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ABSTRACT: A maintenance model for railway substructure is proposed by combining a ballast deformation model presented in this study 
and a previously developed railway track subgrade model. This model is used to predict the deformation of railway track and to estimate a 
schedule for ballast maintenance and tamping. The prediction of the permanent deformation of fouled railway ballast is based on an 
empirical ballast deformation model and a statistical technique called “Support Vector Regression – SVR”.  Both approaches are based on 
data obtained from a large-scale cyclic triaxial (LSCT) apparatus for the fouled ballast. The empirical deformation model of railway ballast 
incorporates the strong correlation between the plastic strain rate of ballast under cyclic loading with fouling and stress conditions (overall 
prediction R2=0.89).  The concept of statistical learning regression (i.e., Support Vector Regression, SVR) was implemented to compare the 
predictions from the statistically based model with those from the empirical deformation model. The results show a strong correlation 
(R2=0.98) between the predicted and calculated rate of plastic strain of ballast by SVR. The maintenance planning model in this study was 
developed based on the empirical deformation model of ballast and predicts the intervals between corrective maintenance activities (e.g., 
tamping) and necessity for preventive maintenance activities (e.g., undercutting or drainage systems, etc.) in the railway track. 
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1. INTRODUCTION 

Maintenance of railway substructure is one of the main concerns 
facing the freight rail industry. Increasing demand for higher freight 
capacity (heavier loads and greater traffic volume) can shorten the 
intervals between maintenance operations and increases costs. 
Among components of the track structure, railway ballast plays a 
significant role in the railway track maintenance. Typically, the 
ballast layer distributes load to the subgrade and, therefore, track 
deformation is closely related to the quality of ballast. The 
frequency of railway maintenance is linked to the quality of ballast, 
which changes continually due to the generation of fine particles 
(i.e., ‘fouling’). The maintenance cost for ballast tamping and 
surface alignment is about $500M annually for the 150,000 km of 
Class 1 track in the USA ($3,800/km/yr, Christmer and Davis 2000). 
The fouling process is initiated by several mechanisms including 
fracture and abrasion of ballast particles (i.e., ‘mineral fouling’), 
infiltration from underlying layers (e.g., subgrade fouling), and 
spillage from surface sources (e.g., coal fouling) (Selig and Waters 
1994; Darell 2003; Su et al. 2010, Huang et al. 2009). Fouling 
causes accumulation of fines between ballast particles and 
consequently increases the permanent deformation within the ballast 
layer and results in increased surface deviation of railway track. 
Increasingly heavier freight loads in the US would likely increase 
the surface deviation of railway track and related maintenance costs 
(Lee 2009). Larsson and Gunnarsson (2001) stated that a 20% 
increase in axle load results in 24% extra maintenance cost. 

Timely maintenance of railway substructure is essential to 
provide a continuous service at a reasonable cost for railway 
industry. Maintenance decisions within the railway industry depend 
on available information from inspections, standards, and individual 
and institutional experience (Andersson 2002). Typically, inspection 
tends to detect the rate of track deterioration. Within the rail 
industry, there are limited standard procedures or protocol to 
schedule preventive maintenance activities or, and possibly more 
importantly, to evaluate their potential effects (Andersson 2002). 
Typically, there are two approaches to develop a maintenance 
planning program for rail track: (i) performance-based and (ii) 
mechanistic-based. 

 

Significant historical data (e.g., traffic, maintenance activities, 
substructure conditions, and climate data) are required in the 
performance-based approach to create a comprehensive maintenance 
model. However, sufficient historical data are unlikely to be 
archived or accessible in many cases (Andersson 2002; Stirling et al. 
1999). The key aspect of a mechanistic empirical model is to 
integrate the performance of various components of the railway 
track as developed on the basis of mechanical principles. Use of a 
mechanistic empirical model can explain and predict the rate of 
track deterioration in various conditions and decreases the 
uncertainties of rate of deterioration during the service life of track.  
A comprehensive track deterioration model should combine both 
performance and mechanistic empirical models to determine the 
track quality (Fazio and Prybella 1980; Zarembski 1998). A ballast 
deterioration model was proposed by Chrismer and Selig (1994) to 
predict ballast-related maintenance timing and costs based on field 
data; however, the change of fouling conditions, moisture contents, 
and state of stress on the deformation of ballast and rail track was 
not accounted in the  study by Chrismer and Selig (1994). 

