （MN/m
2）

Poisson's ratio  ν

Cohesion　c （kN/m
2） 3000 3400 6600 7500

Extention strength　T f（kN/m
2）

Friction angle　φ（°）
Coefficient of subloading

yield surface　m

Coefficient of Softening 　a

Coefficient of Softening　b （kN/m
2）

Elastic limit　R 0

Low-strength specimen High-strength specimen

3000 3000

0.167 0.167

500 500

20 20

500 1000

20 20

1000 1000

0.01 0.01
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The Poisson’s ratio is almost between 0.1 and 0.2 from the 

retrospective research (Namikawa and Koseki, 2006). Therefore the 

Young’s modulus were determined from the initial incline of the 

relationship between the stress and strain, while the c (coefficient) 

and φ (friction angle) were determined from the peak strength. The 

coefficient for the subloading yield surface and softening parameter 

were determined from the nonlinear region near the peak. The 

relationship between stress and strain is assumed to be linear, based 

on the linear elastic body used in the modified Drucker-Prager 

model and the assumption that elasticity exists inside the normal-

yield surface. However, if the subloading yield concept is used, it 

can express the nonlinearity up to the peak.  

Figure 5-(a) and 5-(b) show the experimental and simulation 

data for the low- and high-strength specimens. Care was taken to 

ensure that the initial stiffness, nonlinearity up to the peak, and 

softening after the peak were reproduced. In this study, the softening 

level after the peak was set to be gentle.  

Note that, in the case of 0.4 MN/m2, it was not possible to create 

a suitable simulation for the initial stage of the relationship between 

the deviator stress and mean effective stress.  

In Figure 5-(c), it can be seen that R approaches 1 as the 

deformation increases, and is almost 1 for an axial strain of 1.0 %, at 

which point the subloading yield surface coincides with the               

normal-yield surface. In Figure 5-(d), it can be seen that, in the case 

of low-strength samples, excess pore water pressure is positive for 

both confining pressures. In contrast, in the case of the high-strength 

samples, the value is initially positive and becomes negative after 

0.5% axial strain. This behavior is similar to that for over 

consolidated clay or dense sand. Although attempts were made to 

saturate specimens prior to testing, the results were inadequate. 

Determining an efficient method for saturating cement treated soil is 

another task that will be addressed in future studies.  As mentioned 

above, since the excess pore water is not measured well in the 

experiment, the dilatancy of the soil may not be expressed. This task 

will be addressed in future studies that will take into consideration 

the non-associated flow rule and other factors in order to express the 

dilatancy of this soil.   

Figure 6 shows the relationship between the deviator stress and 

the strain assumed during the simulated unconfined extension test. 

The material parameters were selected for the low-strength                      

0.1 MN/m2 specimen shown in Table l. The confining pressure in 

this simulation was set to 0 MN/m2, as was assumed during 

extension test under the plain strain condition. Note that this is a 

simulated response, not a comparison between the experiment and 

simulation. Two cases were examined, one in which softening could 

not occur (Case 1), and another in which softening was possible 

(Case 2). The extension strength was 0.45 MN/m2. Therefore,                  

0.5 MN/m2 was set as the parameter due to the plain strain condition. 

After the peak, softening behavior could be seen. 
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(a)  Relationship between deviator stress and strain 
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(b)  Relationship between deviator stress and mean effective stress 
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(c)  Relationship between R (the ratio between normal-yield surface 

and subloading yield surface) and strain 
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(d)  Relationship between excess pore water pressure and strain in 

experiments 

Figure 5 Comparison between experiment and simulation 
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Figure 6 Relationship between deviator stress and strain assumed 

during the simulated unconfined extension test 

 

4. BENDING TEST SIMULATION 

4.1 Calculation conditions 

This section focuses on the ability of the model to respond to the 

boundary value problems. Therefore, it must be emphasized that the 

results shown do not indicate comparisons between experimental 

and simulated results. Figure 7 shows the calculation mesh with the 

boundary conditions. The plain strain condition is assumed at one 

phase, a width is 12cm and a height is 4.0cm for a specimen. Both 

sides of the bottom were fixed in the x and y directions. The center 

element of length at the top was deformed to the –y direction at 

constant rate.  

