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Abstract

In this paper, we study a method for calculating the determinant of a matrix divided
into four submatrices using the formula of Schur. The purpose of this study is to analyze
and provide the formula for the number of flops for matrix determinants consisting of
submatrices of different sizes. The results are analyzed based on matrices with a
submatrix on the first main diagonal of sizelx1. It shows that using the formula of Schur
to calculate the determinant gives the number of flops close to calculating the determinant
directly using the Gaussian elimination method. We also prove the relationship between
the number of flops of determinant calculations by using the formula of Schur and direct
determinant calculations using the Gaussian elimination method. Numerical experiments
are presented, and the conclusions of the theoretical analysis are well supported.
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1. Introduction

The determinant of a matrix is one
of the main contents in matrix theory or
linear algebra. It is very useful in several
areas of sciences and engineering; for
example, solving a system of linear
equations, finding the area and volume of
an object, and finding integrals of a
multivariable function. For a small size of
a matrix, the determinant can be
calculated by the Leibniz formula and
Laplace expansion. However, there is
some complexity to use the mentioned
methods to calculate the large size of a
matrix. In [1], the authors have listed
methods that can be used to find the
determinant of a matrix, for instance, the
LU  decomposition  method, QR
decomposition method and Cholesky
decomposition method. Moreover, they
also proposed a new method for
determinant calculation that is faster than
the existing method. However, it may
occur to us how we might compare the
performance of the procedure for
computing the determinant. One way to
evaluate the performance is counting a
floating- point operations per second
(flops).

Some studies have proposed a novel
way for computing the determinant of a
matrix with the idea of reducing the size
of a matrix; for example, Chio method [2],
Dodgson condensation [ 3] and Reduce
order method [4]. A block matrix is a
matrix that has been partitioned into
submatrices called blocks. Partitioning
will reduce the size of the original matrix
to small submatrices. We may consider

matrix partitions to be the idea of reducing
the size of a matrix. There are many
methods for finding a determinant of
block matrices. The formula of Schur, [5],
[ 6], is one of the popular methods to
evaluate the determinant of a block
matrix. It is an essential technique in
numerical analysis, statistics, and matrix
analysis. The general idea of this method
is to first partition a matrix into four
blocks where the first main diagonal is a
square and nonsingular matrix. Then, the
determinant of the original matrix is the
product of the determinants of
submatrices described in the formula of
Schur.  So, this method allows us to
calculate the determinant of small
matrices instead of computing a large size
of the original matrix. The formula of
Schur and the original method should give
the same results for calculating the
determinant. However, we may want to
know that which method has better
performance.

In this paper, we present the exact
formula of the number of flops to compute
the determinant based on the formula of
Schur. In determinant computation, we
also examine the size of the diagonal
submatrices in relation to the number of
flops. Moreover, we compare and analyze
the  performance of  determinant
calculations resulting in the formula of
Schur to the Gaussian elimination method.

The rest of the paper is organized as
follows: we first discuss related
definitions and theorems that we will use
throughout the paper in Section 2. In the
results section, we demonstrate the main
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theorems showing the formula of flops for
computing the determinant of a block
matrix by the formula of Schur, including
the comparison efficiency of the methods.
The summary of this work will be
discussed in the discussion and conclusion
sections.

2. Research Methodology

In this section, we focus on an mxm
block matrix, M , partitioned into four
submatrix blocks as follows

m=( B 1
\c D) @b

where A,B,C and D are block matrices

having  sizes nxn, nx(m-n),
(m=—n)xn,(m—n)x(m-n),

respectively.

Theorem 1 (Schur complement) [5], [6],
[7] If the matrix A is invertible, then
Schur complement of a block matrix (1) is
defined by

M/A=D-CA'B. 2)

In  particular, one of the
applications of the Schur complement is to
compute the determinant of block
matrices and allow us to derive useful
formulae for the factorization of a block
matrix [8], [9]. The Schur complement
was presented by Schur in 1918 [5].