The objective of this study was to develop a deformation model 
for railway ballast to account for various fouling conditions, 
moisture (i.e., climate), traffic, freight capacity (i.e., level of stress), 
and ballast quality (e.g., rate of fouling generation). The previously 
developed subgrade model by Li and Selig (1994) was also 
incorporated into the deformation model to account for the entire 
railway substructure deformation. A statistical model for fouled 
ballast deformation was used based on the concept of support vector 
regression (SVR) to compare with the empirical deformation model 
and to evaluate the effectiveness and limits of each method. A 
substructure maintenance planning software incorporated the 
mechanistic empirical deformation model of track substructure to 
predict surface deviation of the railway track. This software is a tool 
for determining the intervals between corrective maintenance 
activities (e.g., tamping) and necessity for preventive maintenance 
activities (e.g., undercutting).   
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2. BACKGROUND 

2.1 Fouling Index 

Selig and Waters (1994) defined a fouling index (FI) that has been 
widely used in the USA as, 

     (1) 

where P4 fraction is % mass of particles < 4.75 mm, and P200 
fraction is % mass of particles < 0.075 mm. In this study, fouled 
ballast was tested at the FI ranging between 5 and 30%. 
 
2.2 Maintenance Model for Railway Ballast 

The framework of track maintenance planning for railway track is 
shown in Figure 1. The main parts of this model are track 
inspection, a time-dependent track deterioration model, and 
standards for maintenance planning. This concept can be adopted for 
railway ballast. Prior to using the maintenance model, ballast quality 
is determined by inspection techniques. From the deterioration 
model (or deformation model of substructures), the surface 
deviation of the track due to the subgrade and ballast deformation 
can be predicted under traffic loading. Maintenance criteria are 
assigned with respect to rail class (i.e., passenger or freight rail and 
operating speed) to estimate the timing for corrective (e.g., tamping) 
or preventive (e.g., ballast cleaning) maintenance activities. This 
concept is further used to develop the maintenance model in this 
study. 
 

 

Figure 1 Components of Railway Maintenance Model 
 
3. STATISTICAL APPROACH 

3.1 Support Vector Regression for Geotechnical Applications 

Support vector machines (SVMs) are valuable tools for data 
classification. Application of SVMs in geotechnical engineering is 
an emerging area. Dibike et al. (2001), Maalouf et al. (2010), and 
Pal (2006) used the SVM for infrastructure applications. Dibike et 
al. (2001) used SVMs in rainfall and run-off problems. Maalouf 
(2008) used this method to predict asphalt mix performance for 
highways. Pal (2006) examined the potential of SVMs for assessing 
liquefaction potential from field data.  

Support vector machines are based on statistical learning theory 
as proposed by Vanpik (1995) to find an optimal hyper-plane as a 
decision function in high dimensional space. SVM produces a model 
based on the training data and predicts the target values of the test 
data (given data attributes or independent variables). In statistical 
learning theory (Vapnik 1995), the problem of learning an input-
output relationship from a data set is generally viewed as the 
problem of choosing from the given set of functions ƒ(x, ), is 
scalar and   R, where x  Rn is the vector of independent variable 
(e.g., fouling index, water content, stress, etc) with fixed but 

unknown probability distribution function P(x). The conditional 
distribution function P(ylx) that best approximates the output value 
y (e.g., plastic strain of ballast) to every input vector x is fixed but 
unknown. The selection of the desired P and ƒ function is based on a 
training set of independent and identically distributed observations 
(x1, y1),…,(xl, yl) according to P(x, y) = P(x) P(ylx). The expected 
loss (or discrepancy) due to classification or estimation errors, is 
given by the risk function  

   (2) 

where L(y, ƒ(x, )) is the discrepancy between the measured y and 
the predicted ƒ(x, ) by the SVM. The goal is to find the function 
ƒ(x, ) that minimizes this risk function, R(), where the only 
available information is the training set (e.g., plastic strain of ballast 
obtained from experiments). The risk function is unknown since 
P(x, y) is unknown; therefore, a risk minimization is necessary.  One 
method is called the empirical risk minimization (ERM) inductive 
principle. This straightforward approach is to minimize the 
empirical risk: 

   (3) 

To minimize the actual risk of the model with a limited number of 
training samples (e.g., limited measured data), Vanpik (1995) 
developed a statistical technique that incorporated structural risk 
minimization. Details of this solution are presented in Vanpik 
(1995).   
 
