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ABSTRACT:  Underreamed (enlarged-base) piles are commonly employed in engineering practice. The pile tip is often made into different 
shapes. This study analyzes the effects of various underreamed pile tip shapes on the soil behavior around the pile. A finite element analysis 
combined with a mixed incremental method for the updated Lagrangian method is presented using a small strain formulation to solve the 
large deformation problem. Constitutive model for sand with particle crushing and joint elements are used to represent the behavior of sand 
around the pile and the interactive surface between the sand and the pile. The predicted relationship between the normalized bearing stress 
and displacement are compared with experimental measurements, showing good agreement. The numerical results demonstrate that the 
distributed area of the high-value radial stress contour and the high-value vertical stress decrease as the pile tip gets sharper. The distributed 
areas of the high positive-value vertical strain, the high negative-value radial strain and the high negative-value circumferential strain expand 
as the pile tip gets sharper. The numerical results clearly indicate that the soil beneath the pile tip at different depths displays various 
volumetric changes and confirms the necessity of the constitutive model for sand with particle crushing. 
 
Keywords: Model pile, particle crushing, large deformation theory, joint element, pile tip shape. 
 
 
1. INTRODUCTION 

The behavior of piles remains one of the largest sources of 
uncertainty in geotechnical engineering. Much of the uncertainty is 
because of a lack of understanding of the physical mechanism that 
controls the characteristics of deformation, strain and stress in the 
soil during pile installation and loading. In some installations, the 
pile base is enlarged to improve its ultimate bearing capacity. 
Considerable effort has been devoted to the investigation of the 
bearing capacity of model piles with enlarged pile bases or shaft 
diameters by Cooke and Whitaker (1961), Martin and Destephen 
(1983), Kim et al. (2007), Ishikawa et al. (2011) and Ishikawa et al. 
(2012). To date, the most fundamental and convincing aspects of 
pile design still rely on experiments and experience. 

In the past thirty years, tremendous progress has been made in 
the numerical analysis of pile foundations. For example, finite 
element method (FEM) is a time-saving and flexible tool compared 
to traditional experience-based methods. However, the numerical 
analysis of pile loading is generally challenging because the soil-
structure interaction system involving large deformations is 
complicated. Many researchers have attempted to solve the pile 
loading and penetration problem using large deformation theory. 
Kiousis et al. (1988) has proposed the large deformation theory and 
the application of cone penetration. Hu and Randolph (1998a) and 
Hu and Randolph (1998b) have presented a practical approach, the 
arbitrary Lagrangian Eulerian (ALE) method, to solve large 
deformation problems, such as the bearing capacity of footing using 
the well-established small-strain finite element code. Sheng et al. 
(2005) and Sheng et al. (2009) have initially adopted the friction slip 
method and frictional element to tackle deep penetration and the 
soil-pile contact problem. Nazem et al. (2006), Nazem et al. (2008), 
Nazem et al. (2009) and Nazem et al. (2010) have presented the 
arbitrary Lagrangian Eulerian method combined with adaptive 
computation technology to analyze large deformations in 
geomechanics, extending these strategies to consolidation and 
dynamic problems. Recently, Qiu et al. (2011a), Qiu and Henke 
(2011b) and Qiu and Grade (2012) have employed the coupled 
Eulerian Lagrangian (CEL) method to investigate the spudcan pile 
foundation penetration in loose sand overlying on weak clay. 
Vavourakis et al. (2013) have discussed remeshing and remapping 
technologies for large deformation analysis. In addition, a deep and 
comprehensive understanding of the pile bearing mechanism cannot 
be realized without considering the soil-pile interaction. Progressive 
shearing failure occurs at the interface, where significant high 
stresses and strains are transmitted. Gennnaro et al. (2008) and Said 

et al. (2009) have performed a finite element analysis of piles 
loading in sand with a mechanical elasto-plastic interface element. 

The strength reduction of soil after crushing should also be 
considered when estimating the bearing capacity of the pile. Some 
soil particles around the pile tip tend to be crushed when the external 
force exceeds their crushing strength. It is necessary to employ a 
suitable constitutive model to represent soil behavior in high 
compression stress regions. Simonini (1996) has investigated the 
behavior of dense sand around the pile tip in the particle crushing 
region using the finite element method. That study found that two 
factors, relative density and mean effective stress level, influenced 
sand particle crushing. Yasufuku and Hyde (1995) and Yasufuku et 
al. (2001) have proposed the calculation formulation for pile end-
bearing capacity by incorporating a factor for particle crushing. The 
cavity expansion theory for the bearing capacity of the pile was 
analyzed in terms of the compressibility factor, the friction angle 
and the average volumetric strain and shear stiffness. Keji et al. 
(2009) has performed the pile loading test into three kinds of sand, 
observed the behavior of sand around pile tip and modified the 
bearing capacity factor. Yang et al. (2006), Yang and Mu (2008) 
and Yu and Yang (2012) have investigated the end-bearing capacity 
of the pile in sand using the concept of state-dependent strength.  

