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Abstract  
 In this paper, we study a method for calculating the determinant of a matrix divided 

into four submatrices using the formula of Schur. The purpose of this study is to analyze 

and provide the formula for the number of flops for matrix determinants consisting of 

submatrices of different sizes.  The results are analyzed based on matrices with a 

submatrix on the first main diagonal of size1 1 . It shows that using the formula of Schur 

to calculate the determinant gives the number of flops close to calculating the determinant 

directly using the Gaussian elimination method.  We also prove the relationship between 

the number of flops of determinant calculations by using the formula of Schur and direct 

determinant calculations using the Gaussian elimination method. Numerical experiments 

are presented, and the conclusions of the theoretical analysis are well supported.  
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1. Introduction  

The determinant of a matrix is one 

of the main contents in matrix theory or 

linear algebra.  It is very useful in several 

areas of sciences and engineering; for 

example, solving a system of linear 

equations, finding the area and volume of 

an object, and finding integrals of a 

multivariable function. For a small size of 

a matrix, the determinant can be 

calculated by the Leibniz formula and 

Laplace expansion.  However, there is 

some complexity to use the mentioned 

methods to calculate the large size of a 

matrix.  In [ 1] , the authors have listed 

methods that can be used to find the 

determinant of a matrix, for instance, the 

LU decomposition method, QR 

decomposition method and Cholesky 

decomposition method.  Moreover, they 

also proposed a new method for 

determinant calculation that is faster than 

the existing method.  However, it may 

occur to us how we might compare the 

performance of the procedure for 

computing the determinant.  One way to 

evaluate the performance is counting a 

floating- point operations per second 

(flops). 

Some studies have proposed a novel 

way for computing the determinant of a 

matrix with the idea of reducing the size 

of a matrix; for example, Chio method [2], 

Dodgson condensation [ 3]  and Reduce 

order method [ 4] .  A block matrix is a 

matrix that has been partitioned into 

submatrices called blocks.  Partitioning 

will reduce the size of the original matrix 

to small submatrices.  We may consider 

matrix partitions to be the idea of reducing 

the size of a matrix.  There are many 

methods for finding a determinant of 

block matrices. The formula of Schur, [5], 

[ 6] , is one of the popular methods to 

evaluate the determinant of a block 

matrix.  It is an essential technique in 

numerical analysis, statistics, and matrix 

analysis.  The general idea of this method 

is to first partition a matrix into four 

blocks where the first main diagonal is a 

square and nonsingular matrix.  Then, the 

determinant of the original matrix is the 

product of the determinants of 

submatrices described in the formula of 

Schur.    So, this method allows us to 

calculate the determinant of small 

matrices instead of computing a large size 

of the original matrix.  The formula of 

Schur and the original method should give 

the same results for calculating the 

determinant.  However, we may want to 

know that which method has better 

performance. 

In this paper, we present the exact 

formula of the number of flops to compute 

the determinant based on the formula of 

Schur.  In determinant computation, we 

also examine the size of the diagonal 

submatrices in relation to the number of 

flops. Moreover, we compare and analyze 

the performance of determinant 

calculations resulting in the formula of 

Schur to the Gaussian elimination method. 

The rest of the paper is organized as 

follows:  we first discuss related 

definitions and theorems that we will use 

throughout the paper in Section 2.  In the 

results section, we demonstrate the main 
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theorems showing the formula of flops for 

computing the determinant of a block 

matrix by the formula of Schur, including 

the comparison efficiency of the methods. 

The summary of this work will be 

discussed in the discussion and conclusion 

sections. 

 

2. Research Methodology  

In this section, we focus on an m m  

block matrix, M , partitioned into four 

submatrix blocks as follows 

 

 
  
 

A B
M

C D
,  (1) 

 

where , ,A B C  and D  are block matrices 

having sizes n n , ( ) n m n ,  

( ) m n n , ( ) ( )  m n m n , 

respectively.  

 

Theorem 1 (Schur complement) [5], [6], 

[ 7]  If the matrix A   is invertible, then 

Schur complement of a block matrix (1) is 

defined by 

 

    1/  M A D CA B  . (2) 

 

 In particular, one of the 

applications of the Schur complement is to 

compute the determinant of block 

matrices and allow us to derive useful 

formulae for the factorization of a block 

matrix [8] , [ 9] .  The Schur complement 

was presented by Schur in 1918 [5]. 

