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ABSTRACT: This paper studies the NGI-ADP soil model, which can realistically simulate the anisotropic undrained stress strain responses 
and undrained shear strengths of clays. The model requires direct input parameters of undrained shear strengths and failure shear strains, 
including triaxial compression test, triaxial extension test and direct simple shear. However, parametric studies in this paper clearly show that 
trial-and-error testing of some input parameters is necessary in order to determine the optimal set of input parameters. The paper proposes the 
equations of anisotropic stress strain curves of this soil model and the technique of soil parameter optimization so that the optimal set of input 
parameters can be determined automatically and efficiently. The technique of soil parameter optimization is based on the statistical approach 
of least squares where proposed stress strain curves are used to compute model predictions. Finally, the proposed technique of soil parameter 
optimization of the NGI-ADP model is employed to determine the optimal set of input parameters for Bangkok soft clay. 
 
 
1. INTRODUCTION 

In geotechnical engineering, it is generally accepted that natural 
clays exhibit anisotropic shear properties, including stress strain 
response as well as undrained shear strengths. These anisotropic 
properties depends mode of shearing or applied stress path such as 
laboratory testings of triaxial compression (TC), triaxial extension 
(TE), and direct simple shear (DSS). Since the major principal 
stresses of these tests vary from the vertical direction (TC) to about 
45 (DSS) and to the horizontal direction (TE), simple 
understanding of anisotropic stress strain and strength responses of 
natural clays is that they a function of the direction of major 
principal stress to the vertical. Ladd and DeGroot (2003) presented 
anisotropic undrained shear strength of normally consolidated clay 
for those testings as well as anisotropic undrained Young's modulus 
at 50% (E50).  

In general, the anisotropy of soil is classified into inherent and 
induced anisotropy following the concepts adopted by many 
researchers (e.g. Casagrande and Carillo, 1944; Wong and Arthur, 
1986; Oda and Nakayama, 1988). Inherent anisotropy is defined as a 
physical characteristic which is inherent in the material and entirely 
independent of applied stresses. In other words, inherent anisotropy 
is the result of the deposition process and grain characteristics which 
is not altered significantly during normal loading. On the other hand, 
induced anisotropy is defined as due exclusively to the strain 
associated with applied stresses. This classification of soil 
anisotropy separates the effects of soil structure developed at the 
micro level (preferred particle orientations and inter-particle forces), 
giving rise to inherent anisotropy and the effects of pre-straining 
causing induced anisotropy.  The effects of cross anisotropy in 
undrained shear strength of clays are attributed to inherent 
anisotropy and their deposition histories. 

Some important recent researchers studied on the anisotropic 
strength of soils and the effect of anisotropic strength on soil 
behaviours (e.g. Casagrande and Carillo, 1944; Davis and Christian, 
1971; Baker and Desai, 1984; Oda and Nakayama, 1988; Shibuya et 
al., 2003; Li and Dafalias, 2004; Liu and Indraratna, 2011). 
Undrained strength envelope and its relationship between undrained 
shear strength (su) and the direction of the major principal stress to 
the vertical () was proposed by Casagrande and Carillo (1944) and 
Davis and Christian (1971), where two and three parameters are 
used to describe the undrained strength envelope, respectively. In 
addition, tensor parameters was also employed for describing the 
effect of anisotropy on the peak strength for geomaterials, including 
Baker and Desai (1984), Oda and Nakayama (1988), Shibuya et al. 
(2003), Li and Dafalias (2004). For those studies, it was assumed 
that the peak undrained shear strength is affected by the inherent 
anisotropy in the form of a tensor. The fundamental difference 

between those studies exists in the representation of the inherent 
anisotropy by tensor or vector. In addition, a general anisotropic 
failure criterion was also proposed by Liu and Indraratana (2011) 
using tensor parameters of three sets of weakness planes and their 
associated reduction factors. 

For typical cohesive soils, undrained shearing strength of triaxial 
compression, suTC is the largest, but that of triaxial extension, suTE is 
the lowest, while that of direct simple shear, suDSS is in between 
those limits. A similar behaviour can be observed for E50. In 
addition, failure shear strains are different for different shearing 
modes. The shearing mode TC requires smallest failure shear strain 
but the shearing mode TE requires largest shear strain, while the 
failure shear strain of DSS shearing mode falls in between.  

However, there are some cases where undrained shearing 
strength of triaxial extension, suTE is not the lowest. Instead, that of 
direct simple shear, suDSS is the lowest, such as Connecticut Valley 
varved clays. Engineering properties of this varved clay were early 
pioneered by Sambhandharaksa (1977). Undrained strength 
anisotropy of this geological material arises from soil structure at the 
macro level of alternating layers of medium grey inorganic silt and 
darker silty clay giving rise to the minimum strength parallel to the 
horizontal plane than any other planes. Thus, the use of undrained 
shear strength in compression mode as commonly used in practice 
leads to unsafe analysis of foundations on this varved clay.  