There exists very limited research on the effect of pile tip shape 
on the behavior of the surrounding soil. Lobo-Guerrero and Vallejo 
(2007) remarked that pile tip shape has a significant impact on pile 
penetration and particle crushing. The current study analyzes the 
effect of the pile tip shape on the bearing mechanism of the pile and 
the mechanical behavior of the sand around the pile. This paper 
presents a finite element analysis of piles with different pile tip 
shapes and under different surcharge pressures. In previous large 
deformation analyses of the pile-loading problem, soil behavior is 
represented by a simple constitutive model, as in Sheng et al. (2008). 
This numerical study integrates the constitutive model for sand with 
particle crushing with the finite element analysis using large 
deformation theory. A mixed incremental method for the updated 
Lagrangian method by Chen and Mizuno (1990) is used in the finite 
element analysis to solve the large deformation problem. To better 
simulate the interface behavior, a zero-thickness joint element, 
simulating the soil-pile interaction, is employed in the finite element 
analysis. The relationship between the normalized bearing stress and 
displacement is estimated, and the soil deformation around the pile 
is predicted. The numerical results of the relationship between the 
stress ratio and the volumetric variance at different depths beneath 
the pile tip are also presented. 
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2. MODEL PILE LOADING TESTS  

Underreamed piles are usually used to increase the size of the pile 
base diameters and hence provide greater bearing capacity at a more 
economical cost than a straight-shaft pile. A modified form, the 
pencil-shaped base pile, can effectively prevent cracks from 
occurring in the enlarged base. In the model pile loading tests 
conducted by Yamamoto et al. (2003), straight piles and 
underreamed piles with the same shaft diameter, i.e., 30 mm, were 
tested. The underreamed piles included flat base piles and the 
pencil-shaped base piles, as shown in Figure 1. The base-enlarged 
part, with a diameter 54 mm, was constructed of mortar. The 
convergent angle α, which is between the axial line and the line of 
the pile base, is used to describe the shape of the pile base. The 
model piles were tested at convergent angles α of 30, 60 and 90 
degrees. 

 

 
Figure 1 Different types of pile tip 

 
The model piles with different pile base shapes were jacked into a 
ground tank container filled with Toyoura sand to demonstrate the 
effects of pile base shape and surcharge pressure level on the 
bearing capacity and to investigate the movement of sand particles 
around the pile tip area. The test setup is shown in Figure 2. The 
setup consisted of the ground tank container, the loading installation 
and the measurement device. The ground tank container was 600 
mm in height and 584.2 mm in diameter. The diameter of the steel 
model pile was 30 mm, and the diameter of the enlarged pile base 
was 54 mm. The diameter ratio of the ground tank container to the 
steel model pile was deliberately adjusted to reduce any effects from 
the interior surface of the ground tank container. Toyoura sand was 
poured into the ground tank container layer by layer to ensure that it 
was well-distributed and homogeneous after the prior installation of 
the model pile. 

 
Figure 2 The testing apparatus 

The relative density of dry, dense, uniform Toyoura sand is 
approximately 90%. Toyoura sand is one kind of uniform fine sand 
with mainly sub-angular particle shape. The physical and material 
properties of Toyoura sand are given in Table 1. Teflon sheets were 
attached to the interface between the ground tank container and the 
Toyoura sand and between the model pile and the Toyoura sand 
using silicon grease to eliminate the effect of frictional force. The 
penetration depth of the model pile and the load cell on the pile head 
were recorded by a data logger and computer. 

 
Table 1   Physical properties of Toyoura sand 

 
Model pile loading tests were performed by a displacement-

controlled method. The penetrating speed of the model pile into the 
sand layer was 0.5 mm/min. The final displacement of the model 
pile was equal to the diameter of the pile shaft. Three levels of 
surcharge pressure, 200 kPa, 400 kPa and 600 kPa, were directly 
applied on the upper surface of the model ground to simulate the 
actual soil stresses at different depths. 

The occurrence of particle crushing was confirmed by 
comparing the grain size distribution curves of Toyoura sand before 
and after the model tests, as measured by Li and Yamamoto (2005). 
The sand around the pile tip was carefully removed after loading 
and processed for the sieve analysis test. The region used for the 
analysis was a cubic column with a pile diameter equal to the side 
length just beneath the pile tip. The characteristics of the model 
ground material and the conditions of axisymmetric loading in Li’s 
experiment are identical to the current study. It is believed that 
particle crushing occurs in the current model underreamed pile 
loading test as well. 
 
3. NUMERICAL ANALYSIS METHOD  

It is important to consider the geometrical nonlinearity caused by the 
large deformation to establish a model of the actual behavior of the 
structure. More accurate and reliable numerical solutions are 
obtained and provide insight into the essence of the problem. The 
deformation of soil under complex stresses in the soil surrounding 
the pile tip exhibits typical large deformation behavior. Therefore, 
finite element analysis using large deformation theory is an effective 
approach to tackle the driving and penetrating pile process.  

Generally, total Lagrangian (TL) and updated Lagrangian (UL) 
methods are regarded as the two primary technologies for solving 
large deformation problems in geomechanics. The major difference 
between these two methods is the reference configuration employed. 
The TL method refers to the initial configuration, while the UL 
method chooses to refer to the current configuration. The two 
methods are not two different solutions to the problem but rather 
two different approaches to the equilibrium equations. They can be 
linked logically and mathematically. However, the UL method is 
more versatile and has gained popularity over the TL method. 
Hibbitt et al. (1970) reviewed the history of large deformation and 
strain and derived an incremental stiffness equation of the finite 
element method in a Lagrangian frame of reference. In recent years, 
ALE and CEL methods have been positively adopted and 
popularized in succession. However, these two methods are 
complicated because of the intricate nature of the remeshing and 
adaptive process.  

