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ABSTRACT:  Ever increasing volume, tonnage, and speeds on rail systems are stressing rail substructure to levels never before evaluated or 
considered in depth. To improve maintenance techniques for problematic railway elements (e.g., bolted rail joints, intersections, bridge 
approaches), an in situ method involving ballast layer reinforcement with polyurethane is proposed. Ballast is a crucial material for structural 
support of the rail tracks. The structural integrity of highly fouled ballast (i.e., containing fine particles) can be compromised leading to track 
instability and ultimately train derailments. An application using polyurethane void filling and particle bonding technology has been 
developed and has the potential to mitigate impacts of ballast fouling, enhance rail freight capacity, and improve track-substructure 
maintenance efficiency. The purpose of this paper is to present the mechanical properties of Polyurethane-Stabilized Ballast (PSB) (e.g., 
compressive and flexural response), compare these properties to other materials commonly used in transportation infrastructure (e.g., natural 
aggregates, cement-stabilized soil), and address the suitability and compliance of PSB for use in track infrastructure. PSB has mechanical 
properties similar to cement-stabilized soil (i.e., displays flexural strength), but has much greater compressive strength than ballast, which is 
critical for stabilization of track substructure. Ease of injection and the negligible curing period for PSB makes it an attractive option for 
railway maintenance, especially for time-sensitive maintenance activities, such as intersections and bridge approaches. 
 
 
1. INTRODUCTION 

Rigid-polyurethane foam (RPF) applied to granular materials, after 
injection and solidification, improves the strength by occupying the 
pore space and cementing the particles together. Due to the 
expansive properties of the foam, it has historically been applied in 
foundation engineering to support footings and slabs. Due to these 
advantages, there have been efforts to expand the applicability of 
RPF to other infrastructure settings, including the rail industry. The 
necessity for reinforcing railway substructure with strategic RPF 
injections include: 1) reducing particle breakage and fines intrusion, 
thus mitigating fouling generation, 2) correcting already fouled 
ballast substructure and arresting permanent deformation in the 
track, 3) improving substructure performance and preserving track 
geometry thereby enhancing rail-freight capacity and rider-comfort, 
and 4) providing a cost- and time-effective maintenance tool to 
supplement rail maintenance capabilities. 

For a railway embankment, the superstructure (i.e., rails, ties, 
and fastening system) serves as a rigid structure that distributes the 
loads over a large surface area to the substructure (i.e., ballast, 
subballast, and subgrade) (Huang 2004). The superstructure 
typically has much longer lifecycle than the substructure; however, 
the superstructure lifecycle is dependent upon substructure 
conditions and substructure maintenance intervals (Ebrahimi et al. 
2012). Therefore, when considering polyurethane-stabilized ballast 
(PSB) for use in constructing a stabilized substructure, the 
mechanical behavior relative to other materials used in 
transportation infrastructure needs to be evaluated. 

Polyurethane interacts differently with the injected medium 
depending on the nature of the medium. For instance, Buzzi et al. 
(2012) injected RPF into expansive clay and found that the injection 
created hydrofractures while forming into dendritic paths of foam. 
Keene (2012) injected RPF into rail ballast (which has a more 
favorable void structure for RPF injection) and formed a solid, 
uniform geocomposite. The pore space in compacted ballast 
conveniently allows injection of polyurethane, allowing space for 
RPF expansion, and for target RPF volumes and densities to be met. 
Keene (2012) proposed a set of criteria by which the mechanical 

properties of the ballast layer were improved with polyurethane 
injections. These criteria include: 1) extent to which the void space 
of ballast was filled by the RPF, 2) strength and degree of bonding 
that occurred between the ballast particles and RPF, and 3) limiting 
volumetric expansion of ballast during RPF injection. Many 
methods are available for the mechanical analysis of polymeric 
cellular foams or for engineering properties of granular materials; 
however, little is understood about the behavior of the combination 
of an expanding polymer with ballast and effects on the mechanical 
properties within track-substructure. 

