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ABSTRACT: A density- and stress-dependent elasto-plastic model for saturated sands undergoing monotonic undrained torsional shear 

loading is presented in this paper. The model is developed under an extended general hyperbolic equation (GHE) approach, in which the void 

ratio and stress level dependence upon stress-strain response of sand is incorporated. Most importantly, a state-dependent stress-dilatancy 

relationship is introduced to account for the effect of density on the stress ratio. Such a stress-dilatancy relation is used for modeling the 

excess pore water pressure generation in undrained shear conditions as the mirror effect of volumetric change in drained shear conditions. In 

this paper, details of the model formulation and soil parameters calibration are described. By using the proposed model, numerical simulation 

of monotonic undrained torsional shear tests have been carried out on Toyoura sand. The model predictions show that undrained shear 

behavior, described in terms of stress-strain relationship and effective stress path for both loose and dense sands can be modeled 

satisfactorily by using a single set of soil parameters. 
 

 
1. INTRODUCTION 

Sand behaves differently under different density states and confining 

pressures as well as loading conditions (e.g. triaxial compression 

and extension, plane strain, simple shear, torsional shear etc) as 

widely reported in the literature (e.g. Tatsuoka et al., 1982; Ishihara, 

1993; Verdugo and Ishihara, 1996; Yoshimine and Ishihara, 1998; 

Nishimura and Towhata, 2004; Georgiannou et al., 2008). In view 

of its complex behavior, to predict in a very straightforward and 

reliable manner the response of sand undergoing monotonic shear 

loadings for a large range of initial void ratios and confining 

pressures without the need to make any change to the soil 

parameters remains a major challenge in geomechanics. Although in 

the last few decades, several constitutive models have been 

proposed, each of them was with varying extent of capability and 

applicability. 

In models based on generalized plasticity (e.g. Pastor et al., 

1990; Ling and Liu, 2003), complex mathematical formulations are 

often used. In addition, the same sand is usually considered as 

different material depending on its density and stress level, so that a 

large number of soil parameters is required. Alternatively, one 

advantage of critical-state constitutive models (e.g. Jefferies, 1993; 

Imam et al., 2005; Modoni et al., 2011) is their ability to predict soil 

behavior over a range of densities and confining pressures by using 

a single set of soil parameters. In the work done by Ling and Yang 

(2006), a unified model based on critical state and generalized 

plasticity has been proposed. Nevertheless, there may be debates 

over the uniqueness of the critical state line (e.g. Vaid et al., 1990; 

Yamamuro and Lade, 1998; Modoni and Gazzellone, 2011; Li and 

Dafalias, 2012). In addition, the majority of such predictive models 

has been validated only for the case of triaxial loadings. 

It is widely recognized that hyperbolic equations can be used to 

model the highly non-linear stress-strain behavior of soil subjected 

to shear loading (Kondner, 1963; Duncan and Chang, 1970; Hardin 

and Drnevich, 1972; Tatsuoka and Shibuya, 1992; Cubrinovski and 

Ishihara, 1998a,b). In particular, the general hyperbolic equation 

(GHE) proposed by Tatsuoka and Shibuya (1992) can properly 

simulate stress-strain relations from very small to large strain levels 

for a wide range of geomaterials under general loading conditions 

(Tatsuoka et al., 1993; Balakrishanayer, 2000; Tatsuoka et al., 2003; 

HongNam, 2004; HongNam and Koseki, 2005; De Silva, 2008; 

Chiaro, 2010; Chiaro et al., 2011; De Silva et al., 2012). 

De Silva (2008) successfully used a GHE combined with an 

empirical stress-dilatancy equation to simulate the overall behavior 

of Toyoura sand undergoing drained/undrained monotonic/cyclic 

torsional shear loading conditions. Later, Chiaro (2010) 

incorporated into this model the effect of initial static shear stress. 

However, neither the density nor the combined influence of density 

and stress level was considered as a variable. To be precise, sand 

with different densities was regarded as different material and the 

effects of confining pressure were considered to be independent 

from the density state. As a consequence, a number of soil 

parameters were needed for simulating different density and stress 

level conditions. 

