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The properties used in the analysis for the track are shown in 
Table 2 The rail used is a typical UK 113lb and the sleepers are 
assumed to be concrete with a length of 2.4m (141 sleepers used in 
the analysis). An explicit time step of 8.0e-6 is used for 156,000 
increments (representing 1.2s).  
 

Table 2 Track parameters used in analysis 

Ballast  
     Young’s Modulus (MPa) 124 
     Poisson’s Ratio 0.4 
     Rayleigh Damping (%) 5 
     Density (kg/m3) 1800 
Clay Subgrade  
     Young’s Modulus (MPa) 60 
     Poisson’s Ratio 0.45 
     Rayleigh Damping (%) 5 
Concrete  
     Young’s Modulus (GPa) 20 
     Poisson’s Ratio 0.2 
     Rayleigh Damping (%) 0 
     Density (kg/m3) 2400 

 
The total number of elements used in the analysis is 42,450 20-

noded brick elements and 424 beam-column elements for the rail. 
The subgrade Rayleigh wave velocity is 102 m/s and hence the 
modelled train speed of 70 m/s is around 70 % of the critical speed. 
Figure 10 shows the meshed used in the analysis (the concrete 
elements assumed are indicated by the red elements and the rails are 
omitted for clarity). The mesh dimensions are 100 m long by 25 m 
wide and 15.5 m deep. The concrete transition slab is 10 m long and 
300 mm thick and is placed 300 mm below the sleeper bottom at the 
base of the ballast layer. The properties for the slab are also 
presented in Table 2. For this paper no additional track irregularities 
(e.g. rail corrugation) are modelled for simplicity. The concrete slab-
track simulated is similar to a Rheda 2000 system (Esveld, 2001) 
and starts 50 m into the mesh and extends to the end of the mesh. 

Three finite element simulations are performed termed: RUN1; 
RUN2; and RUN3. 

• RUN 1:   no transition fault above the transition slab 
• RUN 2:   7 m long transition fault at a peak of 4 mm  
             above the transition slab 
• RUN 3:   the 7 m long transition fault above the transition 
                  slab stabilised by the polyurethane polymer 

 
 
 
 

Figure 11a shows the track response for the front two wheels 
(axles) over the transition. The presence of the simulated 4mm track 
void (track fault) can clearly be seen as a large dip in the train-track 
time history (RUN 2). Even though the polymer stiffness in RUN 3 
is approximately four times higher than that of the in-situ ballast 
(RUN 1) its overall effect is not significant in-terms of the overall 
track deflection. This is because of the high stiffness of the lower 
concrete transition slab which reduces the stiffness effect afforded 
by the polymer over the 7 m long GeoComposite reinforcement. In 
this application, the primary purpose of the applying the polymer is 
to stop the ballast attrition and voiding. In lower stiffness soils 
where no lower concrete slab is applied, the effect of the increase in 
stiffness of the GeoComposite is far greater in terms of reducing the 
track deflection. 

In Figure 11b the increase in the transient wheel / rail interaction 
force as the train passes over the transition fault is clearly observed. 
The increase in this force causes higher track accelerations which in 
turn increases the magnitude of the track fault and hence increases 
the interaction force. A self-perpetuating mechanism is developing 
which feeds the increasing magnitude of the track fault and hence 
the transition performance can rapidly deteriorate unless the fault is 
corrected. The increase in train carriage accelerations can be seen in 
Figure 11c. As the wheels pass over the transition fault the induced 
train body accelerations increase to 0.1g and then gradually decay as 
the wheels traverse the concrete slab-track (this peak acceleration 
would be higher than allowable limits set by SNCF for example). 
Figure 11d shows the deflection time history of a typical sleeper in 
the transition zone. The high magnitude of sleeper deflection due to 
the fault is clearly observed and the overall effect on the rail is 
highlighted in Figure 11e in-terms of the rail acceleration time 
history. The high acceleration values clearly demonstrate the 
increased stresses being placed on the track in this zone. 

The numerical analysis proves that allowing a track fault to 
develop in the transition zone can have a very detrimental effect on 
the track structure, leading to high induced track forces and 
accelerations. The large sleeper deflection, which occurs over a 
relatively short track length, induces high accelerations in the train 
body which can register as poor track geometry and hence a poor 
quality ride for the passengers. Experience at Falkirk High Tunnel 
(Figure 6) and the numerical results presented indicate that 
preventing the ballast from voiding and forming a fault, will 
significantly improve the transition performance.  The application of 
a polyurethane reinforcement technique that can achieve this is now 
presented. 

