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ABSTRACT: This paper discusses the applicability of the particle filter (PF) algorithms to geotechnical analysis through some numerical 

tests. Although several types of the PF algorithms have been proposed so far, this study focuses on three typical PF algorithms: sequential 

importance resampling (SIR), sequential importance sampling (SIS), and merging particle filter (MPF). First, a geotechnical parameter is 

identified using the three algorithms in both total stress and soil-water coupled analyses, and the effectiveness of each algorithm is 

investigated. The test results clarify that (1)SIS can be applied to non-Markov dynamics such as elasto-plastic problems, but degeneration 

problems are often encountered, and (2)MPF can avoid the degeneration problems, but it cannot be applied to non-Markov dynamics. To 

overcome the dilemma, an algorithm which can treat non-Markov dynamics and solve the degeneration problems is newly proposed. The 

proposed algorithm is applied to an element test, and the performance is demonstrated experimentally. 

 

 
1. INTRODUCTION 

Predictions based on field observations, so-called “type B” 

predictions (Lambe 1973), play a crucial role in safety assessments 

of structures during construction. This approach is the well-known 

“observational method (Peck 1969),” wherein remedial designs are 

introduced sequentially moving towards the most probable 

conditions based on sequentially observed data. When the 

observational methods are applied to practical problems, several 

types of filtering techniques, such as Kalman filter (KF, Kalman 

1960), ensemble Kalman filter (EnKF, Evensen 1994), and the 

particle filter (PF, Gordon 1993; Kitagawa 1996), can be helpful 

(useful) tools. These methodologies have been successfully applied 

not only to earth science (e.g., Awaji et al. 2009) but also to 

geotechnical engineering (Murakami and Hasegawa, 1985; 

Murakami 1991). 

In particular, the PF can be applied to nonlinear and non-

Gaussian problems and has a high potential for application to 

geotechnical engineering. Shuku et al. (2012) discussed the 

applicability of the PF to parameter identification of Cam-clay 

model through numerical tests and model tests. Murakami et al. 

(2012) demonstrated the practicability of the PF by applying it to an 

actual settlement behavior observed in the Kobe Airport 

construction project. 

Several types of PF algorithms, which have different sampling 

methods, have been proposed so far. The original PF (Gordon et al., 

1993; Kitagawa 1996) adopts so-called sampling importance 

resampling (SIR), which resamples state variables every step of the 

simulation. The general algorithm of the PF is known as sequential 

importance sampling (SIS). This algorithm just calculates the 

likelihood of state variables, and it does not resample state variables 

during every step of the simulation. This algorithm is particularly 

effective in parameter identification for elasto-plastic geomaterials 

whose mechanical behaviour depends not only on the current stress 

state but also on the stress history (Shuku et al. 2012; Murakami et 

al. 2012). 

The PF often encounters a problem called "degeneration", where 

all but one of the weights of a particle is very close to zero and a 

large computational effort is devoted to updating particles whose 

contribution to the estimation is almost zero. To solve the problem, 

a unique resampling algorithm called merging PF (MPF) was 

proposed by Nakano et al.(2007), and they demonstrated that the 

MPF can overcome the degeneration problem. 

The important problem here is which algorithm is preferable for 

geotechnical analysis. Although several types of PF algorithms have 

been proposed, the performance of these algorithms for geotechnical 

analysis has not been discussed.  

In this paper, PF algorithms, SIR, SIS, and MPF, are compared 

with each other to investigate their performance in geotechnical 

analysis. Firstly, the outline/concept of the PF and the algorithms are 

briefly shown. Secondly, the three algorithms are applied to 

numerical tests for deformation behaviour of a ground under 

monotonic loading in order to discuss the applicability. Then some 

technical issues of each algorithm are mentioned. Finally, an 

algorithm which can overcome the above issues is newly proposed, 

and its applicability is demonstrated by applying it to a numerical 

test. 

 

2.  PARTICLE FILTER 

2.1  Outline of the PF 

This study focuses on the PF and applies to geotechnical analysis. 

This is because the PF does not require assumptions of linearity and 

Gaussianity, but is applicable to general problems. An application 

example of the PF to geotechnical analysis includes the literature of 

Shuku et al. (2012) and Murakami et al. (2012).  

 

2.2 Ensemble Approximation 

The PF approximates PDFs via a set of realizations called an 

ensemble that has weights, and each realization is referred to as a 

"particle" or a "sample".  For example, a filtered distribution at time 
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2.3 Prediction and Filtering Steps for the PF 

We obtain the ensemble approximation for the forecast distribution 

)( 1:1 −tt yxp  at time t by the following calculation: 
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Filtering 

We obtain the ensemble approximation for filtered distribution 
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where m is the number of state variables, Ht is the observation 

matrix, and Rt is the covariance matrix. Each weight 
)(i

tw  is the 

product of 
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2.4 Sampling Methods 

The central problem in PF is how to sample from )( :1tt yxp . The PF 

algorithm essentially consists of different ways of sampling. In this 

section, the differences among SIR, SIS, and MPF are briefly 

shown. 