In this paper, following the achievement of De Silva (2008) and 

Chiaro (2010), an elasto-plastic model that deals with density and 

stress level dependency upon undrained behavior of sand, using the 

GHE approach combined with an empirical stress-dilatancy 

equation, is presented. The proposed model is able to predict sand 

behavior in monotonic undrained torsional shear tests over a wide 

range of void ratios and confining pressures using a single set of soil 

parameters. 

From a practical viewpoint, some advantages of the proposed 

model are its mathematical simplicity and the use of a single set of 

soil parameters. If implemented in an FEM code, it would represent 

a useful tool for researchers and practicing engineers to study 

complex liquefaction soil problems where density and stress level 

are likely to change significantly from place to place within a sand 

deposit. 

 

2. MONOTONIC UNDRAINED BEHAVIOR OF SAND 

When sand is subjected to shear load, it exhibits very complex 

behavior, which is governed by the initial state of density and stress 

level. Typical behavior of sand specimens isotropically consolidated 

at different density levels and subjected to monotonic undrained 

shear loading is described in Figures 1(a) and 1(b), in terms of 

effective stress path and stress-strain relationship, respectively. 

Very loose sand (path A-B-C). Very loose sand generally 

exhibits a purely contractive behavior, during which effective mean 

stress (p’) decreases while shear stress (τ) progressively increases up 

to a transient peak stress (point B). The peak stress state is 

accompanied by an unstable behavior (Lade, 1993) with a sudden 

loss of strength and a large development of pore water pressure and 

shear strains. Finally, at point C, soil deforms under a nearly 

constant stress (i.e. steady state; Verdugo and Ishihara, 1996). In 

addition, by looking at the stress-strain response, strain-softening 

behavior (i.e. decrease in shear strength owing to shear strain 

increase) can be observed after the transient peak stress. Due to its 

fully contractive response, loose sand is expected to experience full 

liquefaction state (p’ = 0) with zero residual shear strength (τ = 0). 

Loose/medium dense sand (path A-D-E-F). Alternatively, loose 

sand shows a contractive behavior until the stress state reaches the 

phase transformation (Ishihara et al., 1975) at point E. Then dilative 
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behavior takes place and the effective stress path increases while 

following the failure envelope line (path E-F). 

Dense sand (path A-G-H). Dense sand presents a significantly 

different behavior. Contractive behavior is markedly reduced so that 

the unstable behavior is no longer observed (i.e. no transient peak 

stress). Dilative behavior begins when stress state achieves the phase 

transformation (point G), usually at a higher value of p’ as compared 

with loose sands, and then the effective stress path follows the 

failure envelope line (path G-H). Moreover, strain-hardening 

behavior (i.e. increase in shear stress caused by shear strain 

increase) can be observed by looking at the stress-strain relationship. 
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Figure 1 Pattern of monotonic undrained torsional shear behavior of 

sand consolidated at different densities 

 

3. STRESSES AND STRAINS IN TORSIONAL SHEAR  

During earthquakes, idealised field stress conditions are like those in 

simple shear and can be reproduced by using a hollow cylinder 

torsional shear apparatus (e.g. Tatsuoka et al., 1982; Georgiannou et 

al., 2008; Kiyota et al., 2008; Chiaro et al. 2012 and 2013). 

Four independently loading components, namely vertical axial 

load (Fz), torque load (T), inner cell pressure (pi) and outer cell 

pressure (po) can be applied (Figure 2) and the correspondent four 

stress components i.e. axial stress (σz), radial stress (σr), 

circumferential stress (σθ) and torsional shear stress (τzθ) can be 

generated. The relation between the above stress (i.e. in terms of 

average stress) and loading components can be defined as follows 

(Hight et al., 1983):  
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where ro and ri are the outer and inner radius of the specimen, 

respectively; θ is the circumferential angular displacement and H is 

the specimen height.  

