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ABSTRACT: Geocell is one of the recent forms of reinforcing material that is increasingly used in applications in flexible pavements. In the 
present work,  the benefit provided by geocell- reinforcement to the flexible pavement in terms of settlement as well as fatigue and rutting 
strains reductions are analysed. A simple composite model for geocell-reinforced soil is proposed to represent the three dimensional 
structure. To investigate the behaviour of geocell reinforcement in the flexible pavement, a series of numerical analyses are carried out to 
understand the effect of secant modulus of geocell material, aspect ratio, thickness of geocell-reinforced layer, and type of subgrade material 
and the results are presented in this paper. The results of the analysis are useful in development of guidelines for the design of flexible 
pavements in using geocells. 
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1. INTRODUCTION 

In general, in many countries, low volume roads and access roads to 
various resource industries lead to significant economic 
development. In some places in South East Asia and India, typically 
the subgrades of these types of roads are soft to medium dense silty 
and clayey soils. Construction of unpaved road section with poor 
subgrade CBR values is very difficult and leads to insufficient 
structural stability. The structural strength can be improved by 
geosynthetic and geocell reinforcements. Geosynthetic 
reinforcement is an established technique of subgrade improvement 
and base reinforcement for over 40 years. Geocells are three-
dimensional honeycombed cellular structures and provide 
confinement to compacted infill soil. Their confinement reduces the 
lateral movement of the soil particles and forms a stiffened mattress 
or slab to distribute applied loads over a wider area. 

Development of geocell began with the U.S. Army Corps of 
Engineers in 1970s to confine the cohesionless soil for the 
construction of tactical bridge approach roads over soft ground 
(Webster and Watkins, 1977). Considerable work was carried out to 
understand the behaviour of geocell reinforced soil during the last 
three decades. These works were based on experiments and 
numerical simulations; and a few of them are by Mitchell et al. 
(1979), Bush et al. (1990), Bathurst and Karpurapu (1993), Cowland 
and Wong (1993), Rajagopal et al. (1999), Madhavi Latha et 
al.(2009), Han et.al (2008), Sanat et al. (2010) and Yang et 
al.(2010). These studies on geocell are based on results from triaxial 
compression tests, direct shear test, plate load tests, laboratory 
model tests, and field tests. Most of the published research focused 
on planar reinforcement and has resulted in several design methods 
for geotextile or geogrid-reinforced unpaved roads. Only limited 
research has been done to develop design methods for the geocell 
reinforcement. Yang (2010) proposed a mechanistic-empirical 
design model for geocell-reinforced unpaved roads if subgrade and 
bases are stable. Pokharel (2010) obtained a simplified design 
method for geocell-reinforced unpaved roads if subgrade is unstable. 
Sivakumar Babu and Pawan kumar (2012) proposed a design 
procedure for geocell reinforced flexible pavement sections 
considering the equivalent elastic modulus concept for geocell 
composite layers.   

A conventional flexible pavement system consists of three layers 
namely asphalt concrete (AC), granular base course (base), and 
subgrade layer as shown in Figure 1. AC is the top most layer and 
the subgrade is the existing compacted strata in the flexible 
pavement system. The selection of the type, properties and thickness 
of the base and AC layer is based on the properties of subgrade and 
traffic loading condition.   

The main failure criteria for the design of flexible pavement are 
fatigue cracking in AC layer and rutting in the subgrade layer as 
well as surface settlement mainly due to base and subgrade layer.  

The critical parameters responsible for these modes of failure are 
tensile strain below the AC layer and compressive strain above the 
subgrade layer just below the centreline of load as shown in Figure 1 
for fatigue and rutting respectively. 

 

 
 

Figure 1 Different layers of flexible pavement 
 

Indian Roads Congress (IRC) adopts mechanistic empirical 
pavement design procedures presented in IRC: 37-2001. Fatigue 
criterion is defined in terms of number of cumulative load 
repetitions and maximum tensile strain generated below AC layer to 
keep the fatigue cracking within permissible limit. It is also defined 
in terms of number of cumulative standard axle to produce 20% 
cracked surface area. Rutting is defined in terms of the number of 
cumulative standard axle to produce rutting of 20mm. εt is 
maximum tensile strain at the bottom of the AC layer; εc is vertical 
subgrade strain and H1 & H2 are thickness of AC layer & base layer 
respectively. In this study, it is proposed to examine the effect of 
geocell in influencing the fatigue and rutting strains as well as 
surface displacements. 
 