Mean grain size (mm) 0.20 

Coefficient of uniformity 1.21 

Specific gravity 2.656 

Minimum dry density (g/cm3) 1.332 

Maximum dry density (g/cm3) 1.646  

Relative density (%) 90 

Internal friction angle(degree) 44.0 

Underreamed Pile 

Flat Base Pile  
         α=90o 

Pencil-shaped 
Base Pile α=60o 

Pencil-shaped 
Base Pile α=30o 






(mm)  
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The expression of the Jaumann stress ratio increment, dσij
J , 

adopted by Chen and Mizuno (1990), combined with the virtual 
work, enables the conventional finite element method to solve for 
large deformation behavior with small deformation and strain 
theory. In that case, the stress and strain integration can also be 
performed using a method similar to the small deformation method. 
Consequently, the mixed incremental method for the UL method is 
employed in this study. Its description is reviewed in the following. 

The state variables are assumed to satisfy the equilibrium 
condition from the initial time 0 to time t. The general expression of 
the virtual work at some intermediate time t is written in Eq. (1) as 
follows: 
 

( ) ( ) ( ) ( )t t t t t t t
i i i j i ij ij

A V V

T du dA F x du dV d dV                (1) 

 
where T is the traction force, u is the displacement, F is the body 
force per unit mass, ρ is the mass density of the initial state,  δ  is a 
virtual value, σij  is the Cauchy stress tensor and εij  is the 
infinitesimal strain tensor. The state variables with superscript t 
denote the variables at intermediate time t. 
 

t

t dt t dt t dt t dt
ij ij

V

R dV                                                                  (2) 

 
where R is the external work by the body force and traction force. 
The major difficulty in solving the large deformation and strain 
problem is determining the configuration in time t+dt. To solve Eq. 
(2), all state variables must be linked to a known configuration at 
time t. The UL method employs the current configuration at time 
t+dt, while the TL method refers to the initial configuration at time 
0. Here, only the UL method is explained. 

Once the deformation of a structure becomes large during 
loading, the Cauchy stress tensor and strain tensor no longer apply. 
It is therefore necessary to adopt appropriate expressions of stress 
and strain to solve the large deformation problem. The equation can 
be transformed to the current configuration at time t as follows: 
 

o

o
t dt t dt t dt t dt

ext ij ij ij ij

V
V

W dV S E dV                                          (3) 

 
The external virtual work,  δWext, at time t+dt can be expressed 

in terms of either the Cauchy stress tensor σij and the infinitesimal 
strain increment tensor δεij or the second Piola-Kichhoff stress, Sij, 
and the Lagrangian strain increment tensor, δEij , in Eq. (3), where     
Vሶ  and V are the volume at the initial and current state, respectively. 
The Lagrangian strain incremental tensor is obtained from the 
difference of the Lagrangian strain at time t+dt and t in Eq. (4) and 
specifically given by Eq. (5) as follows: 
 

t dt t
ij ij ijdE E E                                                                            (4) 

 

, , , ,

1
( )

2ij i j j i k i k jdE du du du du                                                 (5) 

 
The subscript after the comma is the partial derivative with 

respect to the coordinate Xi in the initial configuration. The 
coordinate system in the initial ( Xi ) configuration and current ( xi ) 
configuration are related by the displacement vector as xi=Xi+ui . 
 

i,j ij ijdu =dε +dΩ                                                                               (6) 

 

ij i,j j,idΩ =(u -u )/2                                                                                (7) 

where dui,j is comprised of the Cauchy strain tensor and spin tensor 
in Eq. (6), dεij is the Cauchy strain for infinitesimal strain and dΩij is 
spin tensor from Eq. (7). Inserting the Eq. (6) and Eq. (7) into the 
Eq. (5) results in the Eq. (8) as follows: 
 

ij ij ki ki kj kj

1
dE =dε + (dε +dΩ )(dε +dΩ )

2
                                               (8) 

 
In the external work equation, the stress and strain tensors 

always appear in pairs. The companion stress expression that often 
appears with the Lagrangian strain tensor is the second Piola- 
Kirchhoff stress tensor, Sij, as follows: 
 

t dt t t
ij ij ij ij ijS S dS dS                                                             (9) 

 
The second Piola-Kirchhoff stress at the time t+dt in Eq. (9) is 

equivalent to the second Piola-Kirchhoff stress at time t plus its 
incremental value, as follows:   
 

J
ij ij ijkl kld d d                                                                         (10) 

 
where ψijkl is expressed in terms of the current stress and accounts 

for the effects of the rigid body motion. The Jaumann stress tensor 
increment, dσij

J  , employed by Chen and Mizuno (1990), is related to 
the Cauchy stress tensor increment, dσij , in Eq. (10).  

The term dτij is the incremental Cartesian stress tensor for the 
subsequent configuration, referred to a local coordinate. It is 
identical to the Jaumann stress tensor increment, dσij

J  , as follows: 
  

ep
ij ijkl kld =D d                                                                                (11) 

 
where, Dijkl

ep  is the elastic-plastic constitutive tensor expressed in 
terms of the Cauchy stress tensor. The Cauchy stress tensor 
increment, dσij, is assumed, as shown by Gadala et al. (1984), to be 
equal to the second Piola-Kichhoff stress increment dSij. Combining 
Eq. (9), Eq. (10) and Eq. (11) yields Eq. (12), an expression for the 
second Piola-Kirchhoff stress at time t+dt, as follows: 
 

( )t dt t ep
ij ij ijkl ijkl klS C d                                                          (12) 

 
Inserting Eq. (12) and the incremental form of Eq. (5) into Eq. 