Theorem 2 (Formula of Schur) [5], [7] If
the matrix A is invertible, the

determinant of a block matrix (1) is given
by

det(M) = det(A) det(D—CA™B). (3)

In the case of reading acquisition,
several properties and its applications of
the Schur complement are available in the
literature [5], [6], [7], [9] and references
therein.

Definition 3 ( Floating- point operations
per second (flops)) A flops is a norm to
measure the performance of a computer
operating calculation in a mathematical
floating point.

In other words, flops tells us the
number of operations to reach the
command in the program. The fewer
flops, the better computer performance.

The principle for counting flops
for an operator in mathematics;
summation, subtraction, multiplication
and division, is counting one operator to
be one flops. For example, 2+ 3 requires
1 flops, 4x(5+2)requires 2 flops. In a
matrix algebra, each operation requires
more flops than a single number because
one matrix has more than one entry to
operate. Table 1 shows examples of flops
involving vector and matrix operations.
More examples can be found in [10].

Define k isareal number, C isa
matrix of size nxn, Ais a matrix of size
mxn, B is a matrix of size nx p, uand
v are column vectors of size nand W is
a row vector of size m .
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Table 1 The number of flops for

computing some vector and matrix
operations
Product  Summation Flops

kv n - n

KA nm - nm

vu n n-1 2n-1

W nm - nm

Au nm m(n-1) 2nm-—m

AB  mnp mnp(n—1) 2mnp—mp

Theorem 4 (Flops of Matrix Inversion)
[11] If an invertible square matrix is of
sizemxm, then the required number of
operations to find its inverse by adapted
Gaussian elimination method is

3m® —m when m>1.

Theorem 5 (Flops of Determinant by
Gaussian  Elimination Method) [12]
Suppose that a square matrix M of size
mxm, defined in (1), whenm>1. The
required number of operations to find its
determinant by Gaussian elimination
method is

%(—6+5m—3m2 +4m3).

3. Results
In this section, we focus on an

mxm block matrix, M , defined in (1),
where m>1. We first analyze the
relationship between the partition of block
matrices and the number of flops in the
determinant calculation. Here we partition
the matrix M into four submatrix blocks
as given in (1). Without loss of generality,
we may assume that the submatrix block
Ais a square matrix whose size is nxn
wherel<n<m-1. Moreover, a flops of

calculating the determinants will be
counted based on the Gaussian
elimination method while we use the
conventional approach in Theorem 4 to
calculate the number of flops of the matrix
inversion. In this paper, the number of
flops will be studied in calculating the
determinant using and not using the
formula of Schur. In other words, we
apply the Gaussian elimination method to
calculate the determinant of the original
matrix, M , comparing to the determinant
of such matrix by using the formula of
Schur. Our results are shown as below:

In the following, we present a
computer algorithm of determinants
calculation by the formula of Schur.

Algorithm : Method of the formula of Schur
Stepl Insert order of matrix M and order
of the submatrix A defined in (1)

Create a loop for calculating Al by
Theorem 4

Create a loop for calculating A™'B
Create a loop for calculating
CA'B

Create a loop for calculating
D-CA'B

Create a loop for calculating
det(D —CA'B) and det(A) by
Theorem 5

Calculate the determinant det(M)

from the result in Step 6 by
Theorem 2

Step 2

Step 3
Step 4

Step 5

Step 6

Step 7

Theorem 6 Suppose a square matrix M
of sizemxm, is partitioned as a block
matrix (1). If the matrix A of size nxn is
invertible, then the number of flops of the
matrix M using the formula of Schur is
given by the function flop as
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EB for n=1
6
flop(n) =

—(-6+a+B)for2<n<m
6

where oo =18n° —6n and
B =5m—3m?*+4m°.