 
 
 

 
Figure 10 Finite element mesh used in the analysis (distribution of concrete elements shown – rails omitted for clarity) 
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(a) Displacement response of the front two wheels (front bogie) over the transition 

 

 
(b) Wheel / rail interaction force for the front wheel over the transition 

 

 
(c) Induced vertical train body acceleration over the transition 

 

 
(d) Response of a typical sleeper in the transition zone 
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(e) Induced accelerations for the rail within the transition zone 

 
Figure 11 Typical response of the train and track for RUN 1,2,3 at a train speed VT=70 m/s for voided and non-voided transitions 

 
 
4. IN-SITU POLYURETHANE REINFORCEMENT 

From the numerical analysis it is clear that reinforcing the ballast 
above the transition slab, using visco elastic polymers, will have a 
very positive effect on improving the performance of the transition 
(Thompson and Woodward, 2004). Reducing ballast attrition and 
migration will not only improve the long-term ride comfort level for 
the passengers, but also improve the longevity of the track 
components by reducing the level of induced track stresses and 
forces. The polyurethane polymer used in railway applications 
comprises two components: a polyol and an isocyanate. These two 
chemicals are combined in the presence of a catalyst to form the 
reacted cross-linked polyurethane (Woodward et al., 2005). The gel 
time is typically 10 seconds and the polymer cures to form around 
50% of its stiffness and strength within minutes and around 90% 
within one hour. Application can either be within possession 
periods, or during operational use. The polymer is delivered to site 
in IBCs (Independent Bulk Containers) and transfer pumps, lowered 
into the IBCs, pump the two components to the primary metered 
pump where they are then forced along the application lines to the 
static mixing head. The static mixing head forces the two 
components to react and hence form the polyurethane. The 
technique, generally called the XiTRACK technique, has been 
applied throughout the UK to many different types of long-standing 
track issues such as transitions (Woodward et al., 2005), clearance 
issues, such as tunnels and station environments (Woodward et al., 
2011a) and switch and crossings (Woodward et al., 2011b).  

The significant improvement in settlement performance of the 
system compared to unreinforced ballast, tested under laboratory 
conditions using the GRAFT I facility has been reported by 
Kennedy (2011) and Kennedy et al. (2013). Application in low 
temperature requires the use of heated lines and the main pump can 
either be electrically driven or pneumatically driven (Figure 12). 
Once formed at the mixing head the polyurethane is simply poured 
onto the ballast whereby it penetrates to the required depth (set by 
the catalyst level) to form the GeoComposite. The benefit of using a 
polyurethane is the ability to design the GeoComposite to the 
required stiffness, longevity or strength. The application process is 
shown in Figure 13 and by controlling the amount and type of 
polyurethane (i.e. the polymer strength and stiffness characteristics) 
a high degree of properties can be formed. Typically unconfined 
uniaxial compression strengths can range from between 1 to 14 MPa 
depending on the particular polymer and quantity used. 

The track is placed into its preferred configuration and then 
stabilised by the polyurethane. The polymer application can be 
applied either to the lower ballast, to form a lower reinforced 
GeoComposite slab, or at the surface to form a ladder structure (i.e. 
applied around the sleeper once the track geometry has been 
corrected). Figure 13 shows that the polymer is simply poured, i.e. it 

is not sprayed or injected. By knowing the rate at which the polymer 
is poured the amount applied can be easily controlled by simply 
measuring the pouring time. Experimental data on the performance 
of the system at full-scale can be found in Woodward et al. (2011a) 
Kennedy (2011) and Kennedy et al. (2013). Data measured from 
track installations can be found in Woodward et al. (2007 and 
2011b).  
 