(3), the external virtual work expression in terms of the Cauchy 
stress and strain tensor is obtained in Eq. (13) as follows: 
 

        

   
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= ( ) ( )
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d d d d d d d d dV
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T dT u dA F x dF du dV dV

        

    

    

      



   




  

 

                                                                                                       (13) 
 

For convenient integration using the finite element method,                
Eq. (13) has been transformed into the matrix formulation as Eq. 
(14). The first part on the left of the equilibrium equation is obtained 
by ሼdεLሽ=ሾBLሿሼdUሽ, where ሾBLሿ is the transformation matrix from 
strain to displacement. 
 

                
T T

L L NL NL

V V

B A B dV B D B dV dU dR
 
    
 
       (14) 

 

t
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where ሼdR ሽ is the external force vector, ሼdU ሽis the displacement 
vector and  ሾ߰ሿ and  ሾA ሿ are the matrixes used in composition of the 
Cauchy stress, σij , shown in Eq. (15) and Eq. (16) for the axially 
symmetric stress filed. The terms for rigid body motion are included 
in Eq. (15). The constitutive matrix, ሾD ሿ, is determined from the 
constitutive model for sand with particle crushing described in the 
next section. 
 

  0

1
0 0 ( )

2

rr rr rr rz

zz zz zz rz

rz rr zz

  

   
   

   

  

  
   

 
 
  
  

                               (15) 

 
Consequently, in this mixed incremental method for the updated 

Lagrangian method, the stress and strain integrations can be 
performed in a manner similar to that used for the small deformation 
problem.  
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    

                   (16) 

 
4. NUMERICAL MODELLING 

Simulating the pile loading and driving process is challenging 
because it involves both geometrical and material nonlinearities. 
The geometrical nonlinearity has been solved by the mixed 
incremental method. The difficulty in considering the material 
nonlinearity is from the modeling of the soil behavior around the 
pile and the model of the soil-pile interface. 
 
4.1 Constitutive model and parameters  

4.1.1 Constitutive model for sand with crushing 

The region around the pile tip is concentrated with significant mean 
and deviatoric stresses. The importance of considering particle 
crushing when estimating the bearing capacity of the pile has been 
found by examining the change in properties before and after 
crushing by Vesic et al. (1968), Miura and Yamanouchi (1977), 
Miura et al. (1984), Hardin (1985), Fukumoto (1992) and Lade et al. 
(1996). Therefore, particle crushing should be reasonably simulated 
when pile loading in sand is studied.  

The solution to pile loading in sand requires understanding and 
modeling the sand behavior under extremely high pressure. Many 
researchers have proposed comprehensive constitutive models 
incorporating particle crushing. Sun et al. (2007) modified the 
plastic hardening parameter to account for the effect of particle 
crushing. Daouadji et al. (2001) and Daouadji and Hicher (2010) 
proposed a constitutive model and its enhanced version including 
particle breakage, and proved their theory using laboratory tests. 
The grain distribution curve was chosen as the parameter in their 
model. Kikumoto et al. (2010) described particle crushing behavior 
with a revised SEVERN-TRENT sand model, on the strength of 
critical state theory. Hu et al. (2011) established relationships 
among internal energy, critical state line and particle crushing index. 

Recently, Yao et al. (2008a) proposed a revised hardening 
parameter for the modified Cam Clay model, initially proposed by 
Roscoe and Burland (1968), to represent the dilatancy characteristic 

of sand. The constitutive model proposed by Yao et al. (2008b) is 
capable of predicting the soil dilatancy from negative to positive 
under low confining pressure and only negative dilatancy under high 
confining pressure. In addition, the reduction of peak strength with 
increasing confining pressure is also reasonably represented. This 
model incorporates only seven parameters and its validity has been 
verified by Wu et al. (2013) to simulate sand behavior around pile.  
Therefore, it is positively adopted in this numerical analysis. 
 
4.1.2 Dilatancy prediction and parameter determination 

The prediction of dilatancy by this model is briefly explained in this 
section. The critical state curve, M, contains three curves that 
transform onto the p-q plane, as shown in Figure 3.  
 

 
 

Figure 3 The curves of Mc and Mf and stress paths in p-q plane 
 
The horizontal axis, p, indicates the mean stress, while the vertical 
axis, q, indicates the deviatoric stress. The characteristic state curve, 
Mc, is the boundary line of volume variance, and the failure state 
curve, Mf, is the dividing line of failure. Characteristic and failure 
state curves are the exponent function of mean stress in Eq. (17) and 
Eq. (18) as follows: 
 

 /
n

c cM M p p                                                                        (17) 

 

 /
n

f cM M p p
                                                                         (18) 

 
where n is the material parameter and pc is the reference crushing 
stress. Three curves start from the origin point O and intersect at 
point D again. The reference crushing stress, pc, is fixed as the 
horizontal coordinate of point D. Straight lines AB, CD and EF 
represent the stress path on the p-q plane. Along the horizontal axis, 
poA is the relative low confining pressure and poC and poE are the 
medium and high confining pressures, respectively. 

Path AB: During this loading process, two phases exit, changing 
at point K. On the path AK, the soil volume contracts (negative 
dilatancy) and then expands (positive dilatancy) during path KB.  

Path CD: The characteristic state changes and failure happens at 
the same time. The soil volume contracts during the entire loading 
process. The final stage is negative dilatancy. 

Path EF: When loading begins, the soil volume will contract 
constantly until failure occurs. Failure occurs before the 
characteristic state changes because the stress path reaches the 
failure line earlier before it reaches the characteristic state change 
line.  