Proof: As A is an nxn invertible
matrix, the number of flops to calculate
the inverse of A

1 for n=1

©)

3n°—n for2<n<m
Next, to calculate the number of
flops for a matrix D—CA™B, it consists
of the following 3 steps: First, calculate
flops of A™B. Second, calculate flops of
C(A™B). Third, calculate flops of
D—-CA'B. Therefore, the number of
flops used to find the matrix D —CA™'B is

equal to

n(m-n)(2m-1). 4
Moreover, the flops count for computing
the determinant of the matrix D—-CA™'B

requires
%(—6+5(m—n)—3(m—n)2 +4(m—-n)?)
flops. (5)
Finally, the number of flops for the
multiplication  between det(A) and
det(D —CA™B) requires
1 flops (6)

Adding (3) - (6), a total of flops for
computing the determinant when the size
of the matrix A islxl

1(5m—3m2 +4m°),
6
otherwise it requires total of flops

%(—G—Gn +18n° +5m—3m? +4m3).

Proposition 7 Given M is a square
matrix whose submatrix block A has a
size of1x1, defined in equation (1). The
difference of the number of flops in
calculating the determinant of the matrix
M by using the Gaussian elimination
method and the formula of Schur is 1.

Proof: Let M be a square matrix of size
1x1, whose submatrix block A has a size
of 1x1. Without loss of generality, we
may assume thatm>1. By Theorem 5,
the number of flops for computing the
determinant of the matrix M by Gaussian

elimination method is %(—6+B). By

Theorem 6, the number of flops for
computing the determinant by formula of

p

Schur isg . Consider the difference of the

number of flops of both methods is 1, as
desired.

Theorem 6 gives the formula of
flops measurements for calculating the
determinant of a block matrix in the
formula of Schur. Because determinant
calculations involve basic algebraic
operations, the size of the matrix affects
the number of algebraic operations. The
following experiments will demonstrate
the number of flops and the partitioning of
a matrix using the formula of Schur.
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Table 2 The number of flops for
computing the determinant of a 7x7
matrix versus with several sizes of the
block matrix A

Sizes of the submatrix
The number of flops

block A
1 210
2 231
3 287
4 397
5 579
6 851

Table 2 shows the relationship
between the number of flops for
computing the determinant of a 7x7
matrix M and the partition of the matrix
M having four submatrix blocks. We
perform our experiment using the
submatrix block A of size from 1x1to
6x 6 and count the number of flops via the
formula in Theorem 6. This shows that
the operation counts increase dramatically
as the size of the submatrix block A
increases. In contrast to the number of
flops to calculate the determinant of the
matrix M directly based on the Gaussian
elimination method requires only 209
flops. Figure 1 also shows a semilogy plot
of the relationship between the size of the
submatrix and the number of flops for
calculating the determinant of matrices. In
this experiment, we fix the original matrix
M of several sizes 7x7 and 20x20
matrices.  The obtained results are
consistent with what we discussed earlier.
That is, the size of the submatrix block is
directly related to the number of flops in
the determinant calculation.

Moreover, we see that the number of
flops when the submatrix block A of size
1x1 is close to the number of flops when
calculating the determinant directly using
the Gaussian elimination method.

10°

The number of FLOPS
The number of FLOPS

10°
1 2 3 4 5 6 0 5 10 15 20

The size of submatrix block A The size of submatrix block A

Figure 1 The number of flops for
computing the determinant of matrices
versus with several sizes of the block
matrix A: Left, M isa 7 x7 matrix,
Right, M isa 20x 20 matrix.

That raises the question of the number of
flops will be when the matrix M is larger
and the submatrix block A has a size of
1x1. Further details are described in
Table 3.

