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ABSTRACT: This paper proposes a numerical approach using a matrix form with Newmark’s method to analyse the phenomenon of the 
one-dimensional stress-wave propagation in an open-ended pipe pile with the aim of enhancing the reliability of the dynamic analysis. To 
verify the proposed method, first, the calculated results obtained from the proposed method were compared with those obtained from the 
rigorous continuum method FLAC3D, the conventional Smith method, and the theoretical solution. The calculated results obtained from the 
proposed method were in good agreement with those obtained from the continuum method FLAC3D. Second, static and dynamic load tests of 
a spun concrete pile in a construction site in Viet Nam were carried out. Wave Matching Analyses (WMAs) using the proposed method were 
conducted to derive a static load-displacement curve. The derived curve was comparable to that measured in static load test (SLT), indicating 
that the proposed method has high potential to predict the static pile response.  Hence, the proposed method could be used as a practical 
alternative to the conventional SLT. 
 
 
1. INTRODUCTION 

Open-ended steel pipe piles have been used for years as the primary 
solution to constructing foundations for various structures in 
offshore conditions. Recently, there has been an increasing interest 
in using spun (pre-stressed concrete) piles for the foundations of 
many structures, especially residential and industrial buildings. 
During driving such piles into the ground, a part of the soil around 
the pile toe enters into the pile to create a soil column called a soil 
plug. Depending on the relative movement between the pile and the 
soil plug, the pile is said to be plugged, partially plugged or 
unplugged. In all three cases, the total resistance of an open-ended 
pipe pile is the summation of outer shaft resistance, soil plug 
resistance (or inner shaft resistance) and pile tip resistance.  

In pile foundation design, it is common to use the static load-
displacement relation of a single pile to determine its bearing 
capacity and corresponding displacement. At present, the load-
displacement relation is directly obtained from a static load test 
(SLT) or derived from the interpretation of dynamic load test (DLT) 
or rapid load test (RLT) signals. While the SLT is considered the 
most reliable method, it is costly and time-consuming. Rapid pile 
load testing methods, such as the Statnamic load test method 
(Bermingham et al. 1989) and the Spring-hammer load test method 
(Matsumoto et al. 2004) in which the phenomenon of stress-wave 
propagation in piles could be ignored, have been developed. Various 
methods of interpreting the measured dynamic signals, such as the 
unloading point method (UPM) (Kusakabe et al. 1995) and the non-
linear damping method (NLDM) (Matsumoto et al. 1994) have been 
proposed to derive the static load-settlement relation of the piles. In 
the DLT, wave matching analysis (WMA) plays a key role in 
identifying soil resistance parameters which are then used to 
estimate the static load-displacement relation. Such analysis requires 
an appropriate numerical method and numerical analysis model as 
well. Conventionally, the Smith method (Smith, 1960), the 
characteristic solution and the finite difference scheme of the one 
dimensional wave equation have been employed for wave matching 
analysis. For example, the Smith method is employed in WEAP and 
CAPWAP (Goble et al. 1977, 1979), characteristic solutions are 
adopted in TNOWAVE (Middendorp et al. 1986) and KWAVE 
(Matsumoto et al. 1991), and the finite difference scheme is used in 
KWAVE-FD (Wakisaka et al. 2004). 

In the case of open-ended pipe piles, it is necessary to consider 
the inner shaft resistance, as well as the wave propagation in the soil 
plug, in a wave matching analysis. Heerema and de Jong (1979) 
used the pile-in-pile model with Smith’s empirical soil models to 

analyse the stress wave propagation in an open-ended pile. They 
were followed by Randolph and Simon (1986), Matsumoto et al. 
(1991), and Randolph and Deeks (1992) who used rational soil 
models with linear soil stiffness and a damping coefficient for pile 
driving analyses. 

Considering numerical methods based on the one-dimensional 
stress-wave propagation theory, their advantage is rapid calculation. 
Nevertheless, the characteristic solution and the Smith method may 
have numerical instability when soil stiffness and the velocity-
dependent resistance have large values. One of the reasons is that 
the displacement and velocity of a pile node at the previous 
calculation time step are used to calculate the soil resistance 
mobilised at the present calculation step. In other words, the pile 
behaviour and soil resistance are not fully coupled at each time step. 
This aspect will be discussed in detail later through a comparison of 
calculation results using the Smith method and a rigorous numerical 
method. 