The average main stresses σ1 (major), σ2 (intermediate), σ3 

(minor) as well as the mean stress p are given by: 
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In addition to averages stresses, the average torsional shear strain is 

defined as: 
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Figure 2 External forces and stress components acting on a hollow 

cylindrical specimen (Chiaro, 2010). 

 

4. MODEL FORMULATIONS 

The model is developed within a classical elasto-plastic framework, 

where shear strain increment (dγ) is defined as the sum of elastic 

strain increment (dγe) and plastic strain increment (dγp): 

pe ddd γγγ +=  (9) 

Nevertheless, the model assumes that for any given shear stress 

increment (dτ) both elastic and plastic deformation do always occur, 

so that a purely elastic region does not exist i.e. sand continuously 

yields from the very small strains.  

The plastic distortional and volumetric behavior of sand is 

specified by a pair of fundamental relations, namely GHE and 

stress-dilatancy relationship. Both relations include key parameters 

that are dependent on the amount of plastic shear strain as well as 

the initial state condition (i.e. void ratio and stress level). The 

contribution of elastic behavior is estimated using a quasi-elastic 

model proposed by HongNam and Koseki (2005), even though it 

might be smaller than that of plastic behavior. 

 

4.1 Plastic shear strain 

The highly non-linear stress-strain behavior of sand subjected to 

shear loading can be modeled by using a GHE, which has been 

proposed by Tatsuoka and Shibuya (1992) in the form: 
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where x and y are two functions representing plastic shear strain and 

shear stress ratio, respectively. 

Most importantly, C1(x) and C2(x) are two fitting parameters that 

vary with the strain level. They were introduced by Tatsuoka and 

Shibuya (1992) to simulate in a more realistic way such highly 

complicated non-linear stress-strain behavior of sand. For the case 

of torsional shear loading, they can be formulated as follows: 
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All the coefficients (C1(0), C1(∞), α, a, C2(0), C2(∞), β, b) in Eqns. (11) 

and (12) can be determined by fitting the experimental data plotted 

in terms of y/x vs. y relationship as detailed in Tatsuoka and Shibuya 

(1992). Note that C1(0) is the initial normalized plastic shear 

modulus, while C2(∞) represents the normalized peak strength of the 

material. 

De Silva (2008) and Chiaro (2010) demonstrated that if properly 

normalized, the stress-strain relationship of sand could be 

represented by a unique curve irrespective of density level and 

drainage conditions. In this current model, with the intention of 

incorporating into the GHE the void ratio and confining stress level 

dependence of stress-strain behavior of sand, the same x and y 

functions employed by De Silva (2008) and Chiaro (2010) were 

adopted: 
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where γp is the plastic shear strain; τ is the shear stress; p’ and p0’ 

are the current and initial effective mean stress, respectively; 

(τ/p’)max is the peak shear stress in the plot τ/p’ vs. γp; and G0 is the 

initial shear modulus. 

By substituting Eqns. (13), (14) and (15) into Eqn. (10) and 

using a few mathematical manipulations, the following expression is 

obtained: 
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Note that in Eqn. (16), the dependence of void ratio (e0) and stress 

level (p0’) may be accounted by both G0 and (τ/p’)max, which are two 

parameters with clear physical meaning. 

For clean sands, a number of empirical relationships have been 

proposed to relate G0 to the confining pressure and void ratio (e.g. 

Hardin and Richart, 1963; Iwasaki and Tatsuoka, 1977; Iwasaki et 

al., 1978). Above all, for the case of sand subjected to torsional 

shear loading, the following expression is valid: 
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where Gn is a small strain shear stiffness parameter; pref’ is a 

reference stress (=100 kPa) and n is a soil parameter to express the 

stress-level dependence of G0. Both Gn and n are presented later for 

the case of Toyoura sand. Note that f(e0) is the void ratio function 

proposed by Hardin and Richart (1963) for sand with round 

particles. 