2. PARAMETERS FOR GEOCELL CONFINED SOIL 

2.1 Young’s modulus for geocell confined soil 

The Young’s modulus for soil in the absence of geocell is given by 

௨ܧ ൌ
ଷሺଵିଶజሻሺଵାబሻ


 (1a)                                                                      

Eu is the elastic modulus of unreinforced soil; κ is the recompression 
index of the soil, ν is the poisson’s ratio, e0 is the initial void ratio 
and p is the mean effective stress.  

As per the hoop tension theory, there is an extra confining stress 
get generated in the presence of geocell. This increment is given as  

Δߪଷ ൌ
ଶெ


ቀ
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ଵିఌ
ቁ                                                                       (1b) 
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      On inclusion of the extra confining stress the Young’s modulus 
for geocell confined soil layer is derived in the following steps 

ܧ ൌ
ଷሺଵିଶజሻሺଵାబሻ


ቀ
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ቁ                                                 (1c) 
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So the Young’s modulus for geocell confined soil layer is obtained 
as 

ܧ ൌ ௨ܧ ቀ1 
ଶ

ଷ

Δఙయ


ቁ                                                                       (2) 
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ସ

ଷ
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ቁቇ                                                       (3)                          

Above equation is the general expression for the Young’s modulus 
of geocell reinforced soil layer given as Eg, M is the secant modulus 
of the geocell at an axial strain, ε.  

Assuming axial strain generated in geocell is 2.5%. So the above 
expression becomes 

ܧ ൌ ௨ܧ ቀ1 
ଵ

ହ଼

ெ′


ቁ                                                                      (4) 

Here ܯ′ is the secant modulus of the geocell at 2.5% axial strain;              
D is the initial diameter of geocell. 
 
2.2 Shear strength parameters for geocell confined soil 

The extra cohesion induced in the soil is related to the increase in 
confining stress due to the presence of geocell, this is given by 
Bathurst and Karpurapu (1993) as 
 

ܥ ൌ
ఙయ

ଶ ඥܭ                  (5) 

Kp is the coefficient of passive earth pressure and is a function of the 
friction angle of the infill soil which is normally the base material. 
The angle of internal friction for geocell confined soil layer remains 
same as for unreinforced soil as concluded by Rajagopal et al. 
(1999). Knowing the equivalent Young’s modulus and friction angle 
of the base soil and the corresponding cohesion, the effect of geocell 
in a pavement section can be evaluated based on mechanistic 
empirical design of pavements. 
 
2.3 Model Considerations 

A two dimensional (2D) axisymmetric analysis is adopted in this 
study and analysis is performed using FLAC version 5. (Fast 
Lagrangian Analysis of Continua). Soil is modelled as Mohr 
Coulomb model) and the asphalt concrete is modelled as an elastic 
model. The geocell-reinforced layer is also modelled using Mohr 
Coulomb model with the equivalent values of Young’s modulus and 
shear strength properties calculated from composite model from 
equations given in the previous sections.       
 
2.4 Load Considerations 

It is assumed that load of one set of dual tires is transferred to the 
pavement surface through a contact pressure of a single tire and the 
load for the single tire is 40 kN. The tire contact pressure on the 
pavement is considered to be equal to the tire pressure, which is 
taken as 570 kPa. Consideration of the shape of the load surface as 
infinite long strip, plain strain model, leads to an overestimation of 
the results and as a circular surface leads to the realistic desired 

response. So the pavement is modelled as axisymmetric model and a 
circular surface loading of 570kPa with 150mm radius, this is 
equivalent to 40.3 kN load, is adopted for the present numerical 
analysis. 
 
2.5     Boundary Conditions 

Conventional kinematic boundary conditions are adopted, i.e., all 
the vertical boundaries are fixed in horizontal direction and free to 
move vertical direction of the model and the movement of the 
bottom of the model is fixed in both horizontal and vertical 
directions. The properties of the materials adopted in the analysis 
are given in Table 1.The thickness of the sand layer is chosen based 
on IRC guidelines. 
 

Table 1 Properties of Asphalt Concrete, Base and Subgrade 

Layer 
Asphalt-
concrete 

Base Subgrade 

Material 
Asphalt-
concrete 

Sand Soft soil 

Model Elastic Mohr Coulomb Mohr Coulomb 

Elastic 
Modulus  

M Pa 
4134.69 75 8.25 

Poisson’s 
ratio 

0.3 0.35 0.35 

Unit 
weight 
kN/m3 

24 18 17 

Cohesion 
kPa 

- 8 20 

Friction 
angle ° 

- 36 0 

Dilation 
angle ° 

- 0 0 

Thickness 
mm 

50 250 2700 

 
Two different locations of the geocell are adopted in the present 
study to understand the effect of the location of geocell on the 
behaviour of the pavement. In one case, the geocell is placed below 
AC layer and in the second case it is placed below base layer, as 
shown in Figure 2. 
 