More rigorous methods, in which the soil surrounding a pile is 
regarded as a continuum medium using the finite element method or 
the finite difference method, have been developed. Chow and Smith 
(1984) performed axisymmetric finite element analyses for solid and 
pipe piles driven into clay under undrained conditions. 
Liyanapathirana et al. (2001) studied the driving responses at the 
vicinity of the pile tip of thin walled open-ended pipe piles using a 
two-dimensional axisymmetric finite element method. The results 
indicated that the shear stress reached the maximum magnitude right 
above the bottom of the soil plug while the vertical stress wave 
reached the highest magnitude beneath the bottom of the soil plug. 
Thus, the interaction between the waves travelling in radial and 
vertical directions at the bottom of the soil plug was considerable. 
Paikowsky and Chernauskas (2008) employed a two-dimensional 
finite difference scheme to investigate the spatial stress generated 
within a soil plug. They suggested that radial wave propagation 
within the soil plug, as well as compression wave propagation 
within the pile and the soil plug, should be taken into account.  
Although such continuum methods are regarded as the most 
rigorous methods in pile driving analysis, they are relatively slow in 
calculation, with runtimes of several hours. Therefore, it is currently 
not practical to apply continuum methods in routine pile dynamic 
analysis. 

In order to overcome the above shortcomings of conventional 
one-dimensional stress-wave propagation analyses as well as those 
of the rigorous continuum methods, the matrix method of one-
dimensional stress-wave propagation analysis in a pile using rational 
soil models recommended by Randolph and Deeks (1992) is 
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applied on the pile head. The corresponding relative loading 
duration, TR = tL/(2L/c), varied from about 0.2 to 14. 
 

 

  
Figure 6 Comparison of the pile response at the middle point of the 

pile between the proposed method and the theoretical solution:               
(a) Pile axial force (b) Pile velocity 

 

 
 

Figure 7 Specifications of the pile and soil 
 

 
 

Figure 8 Impact force with different loading durations 

Figures 9a and 9b compare the pile head displacements versus 
time between the proposed and the Smith method for all the loading 
durations. In the cases with short loading durations, with tL varying 
from 2 to 8 ms, as usual in DLTs, the results obtained from the 
Smith method are comparable with those from the proposed method, 
although the Smith method tends to slightly underestimate the pile 
displacement (Figure 9a). In the cases with long loading durations, 
with tL ranging from 80 to 140 ms, as usual in RLTs, the results 
obtained from the proposed method are always greater than those 
obtained from the Smith method, and this discrepancy becomes 
larger with the increase in loading duration. 

In order to verify the proposed method in more detail, case 6                   
(tL = 100 ms) was analysed again using the rigorous method 
FLAC3D to compare the calculated results with those from the 
proposed and the Smith methods in the next section. 

 

 
 
 
 

 
 

Figure 9 Pile head displacements vs. time: (a) short loading duration 
(b) long loading duration 

 
2.3.3  Comparison with results calculated using FLAC3D 

FLAC3D is a three-dimensional explicit finite difference program for 
engineering mechanics computation simulating the behaviour of 
three-dimensional structures constructed on soil, rock or other 
materials that undergo plastic flow when their yield limits are 
reached (Itasca, 2002). Materials are represented by polyhedral 
elements within a three-dimensional grid.  

Comparison analyses were made between the proposed method, 
the Smith method and the FLAC calculation for the case of an open-
ended pipe pile. It was assumed that the inside of the pipe pile was 
filled with soil. 
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resistance. Hence, maximum soil resistance is mobilised at a very 
small soil displacement in pile driving, compared to the case of 
static loading. After the occurrence of the slippage failure at the pile 
shaft or failure of the ground below the pile tip, the soil resistance 
predominantly influence the pile response, resulting in low 
sensitivity of the dynamic pile responses to G. 

The calculated static load-displacement curves are shown in 
Figure 14: (a) in cases 1 to 4 where G alone was varied, (b) in cases 
5 to 12 where max and qmax were varied. As expected, pile head 
stiffness is sensitive to G, while yield load and bearing capacity are 
sensitive to the soil resistance. 