Table 3 The number of flops for
computing the determinant of matrices
with different dimensions where the size
of the block matrix Ais 1x1

The number of flops

Sizes of i i
. Wlt.h _Gau§5|an With Formula
matrix M elimination
of Schur
method
2% 2 4 5
3x3 15 16
4x4 37 38
5x5 74 75
6x6 130 131
Tx7 203 210
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The number of flops

Sizes of i i
. Wlt.h Qau§5|an With Formula
matrix M elimination
of Schur
method

8x8 315 316
9x9 452 453
10x10 624 625

Table 3 shows the number of flops
for computing the determinant of the
matrix M of several sizes by using the
formula of Schur and by using the
Gaussian elimination method computing
the determinant directly. In the
experiment, we consider the matrix M
partitioned into four submatrix blocks
given in equation (1) of size from 1x1
where its submatrix block A has a size of
1x1. Figure 2 demonstrates a semilogy
plot of the comparison the number of flops
for calculating the determinant of matrices
between using and not using the formula
of Schur where the submatrix block A is
of sizelx1. In this experiment, we use the
original matrix M of several sizes from
2x21020x20.

From Table 3 and Figure 2, we see
that the number of flops of both methods
are similar to each other and have the same
effect in the same direction. In other
words, the number of flops between using
and not using the formula of Schur is
increasing when the size of the matrix M
is increasing, and the difference in the
number of flops for both methods is 1
regardless of the size of the matrix M ,
which confirms our result in Proposition
7. Moreover, if the size of the matrix
increases, then the basic manipulations
can be applied to the determinant of the

matrix. This results in an increase in the
number of flops in both methods, which is
shown in Table 3.

104

103,

102

The number of FLOPS

—o—Gaussian Elimination
—&—Formula of Schur

100 L L L L
5 10 15 20
The size of matrix M

Figure 2 The number of flops for
computing the determinant of matrices
with different dimensions where the size
of the block matrix A is 1x1 for both
methods.

4. Discussion

The Schur complement is a
method to find the determinant of a matrix
by using submatrix blocks. This method
should give a smaller number of flops than
the Gaussian elimination method of
calculating the determinant directly
without dividing the matrix into
submatrices. In the formula of Schur,
although calculating the determinant of
submatrices gives smaller numbers of
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flops than the original matrix, calculating
the inverse of the submatrices and the
multiplication ~ operations of  the
submatrices in the formula will produce
more flops. The result is that the
increasing number of flops compensates
for the decrease in the number of flops
from  computing  determinants  of
submatrices. That is why the number of
flops for both methods is not significantly
different.

In addition, any square matrices can
be broken into four submatrix blocks. In
this work, we consider submatrices in a
partitioned matrix having the main
diagonal blocks square matrices. These
submatrices identified in (1) can be of
various sizes depending on a partition of
the original matrix. We found that
calculating the determinant of matrices
using the formula of Schur gives the best
efficiency in terms of the number of flops
when the submatrix block A is of size 1.

To develop strategies to lessen the
amount of flops than the existing
approach, one can find an inversion matrix
that produces less flops than the technique
employed in this study. Another strategy
that we are researching is the pattern of
splitting the matrix into more than 4
blocks.

Remark. Moreover, there is another way
to compare the performance of the
methods by using the time execution.
However, we focus on the operation count
or flops for calculating the determinant of
a matrix. Since the time execution
depends on coding techniques, we may
omit this approach to compare the
performance of the calculation.

5. Conclusion

In this paper, the authors study a
method for determining the determinant
by the formula of Schur of a matrix
written as a 2x2 block matrix. We
provide the exact formula for the number
of operations (flops) for calculating the
determinant of a matrix by the formula of
Schur. This formula is used to determine
the efficiency of determinant calculations
on each partition of a block matrix. The
results show that the partitioning of matrix
blocks directly affects the number of flops
in the determinant calculation by using the
formula of Schur. In addition, the matrix
M with a submatrix on the first main-
diagonal blocks of size 1x1 vyields the
smallest number of flops relative to the
different sizes. The authors further
investigate the efficiency of the
determinant calculation of block matrices
with such properties when the initial
matrix size is larger. In this case, we
calculate the determinant of the matrix by
Gaussian elimination method and the
formula of Schur and compare the number
of flops for each method. The study found
that the number of flops obtained by the
formula of Schur whose the first sub-
matrix on the main diagonal is of sizelx1
is as good as the Gaussian elimination
method. All experiment results illustrated
confirm our theoretical results.
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