 

Theorem 2 (Formula of Schur) [5], [7] If 

the matrix A  is invertible, the 

determinant of a block matrix (1) is given 

by 

 

     1det( ) det( )det( )M A D CA B  .  (3) 

 

In the case of reading acquisition, 

several properties and its applications of 

the Schur complement are available in the 

literature [5], [6], [7], [9] and references 

therein. 

 

Definition 3 ( Floating- point operations 

per second ( flops) )  A flops is a norm to 

measure the performance of a computer 

operating calculation in a mathematical 

floating point.  

 

In other words, flops tells us the 

number of operations to reach the 

command in the program.  The fewer 

flops, the better computer performance. 

The principle for counting flops 

for an operator in mathematics; 

summation, subtraction, multiplication 

and division, is counting one operator to 

be one flops. For example, 2 3  requires 

1 flops, 4 (5 2)  requires 2 flops.  In a 

matrix algebra, each operation requires 

more flops than a single number because 

one matrix has more than one entry to 

operate. Table 1 shows examples of flops 

involving vector and matrix operations. 

More examples can be found in [10]. 

Define k  is a real number, C  is a 

matrix of size n n , A is a matrix of size 

m n , B  is a matrix of size n p , u and 

v  are column vectors of size n and w  is 

a row vector of size m . 
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Table 1 The number of flops for 

computing some vector and matrix 

operations 

 Product Summation Flops 

kv  n  - n  

kA  nm  - nm  

Tv u  n  1n  2 1n  

vw  nm  - nm  

Au  nm  ( 1)m n  2 nm m  

AB  mnp  ( 1)mnp n  2 mnp mp  

 

Theorem 4 ( Flops of Matrix Inversion) 

[ 11]  If an invertible square matrix is of 

size m m , then the required number of 

operations to find its inverse by adapted 

Gaussian elimination method is  
33 m m  when 1m . 

 

Theorem 5 (Flops of Determinant by 

Gaussian Elimination Method) [12] 

Suppose that a square matrix M of size
m m , defined in (1), when 1m . The 

required number of operations to find its 

determinant by Gaussian elimination 

method is 

 2 31
6 5 3 4

6
   m m m . 

 

3. Results 
In this section, we focus on an 

m m  block matrix, M , defined in ( 1) , 

where 1m .  We first analyze the 

relationship between the partition of block 

matrices and the number of flops in the 

determinant calculation. Here we partition 

the matrix M  into four submatrix blocks 

as given in (1). Without loss of generality, 

we may assume that the submatrix block 

A is a square matrix whose size is n n

where1 1  n m .  Moreover, a flops of 

calculating the determinants will be 

counted based on the Gaussian 

elimination method while we use the 

conventional approach in Theorem 4 to 

calculate the number of flops of the matrix 

inversion.  In this paper, the number of 

flops will be studied in calculating the 

determinant using and not using the 

formula of Schur.  In other words, we 

apply the Gaussian elimination method to 

calculate the determinant of the original 

matrix, M , comparing to the determinant 

of such matrix by using the formula of 

Schur. Our results are shown as below:  

 

In the following, we present a 

computer algorithm of determinants 

calculation by the formula of Schur. 

 

Algorithm : Method of the formula of Schur 

Step 1 Insert order of matrix M and order 

of the submatrix A defined in (1) 

Step 2 Create a loop for calculating 
1A by 

Theorem 4 

Step 3 Create a loop for calculating 
1A B  

Step 4 Create a loop for calculating 
1CA B  

Step 5 Create a loop for calculating 
1D CA B  

Step 6 Create a loop for calculating 
1det( )D CA B and det( )A by 

Theorem 5 

Step 7 Calculate the determinant det( )M  

from the result in Step 6 by 

Theorem 2 

 
Theorem 6 Suppose a square matrix M  

of size m m , is partitioned as a block 

matrix (1). If the matrix A  of size n n  is 

invertible, then the number of flops of the 

matrix M  using the formula of Schur is 

given by the function flop as  
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 

1 1for
6

flop( )
1

6 2for
6

n

n

n m

 
 
     


where 318 6n n   and 
2 35 3 4   m m m . 