It can be said from the sensitivity analyses that the results of 
WMA (dynamic pile responses) are dominantly governed by the 

assumption of the soil resistance distribution. The soil resistance 
distribution could be estimated with an acceptable accuracy within a 
variation of 5 % if the differences between calculated and measured 
values of the peak upward travelling force and final pile head 
displacement in WMA are in range of 20 % and 5 %, respectively. 
Similar criteria could be used in WMA to obtain the distribution of 
shear modulus with an accuracy of 20 %. If measurements of elastic 
shear wave velocities, Vs, of the ground are available, we could 
improve the accuracy of the identified shear modulus from wave 
matching analysis. 

In the following part, the proposed method is used to analyse a 
case study in Viet Nam for further verification. 

 
 

Figure 12 Sensitivity of upward force at ground level due to: (a) Variation of G (b) Variation of max and qmax 

 
 

Figure 13 Sensitivity of the pile head displacement due to: (a) Variation of G (b) Variation of max and qmax 
 

 
 

Figure 14 Sensitivity of derived load-displacement curve due to: (a) Variation of G. (b) Variation of max and qmax 
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using the following empirical equation proposed by Imai (1977), 
regardless of soil type. 

 

0.737
0 (kPa)98 120   G N                                                                (27) 

According to Vietnamese pile design standard code, TCVN 205-
1998, the strength parameters, max and qmax, can be estimated from 
SPT N-value using the following empirical equations: 

max = 2N (kPa) for sand (limit value = 100 kPa)                          (28) 

max = cu or 10N (kPa) for clay (limit value = 150 kPa)                (29) 

qmax = 300Np (kPa) for both sand and clay soils                            (30) 
                                (Np is limited to  50)                                                                       

where N is SPT N-value of the soil surrounding the pile and Np is the 
average SPT N-value of the soil at the pile tip within a range of 4D 
above and 1D below the pile tip.  
 
3.2.3  Modelling of the ground and the pile 

Figures 19 shows the profiles of SPT N-values, the soil stratification, 
location of the pile and the distributions with depth of the shear 
moduli, G0, and shear resistances, max. Note that the values of G0 
and max are the first assumptions of the soil properties estimated 
from Eqs. (27) to (30) for both outer and inner soils in the WMA.  

Although the ground at the location of the test pile consists of 
three soil layers, it was divided into 5 sub-layers based on the 
distribution of the SPT N-values. The test pile with the length of               
60 m was divided into 60 elements in the analysis. The calculation 
time step was set at 0.01 ms, about one tenth of critical time step, 
tcri = (L/c)/2 = 0.1 ms. 

Because the top level of the soil plug was not measured during 
carrying out the dynamic load test, the soil plug height was assumed 
to be 70 % to 80 % of the embedment pile length. This assumption 
is based on the research of Paik et al. (2003) and Paikowsky et al. 
(1989). Hereafter, the distance from the seabed to the top of the soil 
plug in the wave matching analysis was assumed to be 9 m, 
corresponding to about 70 % of the embedment pile length. 

 

 
 

Figure 19 Modelling of the test ground at the test pile TSC2 
 

3.2.2  Estimation of impact head force acting on the pile head 

The forces and velocities are usually measured near the pile head, 
about 1.0 to 2.0 times diameter of the pile. However, in this field 
tests, distance from the pile head to the strain gauges level, Lm, was 
2.6 m, corresponding to 3.25D for the TSC2. In order to model the 
full pile length in the analysis, it is needed to estimate the impact 
force acting on the pile head. Since there was no soil resistance from 
the measurement level to the pile head, the one-dimensional stress-
wave theory was employed to calculate the impact force acting on 
the pile head from the measured force and measured velocity.  

 

The impact head force, F(0,t), is calculated from the measured 
downward travelling force, d m( ,  )F L t , and the upward travelling 

force, u m( ,  )F L t , based on the one-dimensional stress-wave theory, 

as follows: 
 

d m m u m m(0, ) ( , / ) ( , / )   F t F L t L c F L t L c                         
(31) 

 
in which  d m m( , / )F L t L c and u m m( , / )F L t L c  are calculated from the 
measured force, Fmeas, and the measured velocity, vmeas, as the 
following equations: 
 

d m m meas m m meas m m

1
( , / ) ( , / ) ( , / )

2

E
F L t L c F L t L c v L t L c

c
      
 

          (32)  

u m m meas m m meas m m

1
( , / ) ( , / ) ( , / )

2

E
F L t L c F L t L c v L t L c

c
      
 

          (33)  

The calculated impact forces at the pile head in the EOD and 
BOR tests are shown in Figures 20a and 20b. The measured forces 
at the strain gauge level are also shown in the figures for comparison. 