 
 

Figure 12 Typical pumping unit (pneumatic variant shown) 
 

 
 

Figure 13 Polymer application to the ballast surface 
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Figure 14 shows atypical performance of the GeoComposite 
obtained during an unconfined uniaxial compression test at 12oC. 
The high degree of ductility within the GeoComposite can be seen 
during the loading and unloading phase (unloading was due to load 
removal and not due to strain softening). The GeoComposite is still 
able to carry load once the stress-strain graph has levelled out as 
many of the polymer strands (referred to as runnels) have not yet 
failed even though the carry capacity has reached its peak in 
unconfined conditions. This means that the load can be removed and 
then reapplied up to the failure line (this can be done many times as 
shown by Woodward et al., 2011a). Of course the in-service stress 
state would be well below failure, but the material response 
highlights the ductility and resiliency within the system. For the case 
considered of a GeoComposite slab above the lower concrete 
transition slab, the data presented in Woodward et al. (2011a) is re-
plotted in Figure 15 in terms of the GeoComposite permanent 
settlement versus load cycles for a contact vertical cyclic stress of 2 
MPa; as tested in a Losenhausen compression testing machine 
(shown in Figure 15). 
 

 
Figure 14 Typical GeoComposite unconfined compression test for a 

polymer stiffness of 2 GPa (rate=6 mm/min) 
 

 

Figure 15 Permanent settlement with load cycles of atypical 
GeoComposite over a solid base (rate=3 Hz) 

 
The developing resiliency of the GeoComposite with load cycles 

can clearly be seen; there was not a significant change in track 
stiffness with loading rates applied Kennedy (2011). The first 
loading cycle settlement is thought to be due to the very low 
compaction applied to the ballast prior to polymer pouring. Under 
normal conditions the cyclic stress of 2 MPa is above the likely 
contact stress level in the ballast over the concrete transition slab. 
The test therefore shows that the GeoComposite would prevent 
ballast voiding and hence provide the solution analysed in RUN 3. If 

contact stresses were greater than 2 MPa the polymer loading 
applied to the ballast could simply be increased to improve strength. 
 
5. SITE APPLICATION OF POLYURETHANE 

REINFORCEMENT 

Tottenham Hale is located in the East Anglia region of Network 
Rail’s South East Territory in the UK. The junction provides a spur 
from the main London to Cambridge railway line to the North 
London Line just north of Tottenham Hale station. As such it carries 
regular high speed trains to Stansted airport, and also heavy freight 
to/from the main line towards the North London Line. This heavy 
freight approaches from a very narrow radius curve and as such has 
tended to force the junction laterally out of alignment. The 
combination of this with the presence of the switch tips across the 
threshold of a bridge abutment and the combination of forces 
provided the maintainer with a difficult alignment problem that 
required regular maintenance. Figure 16 shows a longitudinal view 
of the bridge transitions at Tottenham South Junction (Tottenham 
Hale side).  
 

 

Figure 16 View of Tottenham Hale Junction Showing Bridge 
Transitions 

The problems associated with these types of bridge transitions 
and how polyurethanes can be used to reduce track maintenance, 
have been discussed by Thompson and Woodward (2004).  

At Tottenham South Junction two additional problems occur, 
namely the two point motor machines located on the bridge and the 
length of the ballasted track that exists on the bridge itself to support 
these point machines. Figure 17 shows that on the Down Main this 
ballasted bridge track extends approximately 2m onto the bridge 
deck and on the Up Main it extends approximately 3.3m onto the 
bridge deck. This represents a form of lower transition slab (hereby 
called the lower deck transition slab). From then onwards, fixed 
timbers support the track across the bridge in order to provide the 
required track fixity condition. 

The Track Recording Vehicle (TRV) readings indicated poor 
track geometry over these transition areas. The depth of ballast on 
the bridge deck sections for both the Down Main and the Up Main is 
approximately 250 mm below sleeper bottom (Figure 18). In order 
to improve the track geometry and reduce the maintenance required 
the ballast above the lower deck transition slab and in the transition 
area of the ballast was reinforcement using the polymer technique.  
 
5.1 XiTRACK Polyurethane Procedure 

In order to determine the necessary design for the transitions the 
following steps were taken during the installation process: 
 
1) Site inspection performed in March 2005 
2) Application solution proposed in June 2005 
3) Polymer installed August 2005 
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3) A 50mm thick layer of stone-blower aggregate (directly 
after and before curing of the polymer) was placed in the 
crib and sleeper bottom areas (not in the shoulder areas; 
since ballast was added before polymer curing due to 
subsequent beam formation). 