 

2.4.1 Sampling Importance Resampling (SIR) 

The classic PF algorithm is known as the SIR (Gordon et al. 1993; 

Kitagawa 1996). The algorithm of SIR is summarized as follows: 

 

1. Initialization: 
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 from the initial distribution )( 0xp . Set t = 1. 

2. Prediction: 
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3. Filtering: 
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 ensemble approximation of filtered distribution )( :1 tt yxp .  

 Set t = t + 1 and go back to Step 2. 

 

2.4.2 Sequential Importance Sampling (SIS) 

A general approach for filtering is known as SIS (Douset et al. 

2001; Moral et al. 2006). The SIS algorithm can be viewed as a 

generalization of the SIR algorithm; it is based on using the 

importance sampling to estimate the expectations of functions of the 

state variables. The algorithm of SIS is summarized as follows: 

 

1. Initialization: 
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0
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 from the initial distribution )( 0xp . 

2. Prediction: 

 Each particle 
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1

i

tx −  evolves according to numerical dynamic 

 models such as FEM. 

3. Filtering: 

 After obtaining observation data yt, calculate weight 
)(i

tw , 

 which expresses the “fitness” of the prior particles to the 

 observation data computed by Eq. (5), and assign a weight, 

 
)(i

tw , to each 
)(
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i

tx − . 

4. Weight update: 

 The set of weighted particles { })( i

tx  results in an ensemble 

 approximation of filtered distribution )( :1tt yxp . 

 Set t = t + 1 and go back to Step 2. 

 

2.4.3 Merging Particle Filter (MPF) 

The PF often encounters a problem called "degeneration", where all 

but one of the weights of the particle is very close to zero and a 

large computational effort is devoted to updating particles whose 

contribution to the estimation is almost zero. 

In order to solve the degeneration problem, Nakano et al. (2007) 

proposed the new algorithm called MPF and demonstrated its 

performance through numerical experiments using the Lorenz 

models. Since the MPF provides better estimations than the PF 

without a high computational cost, it can also be useful in 

geotechnical analysis. The algorithm of the MPF is summarized as 

follows: 

 

1. Initialization: 
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 from the initial distribution )( 0xp . Set t = 1. 
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 models such as FEM. 

3. Filtering: 

 After obtaining observation data yt, calculate weight 
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 which expresses the “fitness” of the prior particles to the 

 observation data, and assign a weight, 
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4. Resampling: 
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ˆ . αj is the merging weight. The set of 

 determined  particles { })(i
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 Set t = t + 1 and go back to Step 2. 

 

Figure 1 shows the procedure of each algorithm. 

 

3. NUMERICAL TESTS 

This chapter presents application examples of the PF with SIR, SIS, 

and MPF algorithms to some numerical tests, and the effectiveness 

of each algorithm in geotechnical analysis is discussed. 

 

3.1 Setup of Numerical Tests 

In order to study the applicability of the PF algorithms, we applied 

them to a synthetic example of a total stress (non-coupled) and a 

soil-water coupled analysis. In this example, the deformation 

behavior of a ground under monotonic loading is simulated by FEM 

with a linear elastic model. The finite element mesh and the loading 

history are shown in Figures 2 and 3, respectively. In the coupled 

analysis, the left side and the right side of the mesh were assumed to 

be impermeable boundaries, whereas the top and bottom of the mesh 

were assumed to be permeable boundaries.  

 

 

 

 

The placement of the observation points is also shown in Figure 2; 

the vertical displacements and the horizontal displacements are seen 

at S1-S3 and at L1-L3, respectively. The observed settlements and 

lateral displacements are shown in Figure 4. 

Table 1 lists the parameters of the foundation ground, where E, ν, 

and k denote elastic modulus, Poisson’s ratio, and coefficient of 

permeability, respectively. In this example, elastic modulus is set as 

the parameter to be identified. 

The sets of particles for the parameters to be identified were 

generated with uniform random numbers in the range shown in 

Table 2.  In MPF, the number of merged particles n was set to 3, and 

the weights αj (j = 1, 2, ... , n) were set as follows (Nakano et al. 