This theoretical model can thus predict the change from negative 
to positive dilitancy of dense soil when it is subjected to low 
confining pressure and negative dilatancy once the confining 
pressure is high. 
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Generally, there are seven parameters in this constitutive model 
for sand with crushing. The Poisson ratio,  ν , is assumed to be 0.3. 
The parameters of the constitutive model and the joint element, 
discussed next, are given in Table 2. The parameter, Ct  is the 
compression index and Ce is the swelling index. The validity of the 
constitutive model is examined in Yao et al. (2008b). The predicted 
values of the constitutive model for sand with crushing are 
compared with the experimental results of a triaxial high 
compression test with variable confining pressures and show good 
agreement. The experimental results refer to the conventional 
triaxial compression test performed by Sun et al. (2007). The 
specimen in those tests was Toyoura sand with a relative density of 
90%. Drained triaxial compression test has also been performed 
with confining pressures of 0.2 MPa, 0.5 MPa, 1 MPa, 2 MPa,                    
4 MPa and 8 MPa. 
 

Table 2 The model parameters with sand crushing and joint 
elements (Uesugi and Kishida (1986), Yao et al. (2008b)) 

 
4.1.3 Elasto-plastic constitutive tensor 

The constitutive tensor, Dijkl
ep  , for the incremental general form of 

the constitutive model in Eq. (19), is derived here. It will be used in 
the matrix form of the governing equations for efficient solving in 
FEM. 
 

                       (19) 
 
where 
 

                                   (20) 
   
where G and L are Lame’s constants from Eq. (21) and Eq. (22),  f  
is the yield function of the model for sand with crushing, η is the 
ratio of deviatoric stress to the mean stress and  δij is the Kronecker 
delta. 
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where E and ν  are the elastic modulus and Poisson’s ratio, 
respectively. m is the material parameter for sand. 
 
4.2 Joint element model 

It is well known that interfaces often play a major role in the 
mechanical behavior of structures interacting with soil. The soil-pile 
interaction is typical in that the soil is in contact with the engineered 
structure. In this study, the emphasis is on the contact behavior 
between the sand and the pile. Consequently, it is necessary to 

employ a suitable constitutive relationship to model the heavily 
loaded interacting region. 

A number of models have been presented to describe the 
interface behavior between the soil and a rigid structure. Among 
them, Goodman et al. (1968) was the pioneer in establishing the 
constitutive modeling at the interface or at the rock joints. The four-
node joint element with zero-thickness assumes a linear relationship 
between the stress and the relative displacement at the interface in 
Eq. (23) as follows: 
 
 

s s

c c

f k 0 Δu
=

σ 0 k Δv

     
    

    
                                                 (23) 

 
 

The model for the joint element is shown in Figure 4. 
 
 

 
 

Figure 4 Concept of joint element 
 
In Eq. (23), fs is the shear stress,  σc is the compression stress,  kc  
and  ks  are the tangential and normal stiffness per unit length along 
the interface, respectively, and Δu and  Δv represent tangential and 
normal relative displacement, respectively. The line 1-3 and line 2-4 
are straight lines. The nodes 1 and 3, 2 and 4 are in coincident 
position before deformation. In the finite element analysis, node 1 
and 3, 2 and 4 employ the same coordinates. They can be 
approximated by using linear interpolation functions N1 and N2 in             
Eq. (24), where N1=1- 2x L⁄   and   N2=1+ 2x L⁄ . Horizontal and  
vertical nodal displacements are expressed as 

                                                and                                                      
                                     
                

 

                                                                                                     (24) 
 

The special rule, shown in Figure 5, is needed to identify the 
four modes of joint element deformation, i.e., contact, slip,                   
de-bonding and re-bonding, described by Li (1993). In the contact 
mode, if the shear stress, ks , reaches the yield stress,  krs, the sliding 
condition is assumed to be controlled by the Mohr-Coulomb failure 
criterion and slip occurs. The value of  ks is equal to krs if slip occurs. 
For simplicity, the relationship of the joint element can be assumed 
to be perfect elasto-plastic ( krs  is equal to 0). In the mode of                   
de-bonding and re-bonding, if the normal stress, σc, is tensile, the 
coefficients ks and  kc are equal to zero. The parameters of the joint 
element are adapted from the experiments performed by Uesugi and 
Kishida (1986) and Uesugi and Kishida (1988). The three 
parameters are given in Table 2, where μ is the friction coefficient.                       
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Figure 5 Constitutive relationship of joint element  

 
The local coordinate system, (x,y), can be directly converted into 

the global coordinate system, (X,Y), using a transformation matrix 
consisting of the rotation angle θ , shown in Eq. (25). The joint 
elements are placed at the interface between soil and the pile. 
 

x cosθ sinθ X
=

y -sinθ cosθ Y

     
     
     

                                                                 (25) 

 
4.3 Preparation for numerical analysis 

Pile is generally modeled as an axisymmetric structure for analytical 
convenience. The entire analysis area is the model ground tank 
container, 300 mm radially and 550 mm high, as shown in                 
Figure 6 (a). The surcharge pressures acting on the upper surface of 
the model ground simulate the actual soil stress at different depths. 
The boundary-constrained condition for the model ground is set to 
correspond to the model pile loading test setup. The basic physical 
features of Toyoura sand in the triaxial compression test and the 
ground material in the model pile loading tests are the same as the 
specimen material test performed by Sun et al. (2007). Therefore, 
the values of the seven parameters are deemed reliable for the 
numerical analysis of the model pile loading test. The mesh for the 
case of the model pile with a flat base is shown in Figure 6 (b). 