Figure 1 shows soil elements of a foundation and importance of 
stress strain and strength anisotropy of clays. It can be seen that each 
of soil element undergoes different modes of shearing or different 
stress paths. Soil elements underneath the foundation are sheared in 
active mode or triaxial compression (TC), but soil elements beyond 
the edge of foundation are sheared in passive mode or triaxial 
extension (TE). Lastly, soil elements under directly the foundation 
corner are sheared in direct simple shear model. In addition, the 
major principal stress rotates from the vertical to the horizontal in 
the radial shear zone between the fan zones extending from the 
corner of foundation. A more reliable and accurate undrained finite 
element analysis in terms of ground movement and stability requires 
a realistic anisotropic constitutive soil model which can accurately 
simulate stress strain strength response in a generalized mode of 
shearing.  

Anisotropic behaviors of clays and applications of anisotropic 
undrained shear strength in stability analyses include the examples 
of research works such as the concept of strain compatibility 
(Koutsoftas and Ladd, 1985), clay anisotropy (Seah, 1990), stability 
evaluation of embankment (Ladd, 1991), stability of braced 
excavations (Su et al.,1998; Ukritchon et al., 2003).  
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Figure 1  Soil elements of foundation in different modes of shearing 
(after Sambhandharaksa, 1977) 

 
There are few constitutive soil models which can realistically 

simulate anisotropic stress strain responses and strength including 
the MIT-E3 model (Whittle, 1993), the MIT-S1 model (Pestana, 
2012), the S-CLAY1S (Karstunen et al., 2005). Even they can 
model anisotropic variation in undrained stress strain and strength, 
those models do not use direct input of undrained shear strength. 
The anisotropic undrained shear strength is obtained from indirect 
relationship among several input parameters such as virgin 
compression compressibility, unloading-reloading compressibility, 
friction angle, over consolidation ratio, coefficient of lateral earth 
pressure at rest, etc. In addition, trial-and-error testing of several 
input parameters is necessary in order to calibrate the model to 
match undrained shear strength in different modes of shearing. 
Lastly, those models are still limited in research areas and are not 
available in commercial finite element codes in geotechnical 
practice. 

Very recently, Grimstad et al. (2012) [10] have proposed the 
NGI-ADP constitutive soil mode whose key features are direct input 
parameter of undrained shear strength and failure shear strain in 
undrained tests of TC, TE, and DSS. Furthermore, this model is 
currently available in the commercial finite element code, 
PLAXIS2D (Brinkgreve, 2012). Thus, geotechnical engineers can 
apply it to accurately analyze undrained ground movement and 
stability problems in practice where anisotropic stress strain 
behaviors are considered in the analysis.  

This paper presents parametric studies of important input 
parameters of this model in details. Then, the paper proposes 
equations of stress strain curves of this model and the technique of 
soil parameter optimization in efficiently determining the optimal 
set of input parameter of this model. The optimization technique 
eliminates trial-and-error testing of input parameter and obtains the 
optimal set of parameter automatically and efficiently. Lastly, the 
capability of the proposed technique of soil parameter optimization 
is demonstrated through examples of determining the optimal set of 
input parameters of the NGI-ADP model for Bangkok soft clay. 
 
2. REVIEWS OF THE NGI MODEL 

This section reviews the details of the NGI-ADP soil model 
concerning its input parameters and characteristic responses of stress 
strain strength anisotropy.  

The NGI-ADP is based on the classical elasto-plastic 
constitutive model and formulated in terms of 3D generalized 
effective stress. The model is suitable for analyses of ground 
movement and stability in an undrained condition of cohesive soils. 
It generates anisotropic undrained stress strain responses and 
undrained shear strengths in generalized state of stress. The major 
input parameters are obtained from three undrained shear tests, and 

thus anisotropic responses of stress strain relationship in 3D 
generalized state of stress are completely defined. Figure 2 shows 
schematic diagrams of undrained stress strain curves generated by 
this model in three modes of shearing, including undrained tests of 
triaxial compression (TC), triaxial extension (TE), and direct simple 
shear (DSS). Table 1 summarizes a set of input parameters of this 
model. Some parameters in this table are also shown in Figure 2. 
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Figure 2  Stress strain curves generated by the NGI-ADP model 
 