2007):  
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Figure 1 Algorithms of the (a) SIR, (b) SIS, and (c) MPF 
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Figure 2 Finite element mesh 
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(a) Total stress analysis 
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(b) Soil-water coupled analysis 

 

Figure 4 Observation data 

Table 1 Geotechnical parameters used in the analysis 

E 

(kN/m2) 
ν 

kv 

(m/day) 

To be identified 0.25 1.0×10-4 

 

Table 2   Range of particle generation 

Parameter Range 

E (kN/m2) 1,000 ~ 15,000 

 

The system noise and the observation noise were assumed to be 

zero, and the covariance matrix Rt in Eq.(5) is assumed to be a 

diagonal form which is expressed by the following equations for 

simplicity; 

I
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where σ2 is the variance (mm2), I is a unit tensor, and i is an 

observation number (S1 ~ S3, L1 ~ L3). 

Six cases, which have different particle numbers (N = 16, 32, 64, 

128, 256, 512), were analyzed in this example. In all cases, all 

observation data (S1~S3, L1~L3) were available for identification. 

 

3.2 Results and Discussions 

Figures 5 and 6 show the time evolution of the identified parameters 

for N=16, 64, and 256 in the total stress analysis and the coupled 

analysis, respectively. In the PF, identified parameters are expressed 

in the form of probability density functions (PDFs) approximated by 

discrete samples called particles. Therefore, the weighted mean 

value is defined as the identified parameters in this paper: 

∑
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φ=φ
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tt
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where tφ  and 
)(i

tφ  indicate the identified parameter at time step t and 

the parameter of particle number (i) at time step t, respectively. 

In the total stress analysis, all the algorithms with N=16 do not 

converge to the true value. However, the identified parameters with 

N=64 and 256 converge to the true value, although the identification 

starts with an incorrect 0φ  purposefully. These results verify the 

effectiveness of the PF algorithms for parameter identification in 

geotechnical analysis. In particular, SIS and MPF algorithms can 

stably identify the geotechnical parameter, and the MPF needs fewer 

particles than SIR for accurate parameter identification. We could 

also see the above trends in soil-water coupled analysis (Figure 5). 

The values of the identified parameters at the end of the 

computation (computation step 100) for the total stress and the soil-

water coupled analyses are summarized in Tables 3 and 4. We can 

see the effects of the number of particles N from these tables, and it 

is clear that better identifications can be produced as more samples 

are used. Even when the number of samples was increased to 32, the 

SIR provided a worse identification than the SIS and MPF. When 

the number of samples was increased to 64, the identified 

parameters of SIR became as good as those by the SIS and MPF.  
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The MPF requires fewer samples than the SIR and thus would 

be a more efficient algorithm. In the results of the coupled analysis, 

identified parameters by the MPF do not converge to the true values, 

and parameter identification by the MPF seems to be difficult. A 

reason of the difficulty includes the dependency of pore water 

pressure. The relationship among displacements, pore pressure, and 

elastic modulus in geotechnical analysis is shown in Figure 6. In 

total stress analysis, deformation behaviour of the grounds is 

governed only by elastic modulus. On the other hand, deformation 

behaviour of geomaterials in soil-water coupled fields depends not 

only on geotechnical parameters but also on pore water pressure. 

Therefore, in the case of soil-water coupled problems, resampling 

 

 

 

 

algorithms cannot be effective, and the SIS is the most preferable 

algorithm of the three algorithms. 

Figures 7 and 8 show the PDFs of the parameters identified at 

the end of the computation. In these figures, the vertical axes 

represent the frequency, while the horizontal axes represent the 

parameter values. In both the total stress analysis and the coupled 

analysis, SIR and SIS clearly encounter degeneration phenomena, 

and the PDFs are represented by fewer particles. However, the PDF 

obtained by the MPF is broad even at the end of computation, and it 

is concluded that the MPF can solve the degeneration problems in 

geotechnical analysis. 
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Figure 5 Identified parameters in the total stress analysis                     Figure 6 Identified parameters in the coupled analysis 

 

 

Table 3 Identified parameters at end of the computation                      Table 4 Identified parameters at end of the computation 

                                   (Total stress analysis)                                                                         (Soil-water coupled analysis) 

N SIR SIS MPF   N SIR SIS MPF 

16 4291.10 4314.99 5230.40   16 4432.10 4378.81 10877.23 

32 4768.00 3704.21 3669.90   32 4488.40 3871.51 4210.67 

64 4037.71 3601.64 3505.57   64 3565.75 3735.58 4058.79 

128 3716.80 3613.42 3590.84   128 3672.75 3661.60 3966.24 

256 3486.28 3551.81 3502.12   256 3657.71 3605.85 4004.60 

512 3602.41 3553.62 3577.26   512 3881.91 3631.51 4115.70 
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4. MPF ALGORITHM FOR NON-MARKOV DYNAMICS 

Although the MPF avoids the degeneration problem, it cannot be 

applied to non-Markov dynamics such as elasto-plastic problems 

where the deformation behaviour is governed not only by the current 

stress state but also by the history. On the other hand, SIS algorithm 

can be applied to non-Markov dynamics (Shuku et al. 2012; 

Murakami et al. 2012), but it often encounters the degeneration 

problem (Doucet et al. 2000). 