The objective during field injection of RPF into the ballast layer 
is to strengthen the areas that transmit load down into the subballast 
and subgrade layers. Moisture is prevented from infiltrating the 
stabilized areas while drainage of surrounding untreated ballast is 
left uninhibited.  Ballast layer prototypes (i.e., boxes filled with 
0.45-m-deep compacted ballast) were also created in Keene (2012), 
where RPF was strategically injected into an unconfined layer of 
ballast. In that physical model, methods for targeting the dimensions 
of the stabilized areas were developed. 

In this paper, specimen fabrication and experimental methods 
for compressive and flexural testing and analysis of polyurethane-
stabilized ballast (PSB) are presented. Moduli and strength of each 
of the constituents of PSB (i.e., ballast and RPF) are compared to 
each other and to the PSB composite material. The mechanical 
properties of PSB and PSB constituents (RFP and ballast) are 
compared to other materials such as cement-stabilized materials 
(CSM), natural base-course aggregates, and concrete for a broader 
perspective. Compressive and flexural strength of PSB and RPF are 
compared to CSM (at different cement-binder contents) to show the 
similarity in relative strengths of these materials. Resilient modulus 
of PSB, ballast, MN DOT Class 5 aggregate, and CSM are 
compared to show the elastic behavior of the materials under cyclic 
loading conditions. Flexural strength of CSM and PSB are compared 
to demonstrate increase in strength with increase in binder content 
(i.e., percent cement and percent RPF by weight). The strength-to-
bulk-density ratio (σ/ρ) of PSB, RPF, ballast, CSM, and concrete are 
compared to show how each material possesses σ/ρ properties that 
can be favorable depending on the application. The purpose of this 
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Figure 4 Triaxial chamber used for testing specimens with nominal 
dimensions of 254-mm diameter x 506-mm height (left) and PSB 

cylindrical specimen (right) 
 
4. RESULTS 

4.1 Mechanical Properties of PSB and Infrastructure 
Materials 

4.1.1 Mechanical Properties of PSB Constituents 

RPF strengths are similar in each mode of testing, as seen in             
Figure 5. When comparing flexural test results, when the average 
(AVG) RPF density, ρRPF, is 200 kg/m3, the AVG PSB flexural 
modulus (274 MPa) is greater than the AVG RPF flexural modulus 
(124 MPa); however, the AVG PSB flexural strength of 938 kPa is 
less than the AVG RPF flexural strength 3,652 kPa as shown in 
Figure 5. Greater flexural stiffness of PSB compared to RPF can be 
attributed to the stiffness of the ballast particles. The lower flexural 
strength of PSB relative to RPF can be attributed to weakness in the 
bonding interface between the ballast particles and RPF. As 
described in Akçaoğlu et al. (2003), the surface texture and the 
bonding area between cement binder and aggregates are critical to 
concrete strength and stiffness. Akçaoğlu et al. (2003) defined this 
bonding area as the interfacial transition zone (ITZ) and described 
this zone as the weakest component in concrete mechanical 
behavior. When focusing on an ITZ for PSB, the strength of the 
composite can be attributed to two likely factors: 1) RPF-ballast 
bond interface strength and 2) PSB composite/matrix strength based 
on cell orientation/geometry within the ballast pore space and 
around ballast particles. The flexural strength and tensile strength of 
RPF are greater than the flexural strength of PSB; consequently, the 
ITZ for PSB likely controls flexural strength. The cellular structure 
of RPF (as characterized by closed-cell content, cell-wall thickness, 
cell elongation, and cell aperture) likely plays a large role in RPF 
strength and elastic modulus. 