3.2 Support vector regression 

Support vector machines can be applied to regression problems by 
the introduction of an alternative loss function that is modified to 
include a distance measure (Smola and Scholkopf 2004). Let the 
observed variable y (e.g., plastic strain of ballast) have real value, 
and let ƒ(x, ),   R, be a set of real functions that contains the 
regression function ƒ(x, 0). Given a training set of instance label 
pairs (xi, yi), i = 1, 2, 3, … , l, where xi  Rn and yi  R with a linear 
function, ƒ(x,) = (w.x) + b. The training pattern is linearly 
separable if there exists a vector w and a scalar b. The optimal 
function is given by minimizing the empirical risk  

   (4) 

with the most general loss function with -insensitive zone 
described as 
 

 (5) 

   

 
The objective is now to find a function ƒ(x, ) that has at most a 

deviation of  from the actual observed targets yi for all the training 
data and, at the same time, is as flat as possible. This is equivalent to 
minimizing the functional 

 
  (6) 

 
where C is a pre-specified value; and *,  are positive slack 

variables representing upper and lower constraints on the outputs of 
the system (Figure 2). Using a Lagrange function (Vanpik 1995), the 
partial derivatives of this function with respect to the primary 
variables (w, , *) have to vanish for optimality (i.e., the saddle 

point condition). The desired vectors can be found as: 
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    (7) 

 
where 0 ≤ i* andi ≤ C and therefore: 
 

  (7a) 

 
When linear regression is not appropriate, as in the case of many 

engineering applications, a nonlinear mapping kernel K is used to 
map the data into a higher-dimensional feature space. In this model, 
the kernel K function replaces the dot operation between x in Eq. 7a. 
The kernel function is defined as 

 K(xi ,xj) = exp(-     (8) 

that creates a reasonable mapping function for typical engineering 
data.  is a multiplier in the kernel function. 
 

 
 
Figure 2 Pre-specified Accuracy  and Slack Variable () in Support 

Vector Regression (after Scholkopf et al. 1997) 
 
4. MATERIALS AND METHODS 

The ballast deformation model was based on experiments performed 
on a granitic ballast sample that was provided from a quarry in 
Wyoming by BNSF Rail Company. Particle size of the ballast is 25 
to 63 mm. Fouling from ballast breakage (i.e., mineral fouling) was 
considered in this study. The mineral fouling was non-plastic based 
on the Atterberg test.. The details of tested materials are given in 
Ebrahimi (2011).   

A prototype large-scale cyclic triaxial (LSCT) apparatus was 
developed to test a specimen with 305-mm diameter and 610-mm 
length (Ebrahimi et al. 2012). Plastic deformation of ballast in 
various fouling, moisture, and stress condition was determined to 
2x105 traffic cycles, with few cases up to 1x106 cycles. The ballast 
specimens were tested at a reference stress state consisting of a 
confining stress (3 ref) of 90 kPa and a cyclic stress (d ref) of 300 
kPa (as established by Ebrahimi et al. 2012) to study the effect of 
fouling conditions. The ballast specimens were also tested in various 
states of stress to determine the deformational behavior of ballast 
under heavier freight loads. Ballast specimens were prepared by 
rodding and tamping compaction to the maximum dry unit weight of 
ballast d = 15.8 ± 0.3 kN/m3. Additional details on specimen 
preparation are given in Ebrahimi (2011).  
 
5. SUMMARY BEHAVIOR OF FOULED BALLAST 

Plastic strain (p) of fouled ballast was measured as a function of 
loading cycles (N) for a wide range of FI and water contents (w).  