Under the impact force caused by a hammer mass of 10 ton with 
a falling height of 2.6 m, the measured settlement per blow of the 
pile head were 1.30 mm in the EOD test and 0.35 mm in the BOR 
test. These values along with pile axial force, downward and upward 
travelling forces, velocities and displacements obtained from the 
measured dynamic signals at the strain gauge level were used as 
targets in the wave matching analysis (WMA). In the WMAs, the 
soil resistance parameters are estimated from the assumed values of 
the shear modulus and the pile dimensions (refer to Eqs. (2), (3) and 
(8) to (12)). As for the density, s, and the Poisson's ratio, , of the 
soils, it was assumed that s = 1.73 ton/m3 and  = 0.3. 

In the first WMA with the soil properties shown in Figure 19, 
good matching was not obtained. Then, the soil properties were 
changed until good matching between the calculated and the 
measured responses was observed. 

 

 

 
Figure 20 Calculated impact forces at the pile head, together with 

measured forces of the TSC2 at: (a) EOD. (b) BO 
 
3.3  Results of WMA 

Results of the final WMA with consideration of the above discussed 
criteria at location of the strain gauge including axial forces, 
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downward and upward travelling forces, velocities and 
displacements are shown in Figure 21 for the EOD test and in          
Figure 22 for the BOR test. 

 

 

 

 

Figure 21 Results of the final WMA in EOD test (a) Force                        
(b) Downward and upward travelling forces (c) Velocity (d) Disp. 

 

 

 

 
Figure 22 Results of the final WMA in BOR (a) Force                              

(b) Downward and upward travelling forces (c) Velocity (d) Disp. 
 

It is noted that the calculated downward and upward travelling 
forces shown in Figures 20a and 20b were estimated from the 
calculated axial force, F, and the calculated velocity, v, at the strain 
gauge level using Eqs. (32) and (33), respectively.  

The soil parameters identified from the final WMA are shown in 
Figure 23a for the outer soil and in Figure 23b for the inner soil, and 
indicated in Table 2 for the soil at the pile tip and at the soil plug 
base. The first assumptions of the soil are also indicated in the figure 
for comparison. 
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Figure 23 Soil properties obtained from the final WMA of the TSP1 
in the EOD and BOR tests. (a) Outer shear modulus (b) Outer shear 

resistance (c) Inner shear modulus (d) Inner shear resistance 
 

Table 2 The soil parameters at the pile tip and soil plug base 
identified from the final WMA 

Item Unit 
EOD 
test 

BOR 
test 

1st 
assump. 

Gb at the pile tip,  MPa 950 2000 210 
Gsp at soil plug base,  MPa 200 400 210 
qb,max at the pile tip,  kPa 10000 30000 15000 

qsp,max at the soil plug base kPa 3000 3000 15000 

 
The other identified soil parameters are,  = 0 (refer to Eqs. (13) 

and (14) ), Rfs = Rfb = 0 (refer to Eqs. (17) and (18)). Note here that 
WMAs with various values of Rfs and Rfb were carried out, and it 
was found that the influence of Rfs and Rfb is negligible in WMA, 
because the slip failure at the outer pile shaft and failure of the soil 
beneath the pile annular base occur by very small soil displacements 
(= pile node displacements before failure) due to a large amount of 
damping force. Hence, the soil response is substantially elastic in 
WMA (in dynamic loading). It may be difficult to identify Rfs and 
Rfb from WMA correctly. Appropriate estimation of Rfs and Rfb may 
be largely dependent on database of SLTs. 

As seen from Figures 23a and 23b, the values of shear modulus, 
G, and the shear resistance, max, of each soil layers identified from 
the final WMA of the BOR test were greater than those of the EOD 
test, indicating that the “set-up” phenomenon occurred during the 
rest period between the EOD and BOR tests. Such phenomenon was 
also obtained for the soil at the pile tip by comparison of the 
identified values, Gb and qb,max, between the EOD and BOR tests in 
Table 2. 