The behavior of the sand ground is represented by the 
constitutive model considering particle crushing. The joint element 
is applied to simulate the interface behavior during the pile loading 
process. The joint elements are placed on the pile shaft and the pile 
tip. For calculation simplicity, the meshing was finished using three 
nodal triangular elements. The total numbers of triangular elements, 
joint elements and nodes for different piles are shown in Table 3. 

 
 

                
 
 

(a) Model pile                            (b) Meshing  
 
Figure 6 Element meshing 

 
The numerical calculations are conducted using the 

displacement-controlled method. The displacement control points 

are at the bottom of the pile tip and all control points descend 
simultaneously. The displacement is added by equivalent 
increments. The final displacement is equal to the shaft diameter of 
the pile in each calculation step. The influence of the pile 
installation on the bearing capacity is neglected because the model 
pile is installed before the model ground is created. 

 
Table 3 Total number of meshing elements for underreamed piles 

 
 

Flat Base 
Pile 

Pencil-
shaped 
Base 
Pile 

Pencil-
shaped 

Base Pile 

Convergent angle 90 60 30 

Triangular element 
number 

822 779 747 

Joint element number 18 24 26 

Node number 450 428 412 

 
5. RESULTS AND DISCUSSIONS 

5.1 The relationship between normalized bearing stress and 
displacement 

The predicted relationships between normalized bearing stress and 
displacement are compared to experimental results in this study. In 
the numerical simulation, the pile is pushed into the sandy soil by 
the prescribed displacements. The vertical reaction forces are 
summed to the pile tip. 

In this study, the normalized bearing stress is defined as the ratio 
of the current bearing stress at the pile tip to the surcharge pressure. 
The normalized displacement is often used in analyses, as defined 
by the ratio of the current displacement (S) to the pile shaft diameter 
(D). Predicted values using numerical analysis of underreamed piles 
with flat bases and pencil-shaped bases are compared with 
experimental results in Figure 7, Figure 8 and Figure 9. The dashed 
lines show the experimental results, while the solid lines show the 
predicted values. The convergent angles of the pencil-shaped piles 
are 60 and 30 degrees. 

The predicted values agree well with the experimental results 
during the entire loading process for each surcharge pressure. The 
accuracy of the predicted value is especially good when the 
displacement is small. All the predicted values slightly overestimate 
the actual test results, as shown in Figures 7, 8 and 9. The predicted 
discrepancy is less affected by pile shape. The maximum 
discrepancy between predicted and measured results occurs when 
surcharge pressure is 400 kPa. Li and Yamamoto (2005) predicted 
the same relationship using small deformation analysis and the 
modified Cam Clay model revised using the SMP criterion. The 
predicted result only agreed with test results when the normalized 
displacement was smaller than 0.5. The accuracy of the prediction is 
improved by incorporating the large deformation analysis and 
mechanical characteristics of the joint element and by using the 
constitutive model for sand with particle crushing. 

The bearing stress of the pile with the enlarged base has been 
increased during the test. However, the rate of increase of the 
bearing stress depends on the shape of the enlarged base. The 
numerical results show that the bearing stress of the underreamed 
pile decreases as the convergent angle deceases. The normalized 
bearing stress of the pencil-shaped base pile with a 30-degree 
convergent angle loses approximately twenty percent at the final 
state. The confining stress on the soil particles in the area around the 
pile tip decreases as the convergent angle decreases. Although the 
surcharge pressure acting on the top surface of the model ground 
increases, the normalized bearing stress decreases, contrary to the 
expected trend. This decreasing in the normalized bearing stress is 
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related to the particle crushing. It can be explained by the high 
number of sand particles that are crushed under the high surcharge  

 

 
Figure 7 The relationship between normalized bearing stress 

and normalized displacement ( α=90o ) 
 

 
Figure 8 The relationship between normalized bearing stress 

and normalized displacement ( α=60o) 
 

 
Figure 9 The relationship between normalized bearing stress 

and normalized displacement ( α=30o ) 
 
5.2 Distribution of stress and strain contours 

The visualization of the stress and strain contours helps in 
understanding the soil behavior when pile is jacked into sandy soil. 
Dijkstra et al. (2009) also implemented the axisymmetric analysis of 
pile installation in both loose and dense sand layers. The distribution 
of radial stress, vertical stress and circumferential stress contours in 
the sand around the underreamed pile are shown in Figures 10, 11 

and 14, respectively. The distribution of radial strain, vertical strain 
and circumferential strain contours of sand around the underreamed 
pile are shown in Figures 12, 13 and 15, respectively.  
 

              
 

(a)  S/D= 1.0 α=90o                       (b)   S/D= 1.0 α=60o 
 

           
 

(c) S/D= 0.5  α=30o                      (d)   S/D= 1.0 α=30o 
    

Figure 10 The radial stress contours (Surcharge Pressure 200 kPa) 
 

 

     
 

(a)  S/D= 1.0   α=90o                   (b)   S/D= 1.0   α=60o 
 

          
 

(c)  S/D= 0.5  α=30o                      (d)   S/D= 1.0  α=30o 
 
Figure 11 The vertical stress contours (Surcharge Pressure 200 kPa) 
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(a)   S/D= 1.0  α=90o                    (b)   S/D= 1.0  α=60o 
 

         
 

(c)  S/D= 0.5  α=30o                     (d)   S/D= 1.0  α=30o 
 

Figure 12 The radial strain contours (Surcharge Pressure 200 kPa) 
 
 

    
  

(a)  S/D= 1.0     α=90o                 (b)  S/D= 1.0    α=60o 
 

       
 