In Salim (2004), the compressive strength of ballast particles 
was used for determining the characteristic tensile strength of the 
ballast. Salim (2004) cites Jaeger (1967) for explaining that the 
fracture of rock grains occurs due to tensile failure and that fracture 
strength in tension can be measured indirectly through compression 
tests conducted on rock particles using “diametral compression 
between flat platens.” Trends establishing RPF tensile strength 
versus density (Keene 2012) indicate that at a characteristic RPF 
density of 200 kg/m3, the corresponding tensile strength is 3,912 
kPa, which is far less than the characteristic particle tensile strength 
(5,400 kPa to 22,300 kPa) of the granite ballast used in this study as 
reported by Ebrahimi et al. (2012). Since the characteristic tensile 
strength of ballast is higher than the tensile strength of RPF, RPF 
may govern the rupture strength of PSB in monotonic flexural 
loading tests. However, failure likely occurs at the ITZ since the 

AVG PSB flexural microstrain (με) at rupture (8.94 με) is less than 
RPF (ρRPF = 200 kg/m3) flexural microstrain at rupture (28.7 με). 

Characteristic tensile strength of ballast particles is the only 
instance where ballast would contribute to the overall strength of 
PSB instead of RPF. Higher tensile strength of ballast particles (i.e., 
higher stiffness) must also contribute to the flexural stiffness of PSB 
being higher than the compressive stiffness of PSB. However, it is 
likely that in fatigue testing conducted in Keene (2012), fatigue of 
ballast particles contributed to fatigue failure since fracture of 
ballast particles was observed after the fatigue testing. Therefore, 
ballast particles may fatigue under flexural/tensile loading before 
RPF fatigue occurs. 

 

 
Figure 5 Shown are the mechanical strengths (a) and moduli (b)                 

for PSB and PSB constituent materials. Representative mechanical 
properties of RPF are at a 200 kg/m3-density. Representative ballast 
compressive modulus and strength are at a 100-kPa confining stress 
(Ebrahimi et al. 2012). Error bars indicate maximum and minimum 
mechanical property values (i.e., range) for materials with varying 

confining stresses (ballast) or densities (RPF and PSB). 
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Similar to the PSB constituent flexural strengths, the RPF                  
(ρRPF = 200 kg/m3) compressive strength (3,752 kPa) is higher than 
the AVG PSB compressive strength (2,607 kPa). Ballast 
compressive strength at 100 kPa confining pressure is 594 kPa, 
which is 77% less than PSB. A limitation in PSB compressive 
strength relative to RPF compressive strength is likely due to limits 
in bonding strength (i.e., weakness of the ITZ), as was identified for 
PSB flexural strength. However, an increase in PSB compressive 
strength relative to ballast compressive strength is attributed to both 
the predominant strength of RPF and the high characteristic ballast 
tensile strength. Similar interactions take place with aggregates and 
asphalt binder resulting in the superior behavior of asphalt mixes 
(Tia 2003). 

Marginal differences were observed between PSB compressive 
modulus (95 MPa) in monotonic loading tests and resilient modulus 
(100 MPa) in cyclic triaxial tests. Therefore, monotonic testing on 
PSB can be a useful alternative for predicting PSB resilient modulus 
generally determined under cyclic compressive loading. Regarding 
deformational behavior of PSB, minimal accumulation of plastic 
strain, εp, was observed over 200,000 loading repetitions at a 
representative state of stress (Ebrahimi et al. 2012) in PSB cylinders 
in cyclic triaxial testing. Specimens tested up to 500,000 loading 
repetitions had a marginal increase in plastic strain. Over the first 
200,000 loading repetitions, PSB plastic strain (εp = 0.22%) was far 
less than clean ballast (εp = 0.96%) or fouled ballast (εp = 3%) with a 
fouling index of 5% and moisture content of 15%. Cumulative 
plastic strain is the main limiting performance parameter for clean or 
fouled ballast. However, the cumulative plastic strain under cyclic 
loading conditions in PSB specimens was significantly reduced 
making PSB elastic properties a more important performance 
parameter for design of PSB in rail substructure. Since PSB and 
RPF compressive strengths are far greater than the clean ballast 
compressive strength (at the representative confining stress), the 
functionality of PSB in rail infrastructure would likely be driven by 
PSB compressive modulus. 
 