In both EOD and BOR tests, the first assumption of the shear 
modulus estimated from empirical equation Eq. (27) were 
overestimated, compared to the finally identified values                  
(Figures. 23a and 23b). Comparison of the outer shear modulus 
between the identified values from BOR test and the firstly assumed 
values suggests that reduction factor of 0.1 to 0.15 for soft soils (the 
top soil layer of soft clay and the upper part of the second soil layer 
of clayey sand with loose packing state), 0.15 to 0.30 for medium 
soils (the upper part of the second soil layer of clayey sand) and 0.30 
to 0.45 for hard soils (the lower part of the second soil layer of 
clayey sand with medium packing state and the third soil layer of 
hard silt clay) can be used to estimate the shear module of soils at 
this particular site. In case of shear resistances, the empirical 
equations (28) and (29) overestimated the identified values for both 
outer and inner soils while first assumption of end-bearing 
resistances at the pile tip and at the soil plug base calculated from 
equation (30) underestimated the identified ones. Hence, it is needed 
to consider such differences when estimating the ultimate bearing 
capacity of the pile from SPT N-value. 

According to the final WMA results in Figure 23d, the set-up 
phenomenon of the inner shear shaft resistance was negligible in 
these particular cases. Hence, it could be thought that the set-up 
phenomena are mainly caused by the “set-up” phenomenon of the 
outer shaft resistance.  

Figure 24 shows the static load-displacement curves calculated 
from the soil properties identified in the final WMAs of EOD and 
BOD tests, compared with the static load test result in two cycles of 
loading process. The stiffness of the static response derived from the 
final WMA of the BOR test was higher than that of the static 
response in the EOD test. As mentioned earlier, BOD test was 
carried out 7 days after EOD test and SLT was carried out 10 days 
after BOD test. It may be reasonable that higher pile head stiffness 
identified from BOD test was caused by set-up” phenomenon of the 
soil between EOD and BOR tests. Such phenomenon might have 
continuously occurred from BOR test to SLT test due to the further 
rest period of 10 days, resulting in higher pile head stiffness at the 
SLT compared to the BOR test. Another possible reason for the 
difference between the load-displacements curves measured in SLT 
and derived from the WMA of BOR test is an imperfect modelling 
of the soil response used in the analysis. In order to examine the 
modelling of the soil response in more detail, it is required to carry 
out SLT just after the end of pile driving so that the influence “set-
up” could be neglected. At present, it is difficult to make a definite 
conclusion for this. 

 

 
 

Figure 24 Comparison of static curves of the TSC2 
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The ultimate pile capacity of 4100 kN was derived from the 

WMA of EOD test. However, the ultimate capacity was not 
obtained from the WMA of BOR test, indicating that TSC2 has an 
ultimate capacity greater than 5200 kN. This result conforms to the 
SLT result. It is recommended to use a driving hammer having a 
higher driving energy to obtain the ultimate capacity of the pile after 
the set-up phenomena. 

 
4. CONCLUSIONS 

In this paper, a matrix method using a finite difference scheme to 
analyse the phenomenon of stress wave propagation in an open-
ended pipe pile under both static and dynamic loading conditions 
has been proposed. In this method, the influence of stress wave 
propagation in the soil plug was considered, and the no linearity of 
the soil stiffness and damping coefficient were also taken into 
account. The proposed method was first verified by comparing the 
analysed results with those from a theoretical solution, the 
conventional Smith method, and a rigorous continuum method, the 
FLAC3D. Second, the static and dynamic load testing of a spun 
concrete pile in a construction site in Viet Nam were used to 
examine the applicability of the proposed method to dynamic pile 
load testing. WMA of the DLTs were conducted to identify the 
distribution of soil resistance with depth and then to derive the static 
load-displacement relations.  

The following conclusions and findings were drawn from the 
numerical analyses and the case study with limited conditions: 
(1)  The results obtained from the proposed method are comparable 

with those obtained from the rigorous continuum method, the 
FLAC3D. 

(2) The proposed method has a fast computation time when 
compared to the rigorous method. 

(3)  It was suggested from the WMAs of EOD and BOR tests as 
well as the SLT result in the case study that the spun concrete 
pile driven into clayey ground along the Cai Mep River 
exhibits a great degree of "set-up". 