Cubrinovski and Ishihara (1998a) suggested that there exists a 

linear correlation between (τ/p’)max and the state index Is (Ishihara, 

1993), which was used to express the influence of density on stress 

ratio. Alternatively, in this study, the following linear correlation 

between (τ/p’)max and e0 is derived from undrained torsional shear 

tests: 

021max)'/( errp +=τ  (19) 

where r1 and r2 are the intercept and the gradient, respectively, in the 

plot (τ/p’)max vs. e0. 

 

4.2 Elastic shear strain 

In the model, the elastic shear strain increment (dγe) is calculated as 

formulated in the quasi-elastic constitutive model proposed by 

HongNam and Koseki (2005): 

G/ddγe τ=  (20) 
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where G is the current shear modulus; f(e) is the current void ratio 

function as defined in Eqn. (18); f(eic) is the void ratio function at a 

reference isotropic confining stress σic’; Gic is the initial shear 

modulus at eic and σic’, as defined in Eqn. (17); σz’ and σr’ are the 

vertical and radial effective stress, respectively; and n is the same 

material parameter used in Eqn. (17). 

In the proposed model neither σz’ nor σr’ are defined as 

variables. Thus, for simplicity and with negligible errors, Eqn. (21) 

is replaced by Eqn. (22), which can be derived from Eqn. (17) 

considering Gn = [G/(p’)n]/f(e): 
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4.3 Stress-dilatancy characteristics 

Volume change in drained shear tests can be considered as the 

mirror image of pore water pressure build-up during undrained shear 

tests. Change of volumetric strain in different stages of shear 

loading can be described by the stress-dilatancy relationship, which 

relates the dilatancy ratio (-dεp
vol/dγp) to the stress ratio (τ/p’) (e.g. 

Pradhan et al., 1989 a, b; Shahnazari and Towhata, 2002). 

Nevertheless, theoretical stress-dilatancy relations, such as 

Rowe’s equations (Rowe, 1962), are not directly applicable to the 

case of torsional shear loading. However, the results from torsional 

shear tests suggest that unique relationships between -dεp
vol/dγp and 

τ/p’ exist either for loading (dγp > 0) and unloading (dγp < 0) 

conditions (Pradhan et al., 1989a,b). Nishimura and Towhata (2004) 

proposed the following empirical linear stress-dilatancy relationship 

for sands undergoing torsional shear loading: 

d

p

vol
d

p
dγ

d

'
C

p
N +−=













 ετ
 (23) 

where Nd and Cd are the gradient and the intercept of linear 

relationship, respectively, as schematically shown in Figure 3. 

It is important to make clear that Cd represents the stress ratio at 

the phase transformation (τ/p’)PTL or stress ratio at zero dilatancy 

state: 

PTLd )'/( pC τ=  (24) 

On the other hand, Nd is a density dependent parameter. In 

general, the denser the soil, the greater the Nd i.e. a denser sand 

behaves more dilative (Figure 3). In the model, to account for the 

effect of density on stress ratio and volumetric strain behavior of 

sand, the following formulation for Nd is proposed: 

021d eddN +=  (25) 
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where d1 and d2 are two parameters to express the dependence of Nd 

on density. The coefficients d1, d2 and (τ/p’)PTL obtained for Toyoura 

sand subjected to torsional shearing are presented later. 

It is worth mentioning that for dγp > 0 (i.e. monotonic shear 

loading) the following concept is applicable: 

- sand behaves contractive when 0 < τ/p’ < (τ/p’)PTL; 

- zero dilatancy state at phase transformation, i.e. τ/p’ = (τ/p’)PTL;  

- sand behaves dilative when τ/p’ > (τ/p’)PTL. 
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Figure 3 Illustration of stress-dilatancy characteristics for sand 

subjected to torsional shear 

 

4.4 Excess pore water pressure generation 

In modeling the undrained shear behavior, it is assumed that the 

plastic volumetric strain increment (dεp
vol) during undrained 

loading, which consists of dilatancy (dεp(d)
vol) and 

consolidation/swelling (dεp(c)
vol) components, is equal to zero. In 

fact, a change of effective mean stress (p’) during undrained loading 

causes re-compression/swelling of the specimen. On the other hand, 

a change of shear stress (τ) causes the dilatation of the specimen. 