(c)  S/D= 0.5  α=30o                 (d)  S/D= 1.0   α=30o 
 

Figure 13 The vertical strain contours (Surcharge Pressure 200 kPa) 
 
 

  
  

(a)  S/D= 1.0   α=90o                  (b)   S/D= 1.0   α=60o 
 

   
 
(c)  S/D= 0.5  α=30o                   (d)   S/D= 1.0  α=30o 

 
Figure 14 The circumferential stress contours                                 

(Surcharge Pressure 200 kPa) 
 

      
 
(a)  S/D= 1.0  α=90o                      (b)  S/D= 1.0  α=60o 
 

       
 
(c)  S/D= 0.5  α=30o                       (d)  S/D= 1.0  α=30o 

 
Figure 15 The circumferential strain contours                                 

(Surcharge Pressure 200 kPa) 
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In this study, (a), (b) and (d) in each figure represent the distribution 
of stress or strain contours of pile with convergent angles of 90, 60 
and 30 degrees. The stress and strain contours are shown for the pile 
penetrating at different depths for the same surcharge pressure level 
as well. The normalized displacement reaches 0.5 and 1.0 in (c) and 
(d) in each case. The initial surcharge pressure, 200 kPa, is given to 
all the elements of the model ground in the vertical direction. The 
lateral coefficient is set as 0.5. The compressive direction is taken as 
the positive in all the stress and strain contours. The maximum 
radial stress first occurs at the corner of the pile base in Figure 10 (a).  
The pile base was made of mortar, and crack failure was observed 
on the surface of the flat base of the pile in Figure 16 (a) when the 
tests were completed. Once crack failure occurs in the pile base, the 
bearing capacity of the pile decreases. The results in Figure 10 (a) 
and Figure 10 (d) show that the radial stress around the pile with the 
pencil-shaped base is smaller than that of the pile with the flat base. 
The underreamed pile with the pencil-shaped base is capable of 
preventing crack failure, as shown in Figure 16 (b). The crack 
failure in this case is explained as the result of significant radial 
stress acting on the pile base when the pile base shape is flat.  
 
 
 
 
 
 
 
 

(a) α=90o                       (b)  α=60o 
 

Figure 16 Crack failure on the surface of two pile bases                   
(Surcharge pressure 200 kPa) (Yamamoto et al. (2003)) 

 
The distribution of the vertical stress contours is displayed in 

Figure 11. The distributed area of high-value vertical stress is 
approximately three diameter lengths in the vertical down direction 
and three diameter lengths in the radial direction. The high-value 
vertical stress concentrates in the corner just beneath the pile base in 
Figure 11 (a) and Figure 11 (b). The distributed shape of vertical 
stress contour expands as the pile penetrates deeper in the sand, as 
observed by comparing Figure 11 (c) with Figure 11 (d). The range 
of the high-value vertical stress decreases markedly as the 
convergent angle decreases, as shown in Figure 11 (d). 

The distributed range of the high-value circumferential stress is 
one diameter length in the vertical down direction and one diameter 
length in the radial direction, as shown in Figure 14. The distributed 
area of the high-value circumferential stress is less affected by the 
pile tip shape. By comparing the distribution of stress contours in 
Figures 10 (c) and 10 (d), Figures 11 (c) and 11 (d) and                            
Figures 14 (c) and 14 (d), the distributed area of the high-value 
stress contour expands in both the vertical down and radial direction 
as the driving depth increases. 

The high negative-value radial strain contours are just beneath 
the pile tip. In addition, the region of the high negative-value radial 
strain expands as the convergent angle decreases, as seen by 
comparing Figures 12 (a) and 12 (d). The high negative-value radial 
region is concentrated two diameter lengths in the vertical down 
direction. The non-irregular elliptic distribution of the high positive-
value radial strain counter is located in the corner of the pile base. 
The results show that the volumetric expansion beneath the pile tip 
turns to volumetric compression in the corner of the pile base. Such 
a tendency is compatible with the predicted result by Sheng et al. 
(2008). The distributed area of the high positive-value radial strain 
is not influenced very much by the shape of the pile tip. 

The high positive-value vertical strain is beneath the pile tip, 
four diameter lengths deep, as shown in Figures 13 (a), 13(b) and 
13(d). The soil particles in this area are heavily compressed. The 
size of the distributed area of the high positive-value vertical strain 
increases as the convergent angle becomes smaller. However, the 

high negative-value distributed shape becomes smaller as the 
convergent angle becomes smaller. The high negative-value vertical 
strain appears around the corner of the pile base and the distributed 
irregular shape is not influenced by the convergent angle. 

The distributions of circumferential strain contour are shown in 
Figure 15. The shape of the distribution of circumferential strain is 
elliptical. The area of the distributed elliptical shape is one diameter 
length in the vertical down direction and two diameter lengths in the 
radial direction. The minimum negative-value circumferential strain 
appears in Figure 15 (d) for the underreamed pile with a 30-degree 
convergent angle. The distributed shape of the high negative-value 
circumferential strain is affected by the pile tip shape. Moreover, the 
distribution of the high-value strain contours expand in both the 
vertical down and the radial direction with larger penetrating depth, 
as shown in Figures 12 (c) and 12 (d), Figures 13 (c) and 13 (d) and 
Figures 15 (c) and 15 (d). 
 