(4)  A large number of WMAs with various distributions of internal 
and external shaft resistance were conducted to obtain good 
matching shown in Figures 21 and 22. In order to make the 
proposed approach be a more practical tool, further research 
will be needed to explore a more efficient manner of WMA 
procedure. 

Although the validity of the proposed method was examined 
using the full-scale test in this study, analyses of other full scale pile 
load tests with different pile configurations and soil conditions using 
the proposed method would be useful for further verification.  
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Appendix: FORMULATION OF STIFFNESS, DAMPING AND 
MASS MATRICES IN THE PROPOSED METHOD 

The substantial forms of the stiffness matrix [K], the damping 
matrix [C] and the mass matrix [M] for a simple modelling of the 
pile and soil system (Fig. A1) are given. They are indicated in full 
matrix forms for easy understanding of the constitution of the 
matrices. The matrices are symmetric. [K], [C] and [M] have band 
widths of 5, 7 and 1, respectively. Hence, semi-band matrices 
having the band width of 7 are used for solving Eq. (24). 

At the start of calculation, the values of the springs connected to 
the plastic sliders, kii, n (interface spring stiffness at inner surface at 
nth node) and Kio, n (interface spring stiffness at outer surface at nth 
node), are set as very large so that the pile node and the adjacent 
soils displace together (bonded condition) because the slip failure 
does not occur at initial step. Once the condition of the slippage is 
reached at the inner shaft or the outer shaft, the values of kii, n or Kio, 

n is set as very small value so that the pile node and the adjacent soil 
displace independently (unbonded condition). When the condition of 
re-join of the pile and the soil is achieved, the values of kii, n or Kio, n 
are recovered to large value. Similar calculation procedure is 
employed for the base soil resistance. 

As previously mentioned, the same calculation procedure is 
employed for the analysis of static loading, although the values of 
[C] and [M] are set at zero. The resulting plugging mode, perfectly 
plugged or unplugged mode, is merely dependent on the calculation 
result. If the potential of the total inner shaft resistance is larger than 
the soil resistance beneath the soil plug base, the perfect plugging 
mode is achieved.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure A1 Modelling of the pile and soil system 
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Stiffness matrix [K] 

                     

 B1+Kio,0
+kii,0   -Kio,0 -kii,0 -B1                               

   k0+b1   -k0   -b1                             

 -Kio,0   Kio,0+K0                                   

 -kii,0 -k0   kii,0+k0                                 

 -B1       
B1+B2 

+Kio,1+kii,
1 

  -Kio,1 -kii,1 -B2                       

   -b1       b1+b2 
+k1   -k1   -b2                     

         -Kio,1   Kio,1+K1                           

         -kii,1 -k1   kii,1+k1                         

         -B2       
B2+B3+ 
Kio,2+kii,

2 
  -Kio,2 -kii,2 -B3               

           -b2       b2+b3 
+k2   -k2   -b3             

                 -Kio,2   Kio,2+K2                   

                 -kii,2 -k2   kii,2+k2                 

                 -B3       
B3+Kib+
Kio,3+kii,

3 
  -Kio,3 -kii,3 -Kib       

                   -b3       b3+kib+
k3   -k3   -kib     

                         -Kio,3   Kio,3+K3           

                         -kii,3 -k3   kii,3+k3         

                         -Kib       Kib+Kb       

                           -kib       kib+kb     
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Damping matrix [C] 

                      

                                       

    c0   -c0                                 

  
   C0                                   

  
 -c0   c0                                 

                                       

            c1   -c1                         

             C1                           

           -c1   c1                         

                                       

                    c2   -c2                 

                     C2                   

                   -c2   c2                 

                          Cb2         -Cb2   

                            cb2+c3   -c3       -cb2 

                             C3           

                           -c3   c3         

                                  Cb1       

                                    cb1     

                          -Cb2           Cb2   

                            -cb2           cb2 
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Mass matrix [M] 

                     

 M0                                       

   m0                                     

                                         

                                         

         M1                               

           m1                             

                                         

                                         

                 M2                       

                   m2                     

                                         

                                         

                         M3               

                           m3             

                                         

                                         

                                 Mb       

                                   mb     

                                         

                                         

 
  