Therefore, the following equation is valid during undrained loading: 

0ddd p(d)

vol
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p

vol =+= εεε  (26) 

Experimental evidences suggest that the bulk modulus K (= 

dp’/dεp(c)
vol) can be expressed as a unique function of p’: 
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where Kic is the bulk modulus at reference effective mean stress 

(pic’); f(e) and f(eic) are the void ratio function at current and 

reference stress state, respectively; and m is a coefficient to model 

the stress-state dependency of K. 

In the case f(eic)=f(e0), pic’=p0’ and Kic=K0, considering that 

f(e)=f(e0) in undrained tests, from Eqns. (26) and (27), the change of 

effective mean stress (or  generation of pore water pressure) during 

undrained shearing is evaluated as follows: 
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where from Eqn. (23): 
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Similarly to G0, also the initial bulk modulus (K0) may be evaluated 

by an empirical relationship that considers the effects of initial 

pressure level (p0’) and void ratio (e0): 
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where Km is a soil compressibility parameter; pref’ is a reference 

stress (=100 kPa)  and m is a soil parameter to express the stress-

level dependence of K0. Both Km and m are presented later for the 

case of Toyoura sand. 

 

5. DETERMINATION OF MODEL PARAMETERS 

The proposed model requires a unique set of 17 parameters for 

simulating monotonic undrained torsional shear behavior of 

saturated sand over a wide range of void ratios and confining 

pressures. These parameters are related to the GHE (C1(0), C1(∞), α, a, 

C2(0), C2(∞),  β, b), shear modulus (Gn, n), peak stress ratio (r1, r2), 

dilatancy (d1, d2, (τ/p’)PTL) and bulk modulus (Km, m). The model 

parameters calibrated for Toyoura sand are summarized in Table 1. 

 

Table 1 Model parameters for Toyoura sand (air pluviation) 

Relation Unit Soil parameters 

GHE strain-function:  

C1(x) 

--- C1(0) 

C1(∞) 

α 

a 

      4.0 

      0.123 

      0.01073 

      0.2 

GHE strain-function:  

C2(x) 

--- C2(0) 

C2(∞) 

β 

b 

      0.102 

      1.2 

      0.85012 

      0.2 

Shear modulus:  

G0 

kPa Gn 

n 

81969.0 

        0.51 

Peak stress ratio:  

(τ/p’)max 

--- r1 

r2 

      1.828 

     -1.406 

Stress-dilatancy:  

Nd; Cd 

--- d1 

d2 

(τ/p’)PTL 

      5.793 

     -5.0 

      0.6 

Bulk modulus:  

K0 

kPa Km 

m 

47710.0 

        0.50 

 

5.1 GHE parameters (C1(0), C1(∞), α, a, C2(0), C2(∞), β, b) 

Figure 4 shows the determination of the GHE parameters. They are 

obtained by fitting the results of an undrained torsional shear test 

conducted on a loose Toyoura sand specimen (e0 = 0.828), which 

was consolidated at p0’ = 100 kPa. The specimen was prepared by 

the air pluviation method proposed by De Silva et al. (2006) and its 

size (referred hereafter as medium size) was 300 mm in height, 150 

mm in outer diameter and 90 mm in inner diameter. Refer to Chiaro 

(2010) and Chiaro et al. (2012) for details of torsional shear 

apparatus and test procedure employed. 

Parameters C1(0), C1(∞), C2(0) and C2(∞) were evaluated graphically 

as shown in Figure 4. Alternatively, α and β were calculated using 

Eqns. (11) and (12), in which reference parameters C1(x=1) and C2(x=1) 

were used together with the already obtained C1(0), C1(∞), C2(0) and 

C2(∞). Lastly, parameters a and b were set by trial and error as shown 

in Figure 4. 