 

Proof:  As A  is an n n  invertible 

matrix, the number of flops to calculate 

the inverse of A  

        

3

1 1for

2     for3

n

n mn n




  

             (3) 

 

 Next, to calculate the number of 

flops for a matrix 1D CA B , it consists 

of the following 3 steps:   First, calculate 

flops of 1A B .  Second, calculate flops of
1( )C A B .  Third, calculate flops of

1D CA B .  Therefore, the number of 

flops used to find the matrix 1D CA B is 

equal to 

      ( )(2 1) n m n m .                  (4) 

Moreover, the flops count for computing 

the determinant of the matrix 1D CA B

requires 

 2 31
6 5( ) 3( ) 4( )

6
      m n m n m n

flops.                                                       (5) 

Finally, the number of flops for the 

multiplication between det( )A  and

1det( )D CA B  requires       

                    1 flops                        (6) 

Adding (3) - (6), a total of flops for 

computing the determinant when the size 

of the matrix A  is1 1   

 2 31
5 3 4

6
 m m m , 

otherwise it requires total of flops  

 3 2 31
6 6 18 5 3 4

6
     n n m m m . 

 

Proposition 7 Given M  is a square 

matrix whose submatrix block A  has a 

size of1 1 , defined in equation ( 1) .  The 

difference of the number of flops in 

calculating the determinant of the matrix 

M  by using the Gaussian elimination 

method and the formula of Schur is 1. 

 

Proof:  Let M  be a square matrix of size

1 1 , whose submatrix block A  has a size 

of 1 1 .  Without loss of generality, we 

may assume that 1m .  By Theorem 5, 

the number of flops for computing the 

determinant of the matrix M  by Gaussian 

elimination method is  
1

6
6
  .  By 

Theorem 6, the number of flops for 

computing the determinant by formula of 

Schur is
6


. Consider the difference of the 

number of flops of both methods is 1, as 

desired. 

 

Theorem 6 gives the formula of 

flops measurements for calculating the 

determinant of a block matrix in the 

formula of Schur.  Because determinant 

calculations involve basic algebraic 

operations, the size of the matrix affects 

the number of algebraic operations.  The 

following experiments will demonstrate 

the number of flops and the partitioning of 

a matrix using the formula of Schur. 
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Table 2 The number of flops for 

computing the determinant of a 7 7

matrix versus with several sizes of the 

block matrix A  

Sizes of the submatrix 

block A  
The number of flops 

1 210 

2 231 

3 287 

4 397 

5 579 

6 851 

 
Table 2 shows the relationship 

between the number of flops for 

computing the determinant of a 7 7  

matrix M  and the partition of the matrix 

M  having four submatrix blocks.  We 

perform our experiment using the 

submatrix block A  of size from 1 1 to 

6 6 and count the number of flops via the 

formula in Theorem 6.  This shows that 

the operation counts increase dramatically 

as the size of the submatrix block A  

increases.  In contrast to the number of 

flops to calculate the determinant of the 

matrix M  directly based on the Gaussian 

elimination method requires only 209 

flops. Figure 1 also shows a semilogy plot 

of the relationship between the size of the 

submatrix and the number of flops for 

calculating the determinant of matrices. In 

this experiment, we fix the original matrix 

M  of several sizes 7 7 and 20 20

matrices.  The obtained results are 

consistent with what we discussed earlier. 

That is, the size of the submatrix block is 

directly related to the number of flops in 

the determinant calculation. 

 Moreover, we see that the number of 

flops when the submatrix block A  of size 

1 1  is close to the number of flops when 

calculating the determinant directly using 

the Gaussian elimination method.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1   The number of flops for 

computing the determinant of matrices 

versus with several sizes of the block 

matrix A : Left, M  is a 7 7 matrix, 

Right, M  is a 20 20  matrix. 

 

That raises the question of the number of 

flops will be when the matrix M  is larger 

and the submatrix block A  has a size of

1 1 .  Further details are described in 

Table 3. 
 