The rate of p in semi-logarithmic scale, , was 

calculated. The number of load repetitions (N) was also converted 
into million gross tons (a unit commonly used in the USA) for rail 

cars with axle load of 27.2 Mg (30 short tons) ( ).  

The p of ballast increases linearly up to N=104 (0.3 MGT) in a 
semi-log scale as shown in Figure 3. This part of the deformation 
model is called the “initial compaction phase (ICP)”. The rp of 
ballast is fairly constant in the ICP. When the ICP is passed, 
increase in p is pronounced and the rp increases approximately 
linearly. This part of the deformational behavior of ballast is called 
the ‘fouling impact phase - FIP’. Therefore, a deformation model 
was proposed as shown in Fig. 3 to account for ICP and FIP parts of 
the plastic strain of fouled ballast. Parameters ‘a’ and ‘b’ in Fig. 3 
represent the ICP and FIP in the deformation model of ballast.    
 

 

 
 

Figure 3 Deformation Model for Clean and Fouled Railway Ballast 
(Fouled Ballast with FI=24% and w=14%) 

 
6. DEFORMATION MODEL OF RAILWAY BALLAST 

Ballast is typically placed in a railway track in a clean or slightly 
fouled condition. However, generation of fouling continues during 
the service life of the track. To predict the deformation of ballast 
during the service life of rail track, three steps were taken:  (i) 
ballast deformation at various fouling conditions (combination of w 
and FI) was studied; (ii) ballast deformation at different states of 
stress was assessed; and (iii) an incremental analysis (integrating the 
change of FI, w, and traffic loading during the service life of track) 
was performed.   
 
6.1 Effect of Fouling and Water content on Ballast 

Deformation 

The mechanistic empirical deformation model of ballast at given FI 
and w at the reference confining stress (3 ref) of 90 kPa and cyclic 
stress (d ref) of 300 kPa was studied. Change in the FI during the 
LSCT tests is assumed negligible (less than 0.5%). This assumption 
is in good agreement with the typical rate of fouling generation in 
ballast approximately 0.1%/MGT (Selig and Waters 1994). As 
shown in Figure 3, the rate of plastic strain (rp) of ballast is defined 
by: 
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    N < 104 (0.3 MGT)   (9a) 

 N > 104  (9b) 

 
The effect of fouling and moisture on parameters ‘a’ and ‘b’ at 

the representative state of stress is shown in Figures 4a and 4b. The 
parameters aref and bref can be defined as: 
 

 (w > 3%)  R2=0.91 (10a) 

 (w > 3%)  R2=0.87 (10b) 

 
when w ≤ 3%, the rp of ballast is constant (bo= 0.08) and rp 
diminishes toward zero (Figure 3) at FIP. Empirical constants Sa and 
Sb are 0.0012 and 0.0005, respectively, for fresh ballast conditions.  
Sa and Sb may change for different types of ballast (recycled or 
clean ballast) and fouling materials. Increasing FI and w accelerates 
the rp of ballast both at the ICP and FIP, with corresponding 
parameters ‘a’ and ‘b’. At a given w, the rp of ballast at the ICP (i.e., 
parameter a) increases 2.5 times more than the rp of ballast in the 
FIP (compare Sb). The parameters a and b increase relatively 
linearly with FI and w for the series of tests conducted on fouled 
railway ballast in the present study. 
 

   

 
 

Figure 4a Parameter ‘a’ in Mechanistic-Based Deformation Model 
of Railway Ballast as a Function of FI and w 

 
 

6.2 Effect of State of Stress on Fouled Ballast Deformation  

To include the state of stress in the mechanistic empirical 
deformation model of railway ballast, parameters ‘a’ and ‘b’ at 
various states of stress were calculated relative to those with the 
reference state of stress (i.e., aref and bref). The ratio of principal 
stresses (1 /3) is used to determine the deformational behavior of 
ballast in various states of stress, where 1 = d + 3. The reference 
confining stress (3 ref) of 90 kPa and cyclic stress (d ref) of 300 kPa 
results in 1 /3 = 4.3. The range of 1 /3 from 3 to 10 was 
considered in the series of LSCT tests to account for the range of 
stresses that ballast can experience in railway track, as described by 
Ebrahimi et al. (2012). 