 

5.2 Initial shear modulus parameters (Gn, n) 

As shown in Figure 5, for Toyoura sand Gn = 81969 and n = 0.51 

are suitable values to fit results of two series of torsional shear tests 

by Kiyota et al. (2006) and De Silva (2008). These tests were 

performed on medium size Toyoura sand specimens of various 

density by applying small amplitude cyclic torsional shear loading at 

different stages of isotropic consolidation (from 100 to 400 kPa) and 

isotropic unloading (from 400 to 100 kPa). 
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Figure 4 Determination of GHE model parameters for Toyoura sand 
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Figure 5 Variation of normalized initial shear modulus  

with effective mean stress 

 

5.3 Peak shear stress parameters (r1, r2) 

Peak stress ratio (τ/p’)max is a density dependent factor as described 

by Eqn. (19). Figure 6 shows the correlation between (τ/p’)max and 

e0 obtained from undrained torsional shear tests on medium size 

Toyoura sand specimens over a wide range of density. Parameters r1 

= 1.828 and r2 = -1.406 are determined by linearly fitting the 

experimental data. 
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Figure 6 Variation of undrained peak stress ratio with void ratio 

 

5.4 Dilatancy parameters (d1, d2, (ττττ/p’)PTL) 

Simulation results presented in Figure 7 show the value of Nd 

obtained by fitting experimental data from undrained torsional shear 

tests on Toyoura sand. It appears that Nd decreases with an increase 

in void ratio i.e. Nd is greater for denser sand that behaves more 

dilative than loose sand. Finally, parameters d1 = 5.793 and d2 = -5.0 

are obtained by the linear fitting of data presented in Figure 7. 

For a given material, the stress ratio at phase transformation 

(τ/p’)PTL is independent of void ratio, stress level and drainage 

conditions (Georgiannou et al., 2008; among others) as well as of 

initial static shear effects (Chiaro et al., 2012). Thus, (τ/p’)PTL can be 

regarded as constant. Based on tests results reported in Chiaro et al. 

(2012) for medium size Toyoura sand specimens subjected to 

undrained torsional shear, it is obtained that (τ/p’)PTL = 0.6. 
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Figure 7 Variation of dilatancy parameter Nd with void ratio  

 

5.5 Initial bulk modulus parameters (Km, m) 

Parameters Km and m are taken as 47710 and 0.50, respectively, as 

proposed in Chiaro (2010) for the case of medium size Toyoura 

sand specimens subjected to isotropic unloading. 

 

6. MODEL PERFORMANCE 

The model is used here to predict the undrained torsional shear 

behavior of Toyoura sand and compare it with the laboratory 

observed response. Model predictions cover isotropically and 

anisotropically (i.e. two-stage drained to undrained shear, as will be 

described in details in 6.4) consolidated sands. All predictions are 

obtained using the single set of model parameters listed in Table1. 

 

6.1 Undrained behavior of sand isotropically consolidated at 

 different density states 

Figure 8 compares the predicted and observed behavior of three 

Toyoura sand specimens consolidated to e0 of 0.859 (loose), 0.820 

(medium dense) and 0.691 (dense) at a confining pressure of 100 

kPa. Loose sand shows a predominant contractive behavior with 

strain-softening, while dense sand behaves predominantly dilative 

with strain-hardening.  

Despite the change in density with associate contractive/dilative 

behavior, the undrained response of sand can be satisfactorily 

captured by the proposed model in terms of stress-strain 

relationship, effective stress path and excess pore water pressure 

characteristics. 

 

6.2 Undrained behavior of sand isotropically consolidated at 

 different stress levels 

A tendency for decreasing dilatancy at higher stress levels is a 

common characteristic of sands as shown by Verdugo and Ishihara 

(1996), who conducted a series of undrained triaxial compression 

tests on Toyoura sand specimens consolidated at stress levels 

increasing from 100 kPa to 3000 kPa.  

As far as the authors have investigated the literature, undrained 

behavior of sand in torsional shear tests has been reported only for 

confining pressure up to 300 kPa (e.g. Georgiannou and Tsomokos, 

2008), which yet well represents the stress levels of interests for 

many practical geotechnical problems. These tests revealed that for 

the range of confining pressure investigated, sand behavior does not 

change toward a more contractive behavior, but rather it remains 

unaffected.  