 

Figure 2 Locations of the geocell: a) unreinforced;                                 
b) below base layer; c) below AC layer 

 
3.0 ANALYSIS RESULTS 

The vertical surface deflection is plotted against the distance from 
the centre of load. In addition, the fatigue strain and rutting strain 
are evaluated at the bottom of AC layer and top of subgrade layer 
respectively below the centre line of the load. The effect of secant 
modulus of geocell material, effect of the thickness of geocell-
reinforced layer, effect of aspect ratio and effect of type of subgrade 
are studied in the parametric study. The Young’s modulus and shear 
strength parameters for geocell-reinforced soil layer corresponding 
to different sets of values of secant modulus, pocket size, thickness 
of geocell-reinforced layer and infill soil properties for the 
parametric study are calculated by using the composite model. The 
results evaluated for different models are shown and discussed in the 
following subsections. 
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3.4 Effect of aspect ratio 

Different values of aspect ratio are achieved by varying the pocket 
size (i.e. diameter) of geocell for geocell-reinforced layer provided 
the height of geocell layer constant as 200 mm. The secant modulus 
of geocell is same for all the above numerical analysis and taken as 
500 kN/m. The change in pocket size in geocell-reinforced layer is 
simulated in the numerical analysis by using the different values of 
elastic modulus and cohesion and is calculated using the composite 
model. The surface settlement-distance profiles from the centre line 
are presented in Figure 6. 

It can be noted that surface settlement reduces as the aspect ratio 
increases, but this is insignificant for higher value of aspect ratio.  
The settlement values for aspect ratios 1.5 and 2 are same and this is 
comparable to the settlement for aspect ratio 1. This suggests that 
the aspect ratio 1 can be considered as the optimal value for the 
geocell layer. Table 4 shows that the reduction in fatigue and rutting 
strains increases with the increase in aspect ratio of the geocell 
material. But the reduction in rutting strain is almost same for aspect 
ratio 1, 1.5 and 2.0. Hence lower aspect ratios are not preferable and 
optimum ratio of 1 is desirable for better performance of pavement. 

 

 

Figure 6 Surface settlement response for different values of aspect 
ratio of geocells 

 
Table 4 Fatigue and rutting strains 

Initial 
diameter 
of geocell, 
D (mm) 

Height of 
geocell 
layer, 

h (mm) 

Aspect  
ratio of 
geocell 
(h/D) 

Fatigue 
࢚ࢿ

࢞ࢇ

ൈ ି 

Rutting
ࢉࢿ

࢞ࢇ

ൈ ି 

N/A N/A N/A 1610 -6850 

800 200 0.25 1120 -6060 

400 200 0.5 860 -4850 

200 200 1.0 540 -3370 

133 200 1.5 300 -3250 

100 200 2.0 160 -2890 

 
3.5 Effect of type of subgrade 

The Young’s modulus and shear strength parameters of the subgrade 
increased to twice (i.e. E=16.5 MPa and cu =40 kPa) the present 
value to understand the behaviour of the pavement for relatively 
stiffer subgrade. The surface settlement-distance from the centre line 
curves from numerical analysis are presented in Figure 7.  

The results show that the settlement of both reinforced and 
unreinforced pavement, for stiff subgrade, decreased and this is 
expected. It is also noticed that the settlement for geocell-reinforced 
sand layer over soft subgrade is lower that the settlement for 
unreinforced sand layer over relatively stiff subgrade. This means 
the geocell-reinforced flexible pavement with soft subgrade can 
perform better than the unreinforced flexible pavement with stiff 
subgrade.     

 

Figure 7 Surface settlement response for different type of subgrade 
 
4. CONCLUSIONS 

The following conclusions are made based on the work reported in 
this study. An analytical equation is suggested for the composite 
modulus of the geocell confined soil. Using the composite modulus 
values, a parametric study is conducted to examine the influence of 
secant modulus of geocell material, effect of the thickness of 
geocell-reinforced layer, effect of aspect ratio and effect of type of 
subgrade using numerical analysis. The results show that provision 
of geocell in the granular sub base helps in pavement performance 
expressed in terms of settlements, fatigue and rutting strains. 
Thickness of the geocell confined soil as well as the aspect ratio of 
geocell, type of the soil play a significant role in pavement 
performance.  
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