4.1.2 PSB Mechanical Properties Compared to Bounded and 

Unbounded Aggregates 

When comparing the compressive strength of PSB to cement-
stabilized materials (CSM), PSB has 2.5 times less compressive 
strength (see Figure 6). RPF with a 200-kg/m3 density has a 
compressive strength of 3,752 kPa and ballast (tested at 100 kPa 
confining pressure) has a compressive strength of 594 kPa; 
therefore, both materials possess lower compressive strengths than 
CSM. From RPF test results compiled from literature (Keene 2012), 
RPF with a density ranging from 26 to 417 kg/m3 has compressive 
strength ranging from 2,774 kPa to 6,167 kPa (Figure 6); therefore, 
CSM still possesses higher strength than RPF formed at high 
densities. 

When comparing the flexural strength of PSB and RPF to CSM, 
as shown in Figure 6, PSB has a flexural strength similar to that of 
CSM flexural strength tested at 28-day curing time given by 
Midgley and Yeo (2008). RPF (ρRPF = 200 kg/m3) possesses a much 
higher flexural strength (3,652 kPa) than PSB and CSM. With RPF 
density ranging from 26 to 417 kg/m3, the range of RPF flexural 
strength is 2,774 kPa to 6,167 kPa, which is greater than both PSB 
and CSM (Figure 6). In Midgley and Yeo (2008), the flexural 
modulus increased as the relative density increased, similar to how 
modulus of PSB increases as PSB density increases (Keene 2012). 
Unlike the materials being compared to RPF, RPF has similar 
strengths in each mode of load application (i.e., compressive, 
flexural, and tensile) and, as indicated later in this paper, RPF has 
superior strength-to-bulk-density ratio. 

Since PSB and CSM have similar AVG flexural strength 
properties, a comparison is also made between flexural strength and 
the percentage of binder content. A study by Zhang and Wei (2011) 
is used for comparison where the flexural strength of CSM (at 28-
day curing time) was marginally higher than CSM strength given in 

Midgley and Yeo (2008) that was used in earlier comparisons. With 
a range of binder content (percent cement) from 4 to 7%, the 
flexural strength of CSM reported in Zhang and Wei (2011) ranged 
from 1,150 kPa to 1,895 kPa, corresponding to a 39% increase in 
flexural strength with 3% increase in binder content. Over the same 
range of binder content in PSB (percent RPF by weight), PSB 
flexural strength ranged from approximately 682 kPa to 1,290 kPa, 
corresponding to a 28% increase. PSB and CSM flexural strength 
versus binder contents are shown in Figure 7. Thus, an increase in 
cement binder content is more effective in increasing the flexural 
strength of CSM in comparison to an increase in RPF binder content 
on the flexural strength increase in PSB. In addition, an increase in 
volume of RPF in PSB is much higher than an increase in volume of 
cement needed to obtain the same proportional increase in flexural 
strength. 

Figure 6 Comparison of RPF and CSM compressive strengths (a) 
and comparison of RPF and CSM flexural strengths (b). Hornfels 
and Siltstone data are from Midgley and Yeo (2008) and TNZ M4 

are from Arnold (2009). 
 

The flexural strength of RPF is greater compared with other 
materials (e.g., CSM and PSB); however, CSM has greater 
compressive strength than PSB or RPF at a density of 200 kg/m3. In 
addition, CSM has far greater flexural modulus (AVG 13,800 MPa) 
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stabilizing ballast at the base of the ballast layer (i.e., as an 
underlayment), the flexural strength results indicate that PSB can 
withstand loading while serving to prevent intrusion of fines and 
water from the subballast and subgrade layers. Data and 
performance from actual field installation of PSB is still needed for 
validating the laboratory results. 

PSB is found to have suitable mechanical properties for use as a 
material in track-substructure. The ease of injections and negligible 
curing period for implementation of PSB makes it an attractive 
alternative for railway maintenance. PSB may find appropriate 
application in areas that cannot afford track shutdown or where 
traditional maintenance capabilities are impeded or unachievable. 
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