In Figure 9, behavior of medium dense Toyoura sand is 

predicted taking into consideration the same confining pressure 

(p0’= 75, 130, 215 and 300 kPa) employed by Georgiannou and 

Tsomokos (2008). Similarly to experimental evidences, it can be 

seen that predicted sand behavior appears to remains unaffected by 

the confining pressure level. As shown in Figure 9a, independently 

of stress level, the stress state increases up to a transient peak 
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(identified by the instability line, IL), then decreases until the phase 

transformation line (PTL) and, finally, it follows the failure 

envelope.  

Yet, authors admit that possible effects of the confining pressure 

on the dilatancy characteristics (such as those reported by Verdugo 

and Ishihara, 1996) may be not fully taken into account in the 

proposed model, due to insufficient number of relevant experimental 

data that can be employed for improving the present modelling. 
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Figure 8 Comparison between experimental and predicted undrained 

monotonic behavior of Toyoura sand 

 

6.3 Static liquefaction behavior of very loose sand  

Ishihara (1993) noted that Toyoura sand consolidated to void ratios 

higher than 0.930 (i.e. very loose state) completely liquefies and 

exhibits zero residual shear strength under monotonic undrained 

triaxial compression loading. Later, Yoshimine and Ishihara (1998) 

reported similar behavior also for very loose Toyoura sand subjected 

to torsional shear loading.  

Figure 10 shows model predictions for undrained torsional shear 

behavior of Toyoura sand consolidated to e0 = 0.902 (Dr = 25%) and 

confining pressure ranging from 50 kPa to 400 kPa. Despite the 

increase in confining pressure, very loose sand always reaches the 

full liquefaction state. However, the higher the confining pressure, 

the greater the shear stress level required to exceed the transient 

undrained soil strength and consequently trigger liquefaction under 

monotonic shearing conditions. 
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Figure 9 Model predictions of undrained behavior for medium dense 

Toyoura sand consolidated at different confining pressures  
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Figure 10 Model predictions of static liquefaction behavior for very 

loose Toyoura sand consolidated at different confining pressures  

 

6.4 Two-stage drained to undrained tests 

Two-stage drained to undrained tests are often performed to 

evaluate the effects of initial static shear (i.e. sloped ground 

conditions) on the undrained behavior of sand. In the case of 

torsional shear tests, to apply an initial static shear stress, 
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isotropically consolidated specimens are subjected to drained 

torsional shear loading before undrained shearing. 

Figure 11 shows model predictions for the test results presented 

by Arangelowski and Towhata (2004) on Toyoura sand specimens 

consolidated to e0 = 0.820, confining pressure of 196 kPa and 

sheared under drained, fully undrained (i.e. with zero shear stress) 

and undrained conditions with static shear of 30, 60 and 90 kPa.  

Arangelowski and Towhata (2004) reported that after the shear 

stress was achieved under drained conditions and undrained loading 

was applied, an increase in the shear stress was observed and then 

softening started. However, one exception was the case when initial 

static shear was rather higher (τstatic = 90 kPa) where instantaneous 

softening occurred.  

According to Lade and Yamamuro (2011), initiation of 

instability (i.e. sudden softening) requires that stress state be located 

into the region of potential instability (i.e. above the IL). However, 

sand will remain perfectly stable inside the failure surface as long as 

it is drained. A trigger mechanism that cause pore water pressure to 

increase faster than it can dissipate (i.e. undrained conditions) is 

required to cause instability.  