To overcome the dilemma, a simple algorithm is newly proposed 

herein. The concept is extremely simple, and it is combination of the 

SIS and the MPF. The conceptual illustration of the proposed 

algorithm is shown in Figure 9. In the proposed method, after 

resampling by the MPF at step1, the computation starts from step0 

again and the resampled particles are used as initial ensemble 

members. After that, if the computation is advanced to step2, the 

particles are resampled by the MPF and the computation starts from 

step 0 again. These procedures are continued until the end of the 

computation. Cleary, this algorithm can be applied to non-Markov 

dynamics and can solve the degeneracy problem. 

To investigate the applicability of the proposed method, 

simulation of one-dimensional consolidation is conducted. The 

schematic illustration of the numerical test is shown in Figure 10. In 

this analysis, in order to produce a non-Markov process, the 

following equation is used in elastic constitutive model for 

simplicity; 

)exp( v

01 tt EE ε⋅=+
                                                                       (12) 

where, E0 is the initial values of elastic modulus, v

tε  is the 

volumetric strain at time t. Clearly, a non-Markov process can be 

produced by using the Eq.(12) in elastic constitutive models. 
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Figure 6 The relationship among displacements (ut), pore water pressure (pt), and elastic modulus (Et) in geotechnical analysis 
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Figure 7 PDFs of the identified parameters (total stress analysis)               Figure 8 PDFs of the identified parameters (coupled analysis) 
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In this analysis, we attempt to identify the elastic modulus 

expressed by the Eq.(12), and the geotechnical parameters of the 

element are shown in Table 1. The sets of particles for the 

parameters to be identified were generated with uniform random 

numbers in the range shown in Table 2. The settlement observed on 

the top of the element is used for identification in this analysis. 

Figure 11 shows the time evolution of identified parameters with 

N=256. In spite of resampling, the proposed method can identify 

elastic modulus with high accuracy even in non-Markov dynamics. 

It can be found that the SIR and the MPF cannot identify 

geotechnical parameters in non-Markov processes. The PDFs of the 

identified parameters at computation step 35 are shown in Figure 12. 

We show the results of SIS and MPF herein. The PDF obtained by 

the proposed algorithm consists of many types of samples, and the 

proposed method does not encounter the degeneration problem. 

These results verify the effectiveness of the proposed algorithm. 
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Figure 9 Conceptual illustration of the proposed algorithm 
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Figure 11 Identified parameters in the element test. 

 

2000 2500 3000 3500 4000 4500 5000
0

50

100

150

200   
SISN = 256 

F
re

q
u
e
n
c
y

 Elastic modulus, E(kN/m
2
)

 

2000 2500 3000 3500 4000 4500 5000
0

50

100

150

200   
ProposedN = 256 

F
re

q
u
e
n
c
y

 Elastic modulus, E(kN/m
2
)

 
Figure 12 PDFs identified by the SIS and the proposed method 
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Figure 10 Setup of simulation of one-dimensional consolidation 
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5. CONCLUSION 

This paper has discussed the applicability of the three PF algorithms, 

SIR, SIS, and MPF, to geotechnical analysis thorough total stress 

and soil-water coupled analyses. In addition, the algorithm which 

can be applied to non-Markov dynamics and can solve the 

degeneration problem has been newly proposed. In addition, the 

proposed algorithm has been applied to a numerical test to 

investigate its effectiveness.  The following remarks can be noted: 

(1)  The numerical tests have shown that the geotechnical 

parameters identified by the SIR, SIS, and MPF have 

converged into their true values, and the usefulness of the PF 

algorithms for geotechnical analysis was presented. 

(2)  Deformation behaviour of geomaterials in soil-water coupled 

fields depends not only on geotechnical parameters but also on 

pore water pressure. Therefore, resampling algorithms cannot 

produce accurate identification and SIS is the most preferable 

algorithm in case of soil-water coupled problems. 

(3)  PF algorithm which can solve degeneration problems and treat 

non-Markov dynamics was newly proposed by focusing on the 

dilemma about SIS and MPF. 

(4) The simulation results of one-dimensional consolidation have 

shown that the proposed algorithm can be applied to non-

Markov dynamics and solve degeneration problems. 

Since this study has treated just elastic models for simplicity, the 

obtained results cannot be extended to elasto-plastic problems. 

Further research which focuses on elasto-plastic models such as 

Cam-clay model and the discussion are necessary. 
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