The parameters of the deformation model (i.e., ‘a’ and ‘b’) at 
various states of stress are summarized in Table 1. The normalized 

parameters and  are shown in Figure 5 as a function of 

1/3 and expressed as: 
 

     R2=0.94    (11a) 

    R2=0.95   (11b) 

 

   

 
Figure 4b Parameter ‘b’ in Mechanistic-Based Deformation Model 

of Railway Ballast as a Function of FI and w 
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Parameter ‘a’ increases linearly by a factor of 0.20 and parameter 
‘b’ increases linearly by a factor of 0.26 with the ratio of principal 
stresses. The rp in initial compaction phase (i.e., ‘b’ parameter) 
approaches zero when 1/3 reaches to 1; i.e., isotropic stress 
condition for the ballast. 
 
Table 1 Deformation Model Parameters for Fouled Railway Ballast  

FI w[2] 3 d b a    

20 

13 

35 300 0.45 0.3 9.5 2.36 1.87 
35 200 0.35 0.23 6.7 1.84 1.43 
90 300 0.19 0.16 4.3 1 1 
90 200 0.1 0.1 3.2 0.52 0.62 

8 
90 200 0.1 0.01 3.2 0.52 0.5 
90 300 0.19 0.02 4.3 1 1 
35 300 0.4 0.05 9.5 2.10 2.5 

3 
90 200 0.02 -0.031 3.2 0.4 - [1] 
35 200 0.07 0.1346 6.7 1.4 - [1] 
90 300 0.05 -0.003 4.3 1 1 

10 12 

35 201 0.2 0.22 6.7 0.5 1.29 
90 205 0.12 0.1 3.27 0.48 0.59 
92 304 0.25 0.17 4.3 1 1 
35 300 0.5 0.33 9.5 2 1.94 

0 0 
33 301 0.12 -0.05 10.1 2.4 - [1] 
88 303 0.05 0 4.4 1 1 
96 198 0.02 0 3.1 0.4 - [1] 

 
 

 
 

Figure 5 Normalized Deformation Parameters (i.e., a and b) of 
Railway Ballast as a Function of Principal Stress Ratios 

 
 

6.3 Incremental Analysis to Develop Maintenance Model 

The continual change of fouling (i.e., due to generation of fouling), 
moisture (i.e., effect of climate), and stress (due to heavier freight 
load or higher speed) should be incorporated into the deformation 
model of railway ballast to predict the surface deviation of a railway 
track during traffic loading. To account for changes in fouling, 
moisture, and stress, the p of ballast should be calculated in 
increments of traffic (i.e., N or MGT). Figure 6 demonstrates how 
changes in fouling, water content, and state of stress are captured in 
an integrated deformation model for railway ballast.  
 

 
 
Figure 6 Incremental Calculation of Ballast Deformation Using the 
Developed Deformation Model at Various Fouling, Moisture, and 

Traffic Conditions 
 
Based on this approach, FI is determined from the rate of fouling 
generation from the field data (or currently available information in 
literatures) which depends on the quality of ballast, subgrade 
conditions, and traffic loading, while moisture and state of stress are 
from the climate and traffic data. Accumulation of p of ballast 
(pi) in a period of Ni to Ni+1 traffic loading is calculated by 
integrating the rp of ballast 

     (12) 

where Ni is the ith increment of integration for the plastic strain. 
Accumulation of p of ballast in different fouling conditions is 
calculated by summing the pi in increments of traffic, as 
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  (13) 

In Eq.13, the rp of ballast ( )i in ith increment of traffic is a 

function of FI, w, and stress level at the beginning of each traffic               
(or time) increment and is calculated from the developed 
deformation model of railway ballast in this study. 
 