Table 3 The number of flops for 

computing the determinant of matrices 

with different dimensions where the size 

of the block matrix A is 1 1  

Sizes of 

matrix M  

The number of flops 

With Gaussian 

elimination 

method 

With Formula 

of Schur 

2 2  4 5 

3 3  15 16 

4 4  37 38 

5 5  74 75 

6 6  130 131 

7 7  203 210 
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Sizes of 

matrix M  

The number of flops 

With Gaussian 

elimination 

method 

With Formula 

of Schur 

8 8  315 316 

9 9  452 453 

10 10  624 625 

 

Table 3 shows the number of flops 

for computing the determinant of the 

matrix M  of several sizes by using the 

formula of Schur and by using the 

Gaussian elimination method computing 

the determinant directly.  In the 

experiment, we consider the matrix M  

partitioned into four submatrix blocks 

given in equation ( 1)  of size from 1 1  

where its submatrix block A has a size of

1 1 .  Figure 2 demonstrates a semilogy 

plot of the comparison the number of flops 

for calculating the determinant of matrices 

between using and not using the formula 

of Schur where the submatrix block A  is 

of size1 1 . In this experiment, we use the 

original matrix M  of several sizes from 

2 2 to 20 20 .  

From Table 3 and Figure 2, we see 

that the number of flops of both methods 

are similar to each other and have the same 

effect in the same direction.  In other 

words, the number of flops between using 

and not using the formula of Schur is 

increasing when the size of the matrix M

is increasing, and the difference in the 

number of flops for both methods is 1 

regardless of the size of the matrix M , 

which confirms our result in Proposition 

7.  Moreover, if the size of the matrix 

increases, then the basic manipulations 

can be applied to the determinant of the 

matrix.  This results in an increase in the 

number of flops in both methods, which is 

shown in Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 The number of flops for 

computing the determinant of matrices 

with different dimensions where the size 

of the block matrix A  is 1 1 for both 

methods. 
 

    

 

4. Discussion  

 The Schur complement is a 

method to find the determinant of a matrix 

by using submatrix blocks.  This method 

should give a smaller number of flops than 

the Gaussian elimination method of 

calculating the determinant directly 

without dividing the matrix into 

submatrices.  In the formula of Schur, 

although calculating the determinant of 

submatrices gives smaller numbers of 
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flops than the original matrix, calculating 

the inverse of the submatrices and the 

multiplication operations of the 

submatrices in the formula will produce 

more flops.  The result is that the 

increasing number of flops compensates 

for the decrease in the number of flops 

from computing determinants of 

submatrices.  That is why the number of 

flops for both methods is not significantly 

different. 

In addition, any square matrices can 

be broken into four submatrix blocks.  In 

this work, we consider submatrices in a 

partitioned matrix having the main 

diagonal blocks square matrices.  These 

submatrices identified in ( 1)  can be of 

various sizes depending on a partition of 

the original matrix.  We found that 

calculating the determinant of matrices 

using the formula of Schur gives the best 

efficiency in terms of the number of flops 

when the submatrix block A  is of size 1. 

To develop strategies to lessen the 

amount of flops than the existing 

approach, one can find an inversion matrix 

that produces less flops than the technique 

employed in this study.  Another strategy 

that we are researching is the pattern of 

splitting the matrix into more than 4 

blocks. 
 

Remark.  Moreover, there is another way 

to compare the performance of the 

methods by using the time execution. 

However, we focus on the operation count 

or flops for calculating the determinant of 

a matrix.  Since the time execution 

depends on coding techniques, we may 

omit this approach to compare the 

performance of the calculation.  

 

5. Conclusion  

In this paper, the authors study a 

method for determining the determinant 

by the formula of Schur of a matrix 

written as a 2 2  block matrix.  We 

provide the exact formula for the number 

of operations ( flops)  for calculating the 

determinant of a matrix by the formula of 

Schur.  This formula is used to determine 

the efficiency of determinant calculations 

on each partition of a block matrix.  The 

results show that the partitioning of matrix 

blocks directly affects the number of flops 

in the determinant calculation by using the 

formula of Schur.  In addition, the matrix 

M  with a submatrix on the first main-

diagonal blocks of size 1 1  yields the 

smallest number of flops relative to the 

different sizes.  The authors further 

investigate the efficiency of the 

determinant calculation of block matrices 

with such properties when the initial 

matrix size is larger.  In this case, we 

calculate the determinant of the matrix by 

Gaussian elimination method and the 

formula of Schur and compare the number 

of flops for each method. The study found 

that the number of flops obtained by the 

formula of Schur whose the first sub-

matrix on the main diagonal is of size1 1

is as good as the Gaussian elimination 

method. All experiment results illustrated 

confirm our theoretical results.  
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