 
5.2.4 Part 3: Upper Lateral Beams 

Lateral beams were included where possible. The beam polymer 
was applied after the lower reinforcement zones were completed and 
the track had been correctly realigned by the tamping machine 
(Figure 21). 
 

 

Figure 21 Tamping over the GeoComposite to reinstate the track 
geometry after lower polymer treatment and before formation of the 

upper lateral GeoComposite beams 
 
The remaining polymer beams were formed in two stages: 

1) Stage 1, the lower ballast depth treated in the shoulder 
areas did not exceed the sleeper depth mid-point. 

2) Stage 2, ballast was added up to the top of the sleeper in 
the shoulder areas and treated with the polymer. While the 
polymer was still curing red grit was applied to form a 
slip-resistant walking surface. 

The formation of the upper lateral GeoComposite beams to 
prevent lateral movement of the point machines is shown in                  
Figure 22. The increased capacity of lateral beams to provide track 
support has been described by Woodward et al. (2011a and b). 
 

 
 
Figure 22 Formation of the upper GeoComposite beams to prevent 

lateral movement of the sleepers 
 

Since a maintenance layer above the transition GeoComposite 
was left untreated (as requested by the infrastructure owner to allow 
future tamping) some movement of the ballast above the 

geopavement layer is possible, i.e. a complete ladder structure was 
not formed for this layer. The ladder structure (Kennedy et al., 
2013) can be used to capture the track geometry when the track has 
been put into the correct track alignment (i.e. after the tamping cycle 
shown in Figure 21). At Tottenham Hale Junction a further 
application of the polymer could therefore have been applied to 
stabilise the upper 100mm maintenance zone (that was not treated) 
to provide a full depth solution. This additional treatment would 
then generate complete stability at the bridge interface, as modelled 
in the numerical analysis shown in Figure 11. The formation of the 
ladder structure is shown in Figure 23, here for track treatment at 
Worplesdon UK (Woodward et al., 2005). In this type of application 
the ballast is removed down to the base of the sleeper and the 
polymer applied in the crib and shoulder areas only; this confines 
the unreinforced ballast directly under the sleeper and hence 
‘captures’ the track geometry (Kennedy et al., 2013). 
 

 
 

Figure 23 Application of the polymer to form a ladder structure at 
Worplesdon UK 

 
5.2.5 After polymer treatment 

The treatment at Tottenham Hale was used to reduce ballast 
movement through polymer reinforcement. If changes in track 
geometry occur (e.g. movement of the formation or the upper 
unreinforced ballast) then tamping, stone blowing and/or shovel 
packing can be used in the off-bridge treated areas. However, shovel 
packing would need to be used to correct any misalignments within 
the on-bridge (steel deck) treatment areas. It should be noted that 
due to the unreinforced ballast above the XiTRACK geopavement 
some maintenance should be expected in the long-term. As far as the 
Authors are aware performance has been very good to date. 
 
6. CONCLUSIONS 

In this paper the application of 3-dimensional finite element 
techniques to examine the behaviour of a typical floating track to 
fixed concrete slab-track, located over a concrete transition slab, 
have been used. The results of the analysis show how the 
development of a track fault in the ballast above the transition slab 
can have a significant effect on the train-track interaction 
mechanism. In particular the fault leads to a high level of coach 
body accelerations and high induced wheel-rail interaction forces. 
The fault also significantly increases the sleeper deflection and the 
induced rail accelerations, placing a high degree of additional stress 
on the upper track components. Stabilisation and reinforcement of 
the ballast above the transition slab was then simulated and the 
significant improvement in track response highlighted. Ballast 
reinforcement can be achieved using in-situ polyurethane polymers 
applied at the ballast surface. Stress-strain behaviour of the formed 
GeoComposite during unconfined uniaxial compression tests 
illustrated the high degree of hysteresis in the material response. 
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This hysteresis is highly desirable in railway environments as it 
provides a high degree of ductility, particularly during impact 
loading such as wheel flats. The use of this reinforcement technique, 
called XITRACK, at Tottenham Hale Junction transitions was 
presented to demonstrate the applicability of the system to real 
railway track transitions. The ease of application and the typical 
installation equipment required was highlighted. The ability of the 
technique to solve both the lateral and vertical track ballast 
migration issues was discussed together with how a typical 
methodology can be adopted for polymer pouring. 
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