7. DEFORMATION MODEL OF RAILWAY SUBGRADE 

To determine the surface deviation of railway track due to 
accumulation of deformation in the rail substructure, deformational 
behaviour of both the ballast and the subgrade layers are required. 
The deformation of subgrade can be predicted using the model 
proposed by Li and Selig (1994), 

    (14) 

 [1] The rate of plastic deformation decreases (i.e., fouling impact 
phase (FIP) was not observed) at water w < 3%. 
[2] Moisture content (%) 
 
where ps (%) is the plastic strain of railway subgrade, ds is the 
deviator stress on the subgrade, and s is the unconfined subgrade 
strength described by Li and Selig (1994). Parameters ‘c’, ‘d’, and 
‘m’ are related to the type of subgrade materials as proposed by Li 
and Selig (1994) and summarized in Table 2. The incremental 
accumulation of plastic strain within the subgrade is also calculated 
with similar approach to the railway ballast to incorporate the 
strength of subgrade (i.e., s) and the state of stress (i.e., sd). 
 

Table 1 Deformation Model Parameters for Railway Subgrade       
(from Li and Selig 1994) 

Model 
Parameters 

Subgrade Classification (USCS) 

ML MH CL CH 

d 0.1 0.13 0.16 0.18 

c 0.64 0.84 1.1 1.2 
m 1.7 2.0 2.0 2.4 

 
Equation proposed by Talbot (1985) was used to find the cyclic 

stress on subgrade (sd). The stress beneath the centerline of the tie 
at depth h (mm) below the tie, sd, (kPa) is a function of stress over 
the bearing area of the tie (t, kPa). Therefore, for a given thickness 
of ballast equal to h, stress on the subgrade is 
 

     (15) 

 
8. RAIL TRACK SURFACE DEVIATION 

Chrismer and Selig (1994) showed that the change in surface 
deviation of the railway track (v) is a function of initial surface 
deviation (v0), and the deformation of the track (dL) under traffic 
loading and is given as:  

    (16) 

where v0 = 2.5 mm was recommended if input data is lacking. dL is 
the track deformation (from fouled ballast and subgrade), which is 
calculated from the deformation model presented in this study. This 
approach is adopted here. 
 
 

9. MECHANISTIC EMPIRICAL MAINTENANCE  
 MODEL FOR RAILWAY SUBSTRUCTURE 
 (WiscRailTM) 

A computer software program was developed using MATLABTM to 
predict the surface deviation of the railway track due to deformation 
of railway substructure. This program incorporates the mechanistic-
based deformation model of railway ballast and subgrade as 
described above. The graphical user interface of the mechanistic-
based maintenance planning model for railway substructure, called 
‘WiscRailTM’, is shown in Figure 7. This program is capable of 
predicting the surface deviation of railway track for different fouling 
condition, weather conditions, subgrade materials, and traffic loads. 
As shown in Figure 7, the program includes traffic data, change in 
axle load (indication of heavier freight load), moisture in fouled 
ballast, ballast condition (i.e., initial fouling condition), subgrade 
materials, initial track condition, rate of fouling generation (due to 
particle breakage, subgrade infiltration, and external fouling from 
droppings), and depth of tamping. The depth of tamping in ballast is 
also assigned. These inputs were implemented in the program to 
predict the surface deviation of the track by using the concept 
described in Figure 6. It was assumed that the rate of plastic 
deformation of ballast deeper than the depth of tamping follows the 
previous traffic loading (i.e., smaller rate of plastic deformation due 
to a denser condition) since the structure of ballast below tamping 
depth does not change during tamping; however the rate of plastic 
deformation within the tamped layer starts over (i.e., fouled ballast 
is rearranged to a looser condition after tamping). When surface 
deviation of railway track due to deformation of substructure 
exceeds the assigned limit (based on various classes of railway 
systems and operation speeds), the maintenance is required. An 
example of required track alignments (i.e., tamping) with specified 
10-mm limit for surface deviation is shown in Figure 7. As 
predicted, for the given traffic and track conditions, five tamping 
maintenances are required in seven years of track operation, while 
the fouling index of ballast increases from 5 to 29%. 
 