The load was calculated as the summation of the equivalent 

nodal forces at the deforming nodes. The black elements in Figure 7 

are set to be elastic in order to prevent stress concentrations from 

occurring around them. Table 4 shows the material constants. The 

confining pressure was set to 0 MN/m2. There are two simulated 

cases. Case 1 is the basic case used in this study, while Case 2 is an 

imperfect case, in which the one underside element is truncated, as 

shown in Figure 7. The subject of the investigation is the 

development of shear strain and extension strength. Extension 

strength is calculated via the following equation: 

 

22

3

bD

Pl
T f =

 (21) 

where, l=0.12 m (width), b=1.0 m (unit length), D=0.04 m (height) 

and P is the force on the loading point. The Mudian program code 

developed by Takenaka Corporation was used in these calculations. 

(Shiomi, et al. 1993) 

 

12 cm

4 cm

Displacement control

x

y

 
Case 1 

 

 

6.0 cm 5.8 cm   
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Figure 7 Calculation mesh with boundary conditions 

Table 4 Material constants 

 

4.2 Simulation results 

Figure 8 shows the relationship between stress and strain observed 

in the simulation. In Case 1, no peak exists in spite of the 

nonlinearity. In Case 2, a peak is seen to exist. The peak strength 

(about 0.6 MPa) in Case 2 is slightly larger than the input extension 

strength (0.5 MPa). Figure 9 shows distributions of 
x

ε and
m

σ  

(positive range only: extension) and (3J2)
0.5 in the final step for each 

case. In all cases, the extension occurs around the base of the 

specimen and the strain increases from the middle. The width of the 

extension area spread is particularly large in Case 1.  

In general, in the experiment, a number of cracks were noted 

around the middle section. If the specimen was perfectly 

homogeneous and rectangular in shape, the crack should have 

occurred precisely in the middle. However, imperfections will 

always exist in actual specimens, which are neither geometrically 

rectangular nor homogeneous in terms of strength, so cracks can 

occur in a variety of locations. This is known as the bifurcation 

problem.  

In this study, in order to generate cracks or strain, it was 

necessary to introduce imperfections, such as in Case 2, where 

localized strain occurred from the bottom center, and was 

considered to have caused extension failure. On the other hand, it 

was noted that significant amounts of shear stress (3J2)
0.5 were 

generated as deformation progressed under the load point. This was 

noteworthy because the original purpose of the bending test was to 

investigate extension strength, and there were no plans to consider 

shear stress. However, in this simulation, it was found that shear 

stress occurred due to stress concentration at the loading point, thus 

indicating that both shear and extension failure would need to be 

considered in the boundary value problem defined by Namikawa 

and Koseki (2007). Therefore, it is considered necessary that the 

peak strength in the simulation be set slightly higher than the input 

extension strength. Finally, when considering the bifurcation 

problem, geometrical nonlinearity is important. In this research, an 

infinitesimal deformation was assumed. Determining ways to 

expand this to large deformations will be another topic of future 

work.  

 
 

Figure 8 Relationship between stress and strain 
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5. CONCLUSIONS 

A new constitutive cement treated soil model was developed and 

examined via undrained triaxial compression and bending tests. The 

following results were obtained: 

1) Undrained triaxial compression tests were performed using this 

model and the results agreed well with those of experiments in 

terms of the peak strength and softening. Although attempts 

were made to saturate specimens prior to testing, the results 

were inadequate. Determining an efficient method for 

saturating cement treated soil is another task that will be 

addressed in future studies.  

2) A bending test was performed as a boundary value problem. 

The extension strength of the bending test is similar to the input 

extension strength. It was found that the extension strength 

from the boundary value problem (bending test) reproduced the 

value of the material inherent extension strength. Originally, it 

was considered desirable that there was no effect of the shear 

stress through the test process because the bending test is a test 

to investigate the extension strength. However, in this 

simulation, shear stress resulted from the stress concentration at 

the loading point, which indicated that the bending test resulted 

in both shear and extension failures in view of the boundary 

value problem. 
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