5.3 The stress-strain relationship at different depths beneath 

pile tip 

To investigate the soil behavior variance of elements at different 
depths and to emphasize the necessity of applying the constitutive 
model with particle crushing in numerical computations, three 
elements at different depths beneath the pile tip are selected and 
their mechanical behavior relationships are demonstrated. The 
outline of the model ground and the three elements numbered 49, 89 
and 405 are shown in Figure 17. Figure 18 shows the relationship 
between the stress ratio and deviatoric strain under different 
surcharge pressures for these three elements. Sub-titles (a), (b) and 
(c) of each figure indicate the predicted values of the mechanical 
relationship for element No. 49, No. 89 and No. 405, respectively.  
 

 
Figure 17 Three elements beneath pile base at different depths 

 
The stress ratio is defined as the ratio of the mean stress to the 
deviatoric stress. The stress ratio decreases as the surcharge pressure 
increases at a single element. Figure 18 (a), 18 (b) and 18 (c) show 
that the stress ratio increases with increasing depth beneath the pile 
tip with the same surcharge pressure level. The initial stress ratio is 
0.75 because the lateral coefficient is assumed to be 0.5, as in 
previous. The predicted results show that the deviatoric strain of 
element No. 89 is larger than that of the other two elements because 
element No. 89 is in the region of significant shear beneath the pile 
tip. The predicted relationship between the volumetric strain and the 
deviatoric strain are shown in Figure 19. The volume contraction 
and expansion of the element at different depths are reasonably 
demonstrated by the predicted values, as shown in Figure 19. In 
Figure 19 (a), the volume of the element No. 49, in the significant 
compressive region, shrinks under all three levels of surcharge 
pressure. The volume contraction is from the particle crushing and 
rearrangement. The degree of volume reduction increases with 
increasing surcharge pressure. The volume of element No. 89 
contracts initially, and then expands when the surcharge pressure 
reaches 200 kPa. The only volumetric contraction of element No. 89 
is observed when the 400 kPa and the 600 kPa surcharge pressure 
are applied, as shown in Figure 19 (b).  

49 
89 
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                                                 (a)  Point 49       

 
 (b)  Point 89 

 
(c)  Point 405 

 
Figure 19 The relationship between the volumetric strain and the 
deviatoric strain of the elements at different depth beneath pile tip 

 
The volume expansion of element No. 405 is predicted under all 
three surcharge pressures, as shown in Figure 19 (c). The degree of 
positive dilatancy becomes more noticeable as the surcharge 
pressure decreases. The markedly positive dilatancy tendency shown 
in the model means that the confining pressure on element No. 405 
is weakened. The soil elements at different depths or positions 
beneath the pile base may experience various volumetric changes. 
Consequently, it is important to integrate the constitutive model for 
sand with particle crushing with finite element analysis of the model 
pile loading test.   The extent of the volume contraction is not quite 
distinctive of element No. 49 in Figure 19 (a) and can also be 
attributed to the stress condition of the soil behavior just beneath the 
pile base, which may differ from that measured in the triaxial 
compression test.  
 
6. CONCLUSIONS 

To investigate the effect of pile tip shape on soil behavior around a 
pile, the application of finite element analysis is presented that 
incorporates the mixed incremental method for the UL method and 
the characteristics of particle crushing. The major findings of the 
study are summarized below. 
 

        
(a)   Point 49 

 
(b)  Point 89 

 
(c)  Point 405 

 
Figure 18 The relationship between the stress ratio and the 

deviatoric strain of the elements at different depth beneath pile tip 
 
(1) The predicted values of the relationship between normalized 

bearing stress and normalized displacement of underreamed 
model piles agreed with the experimental results.  

(2) The distribution of stress contours: The distribution area of the 
high radial stress contours around the underreamed pile 
increases as the convergent angle decreases. A significant 
finding is that an underreamed pile with a smaller convergent 
angle can prevent crack failure on the pile base surface. The 
distributed area of the high-value vertical stress contour is 
approximately three diameter lengths in the vertical down 
direction and three diameter lengths in the radial direction. The 
high-value vertical stress concentrates in the corner just 
beneath the pile base and decreases as the convergent angle 
decreases to 30 degrees. The distributed area of high-value 
circumferential stress is less affected by the shape of the pile tip. 

(3) The distribution of strain contours: The negative-value radial 
strain contours are just beneath the pile tip. In addition, the 
distributed region of the high negative-value radial strain 
expands as the convergent angle decreases. The distributed area 
of the high positive–value vertical strain develops beneath the 
pile tip and becomes more significant for the underreamed pile 
with a 30-degree convergent angle. The high negative-value 
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vertical strain appears around the corner of the pile base, and its 
distributed shape is not influenced by the convergent angle. 
The distributed shape of the high negative-value 
circumferential strain is affected by the shape of the pile tip. 

(4) The mechanical behavior of elements beneath the pile tip at 
different depths is examined. The predicted relationship 
between the stress ratio and the deviatoric strain shows that the 
stress ratio variances for the three elements exhibit nearly the 
same tendency. The stress ratio decreases with increasing 
surcharge pressure for the same element. When the position of 
the element is closer to the pile base, the stress ratio decreases. 
However, the volumetric contraction is remarkable. Three 
elements display different volume variation close to real 
behavior. Consequently, it is vital to integrate the constitutive 
model for sand with particle crushing into finite element 
analysis of the model pile loading test. 

The numerical analysis presented in this paper can be improved 
in some aspects. For example, the interface element between the pile 
and the surrounding soil is very simple; the experimental technology 
to measure frictional coefficient for interface model needs further 
investigation; a more advantageous model that is capable of 
predicting dilatancy and strength softening should be incorporated in 
the numerical analysis in further work. Additionally, the effects of 
parameter for constitutive model on the predicted results of pile 
loading in sandy soil will be examined in further study. 
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