It is clear that model prediction is well in accordance with 

experimental data reported in the literature, including a tendency for 

increasing undrained peak strength of sand due to an increase of 

initial static shear which has been observed by various researchers 

(e.g. Hyodo et al., 1994; Vaid et al., 2001; Arangelowski and 

Towhata, 2004; Chiaro et al., 2012). 
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Figure 11 Model prediction for undrained monotonic behavior of 

Toyoura sand in two-stage drained to undrained tests 

 

7. SUMMARY AND CONCLUSIONS 

An elasto-plastic model to describe the density- and stress-

dependency of saturated sands subjected to monotonic undrained 

torsional shear loading has been presented in this paper. The model 

is based on an extended GHE, which is able to simulate the stress-

strain soil behavior over a wide range of densities and confining 

pressure throughout a single set of model parameters. The most 

important state-dependent stress-dilatancy relationship is established 

to account for the effect of density on stress ratio. Such a stress-

dilatancy relation is used for modeling the excess pore water 

pressure generation in undrained shear conditions as the mirror 

image of volumetric change in drained shear conditions. 

By comparing the simulation results with the experimental 

results, it is shown that the model is able to predict the contractive 

and dilative behavior of Toyoura sand under loose and dense states, 

respectively. It can be seen also that strain softening and hardening 

are well depicted by the simulations. 

Moreover, contractive-dilative behavior of medium dense 

Toyoura sand as well as the static liquefaction behavior with zero 

residual shear strength of very loose Toyoura sand can be both 

simulated over a wide range of confining pressures. In addition, the 

model can be used to evaluate the effects of initial static shear (i.e. 

shear stress induced by drained shear before the undrained one) on 

the undrained torsional shear behavior of sand. 
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9. LIST OF SYMBOLS 

The following symbols are used in this paper: 

a: GHE parameter 

b: GHE parameter 

Cd: intercept of stress-dilatancy relation 

C1(0): GHE parameter 

C1(∞): GHE parameter 

C1(x): strain-dependent GHE fitting parameter 

C2(0): GHE parameter 

C2(∞): GHE parameter 

C2(x): strain-dependent GHE fitting parameter 

dp’: effective mean stress increment 

dγ: shear strain increment 

dγe: elastic shear strain increment 

dγp: plastic shear strain increment 

dεp(c)
vol: plastic vol. strain increment due to consolidation/swelling 

dεp(d)
vol: plastic volumetric strain increment due to dilatancy 

dεp
vol: plastic volumetric strain increment 

dτ: shear stress increment 

d1: dilatancy parameter 

d2: dilatancy parameter 

Dr: relative density 

e: current void ratio 

eic: void ratio at reference isotropic confining stress 

e0: initial void ratio (i.e. at the end of consolidation 

f(e): current void ratio function 

f(eic): void ratio function at reference isotropic confining stress 

f(e0): initial void ratio function 

Fz: vertical axial load 

G: current shear modulus 

Gic: shear modulus at reference isotropic confining stress 

Gn: small strain shear stiffness parameter 

G0: initial shear modulus 

H: specimen height 

K: current bulk modulus 

Kic: bulk modulus at reference isotropic confining stress 

Km: compressibility parameter 

K0: initial bulk modulus 

m: soil parameter for bulk modulus 

n: soil parameter for shear modulus 

Nd: gradient of stress-dilatancy relation 

p’: mean stress  

p’: current effective mean stress or confining stress 

pi: inner cell pressure 

pic’: reference confining stress 
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po: outer cell pressure 

pref’: reference confining stress (= 100 kPa) 

p0’: initial effective mean stress or confining stress 

ri: inner radius of specimen 

ro: outer radius of specimen 

r1: peak stress ratio parameter 

r2: peak stress ratio parameter 

T: torque load 

x: normalized plastic shear strain  

y: normalized stress ratio  

α: GHE parameter 

β: GHE parameter 

∆u: excess pore water pressure  

γ (= γzθ): torsional shear strain  

γp: plastic shear strain  

γref: reference shear strain 

θ : circumferential angular displacement  

π : constant (= 3.1415926535) 

σr: radial stress 

σz: vertical stress 

σθ: circumferential stress 

σ1: major main stress 

σ2: intermediate main stress 

σ3: minor main stress 

σic’: reference isotropic confining stress 

σr’: effective radial stress 

σz’: effective vertical stress 

τ (= τzθ): torsional shear stress  

τstatic: initial static shear stress  

(τ/p’)max: peak stress ratio 

(τ/p’)PTL: stress ratio at phase transformation 
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