 
 

Figure 7 Graphical User Interface Software of Mechanistic-Based 
Maintenance Model of Railway Substructure (called, ‘WiscRailTM’) 
 
10. STATISTICAL SUPPORT VECTOR REGRESSION 

In addition to the mechanistic-based deformation model discussed in 
this study, the concept of statistical learning (i.e., SVR) was used to 
predict the permanent deformation of ballast for comparison. Hsu et 
al. (2010) proposed the consideration of the radial base function 

(RBF) kernel K(xi, xj) = exp(-  that creates a reasonable 

mapping function for typical engineering data. There are two 
parameters for SVR method with an RBF kernel: C and .  
Parameters C and  are unknown beforehand, and model selection 
(parameter search) must be done. The parameter search is done to 
identify C and  so that the statistical deformation model can 
strongly predict unknown testing data (i.e., plastic strains).  
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A common method is to separate the data set into two parts, of 
which one is considered unknown. An improved version of this 
procedure is known as cross-validation. Five-fold cross-validation 
was done in this study where the training set was first divided into 5 
subsets of equal size. Sequentially one subset is tested using the 
regression model trained with the remaining 4 subsets. Each 
instance (i.e., rate of plastic strain) of the entire training set is 
predicted. The cross-validation accuracy is the percentage of data 
which are correctly predicted.     

Various pairs of (C, ) values were tried by exponentially 
growing sequences of C and  to identify good parameters. The set 
of C and  with the best cross-validation accuracy was selected. All 
of the experimental calculations for SVR were conducted using the 
LIBSVM toolbox for MATLAB (Chang and Lin 2001). C = 1000 
and  = 0.6 resulted in the best statistical model with a coefficient of 
deterioration (R2) of 0.96. The comparison between the predicted 
rate of plastic strain (rp) of railway ballast from the developed 
mechanistic-based deformation model in this study and the 
statistical-based SVR is shown in Figure 8. The SVR can predict the 
rp of railway ballast with R2= 0.98, whereas the R2 is 0.89 for the 
developed mechanistic-based deformation model. Even though the 
SVR more accurately predicts the rp of railway ballast, the lack of 
data in N > 1 million significantly limits the application of this 
method for prediction of the railway maintenance in long-term 
service life. Whereas mechanistic empirical deformation model of 
railway ballast has a continuous correlation for long-term service 
life of railway track as presented in Eq. 9. 
 

 

 
 

Figure 8 Comparison of Predicted Data from Ballast Deformation 
Model and Statistical Regression Method                                                 

(SVR with -insensitive of 0.1) 

11. SUMMARY AND CONCLUSIONS 

A maintenance planning program was presented based on a 
deformation model of railway substructure. For predicting the 
permanent deformation of ballast, two approaches were taken. The 
first approach was based on a mechanistic empirical ballast 
deformation model, and the second approach was based on a 
statistically based technique called “Support Vector Regression – 
SVR”. Both approaches were based on the data obtained using a 
large-scale cyclic triaxial apparatus. Two main phases were 
distinguished in the deformation model: (1) an initial compaction 
phase, where the semi-logarithmic rate of plastic strain of ballast (rp) 
remains constant for loading cycles, N up to 10 000 and (2) a 
fouling impact phase, where rp increases linearly in a semi-log scale 
due to the presence of fouling materials. Parameters ‘a’ and ‘b’ were 
used to characterize the FIP and ICP in the deformation model. A 
correlation between ‘a’ and ‘b’ parameters and fouling index, 
moisture content, and state of stress are presented. An incremental 
integration of plastic deformation of railway ballast in different 
fouling, moisture, and traffic loading conditions is used, along with 
an existing subgrade deformation model, to predict the surface 
deviation of the railway track. Similarly, SVR was applied to the 
data to develop a predictive model. The SVR method predicts the rp 
of railway ballast more accurately (R2=0.98) than mechanistic-based 
model (R2=0.89); it should be noted that the SVR method is 
developed over the range of N for which the data was collected in 
the laboratory and for the results of limited laboratory tests in this 
study.   

Finally, a mechanistic-based maintenance planning software 
program was developed by incorporating the mechanistic empirical 
deformation model for railway substructure. The model presented in 
this paper was developed based on the laboratory tests on one source 
of ballast in different fouling conditions and moisture contents. 
Field-scale verification of the model is recommended. Further 
verification of this model for different sources of ballast is 
warranted. 
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