The NGI-ADP soil model requires 9 input parameters. Three 
pairs of parameters are used to independently match failure strains 
and undrained shear strength in TC, TE, and DSS. For TC tests, the 
parameters are: fc and suA. For TE tests, the parameters are: fE and 
suP. For DSS tests, the parameters are: fDSS and suDSS. For both tests 
of TC and TE, the failure shear strain is equal to 3/2 of failure axial 
strain in TC (yfTC) and TE (yfTE), i.e. fc =3yfTC/2, and fE 
=3yfTE/2. It should be noted that the input undrained shear strengths 
correspond to the plane strain active condition (suA), plane strain 
passive condition (suP), and direct simple shear condition (suDSS). 
The model has the default relationship between undrained shear 
strength of triaxial compression (suTC) and that of active plane strain 
condition (suA) as: suTC = 0.99suA. However, the model does not give 
any relationship between undrained shear strength of triaxial 
extension (suTE) and that of passive plane strain condition (suP). 

 
Table 1  Input Parameters of the NGI Model 

Symbol Physical meaning Type

Gur Unloading/reloading shear modulus Stiffness 

fC Shear strain at failure in triaxial compression Stiffness 

fE Shear strain at failure in triaxial extension Stiffness 

fDSS Shear strain at failure in direct simple shear Stiffness 

 Effective Poisson's ratio Stiffness 

suA Active undrained shear strength (plane strain) Strength

suP Passive undrained shear strength (plane strain) Strength

suDSS Direct simple shear undrained shear strength Strength

0/suA Initial shear mobilization Initial stress  
 

In addition to those parameters of different failure shear strains 
and undrained shear strengths, the model still requires the parameter 
of unloading and reloading shear modulus (Gur), which is ones of the 
stiffness parameters. This parameter may be obtained from the slope 
of unloading and reloading path of stress strain curve of triaxial 
compression or direct simple shear tests. The latter test gives direct 
determination of Gur, but the former test gives unloading and 
reloading Young’s modulus (Eur), where Gur can be calculated as:  

ur
ur

E
 G

2(1 )


 
 (1) 
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It should be noted that unloading and reloading paths of TC or 
DSS tests are not typically carried out in such tests.  

The model uses a single parameter which control initial stress 
condition of undrained loading. This parameter is the initial shear 
mobilization (0/suA) which can be determined from the coefficient 
of lateral earth pressure at rest (K0) and initial vertical effective 
stress (yy), as indicated in Table 1. In this paper, the paper 
concerns with the studies of isotropic initial stress condition, K0 = 1. 
Accordingly, this input parameter, 0/suA = 0.  

The last input parameter of this model is the effective Poisson’s 
ratio (). The model recommends the range of this parameter as 0.3-
0.4. All results in the paper are obtained from calculations using  = 
0.3.  According to PLAXIS’s manual (Brinkgreve, 2012), the 
undrained stress strain curve is simulated such that the bulk modulus 
of water is used to compute the excess pore water pressure, while 
the NGI model is employed in an integration of the effective stress 
model. The bulk modulus used in this undrained analysis has a 
realistically high value in order to ensure that the idealized 
incompressible or undrained conditions are achieved in the analysis 
as if the total Poisson’s ratio of 0.5 is used. The latter case is not 
recommended in this undrained analysis since such condition of the 
total Poisson’s ratio of 0.5 or 0.495 may lead to ill-conditioning of 
the stiffness matrix and numerical problems. 

In conclusion, characteristic responses of stress strain curves are   
nonlinear and anisotropic, where anisotropic behaviours of 3D 
generalized state of stress are completely defined by three undrained 
tests of TC, TE, and DSS. Stress strain curves of TC, TE, and DSS 
increase nonlinearly and monotonically and are the major keys in 
determination of crucial input parameters, especially failure shear 
strains and undrained shear strengths. In each mode of shearing, the 
failure happens when the shear strain reaches its corresponding 
failure shear strain and thus, the shear stress in that mode is fully 
mobilized to its own undrained shear strength. 

A brief mathematical description of the NGI soil model is given 
below. Full mathematical formulations of this model can be found in 
Grimstad et al. (2012).   

The yield criterion, F, of the NGI model is expressed as the 3D 
generalized effective state of stress by modifying the classical 
Tresca yield criterion so that it takes into account of anisotropic 
undrained shear strength as follows: 
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xx0, yy0, zz0 are the initial stresses in x, y, z, respectively. 
 

It should be noted that 2 3
ˆ ˆand J J are the modified second and 

third deviatoric invariants while the term k is the hardening 
parameter. The term a is the rounding factor of the modified Tresca 
yield criterion enabling the yield function to be continuous and 
differentiable at any state of stress, where a value of 0.97 is chosen 
as default. Geometrically, the yield criterion in the  plane is a 
translated, rounded hexagonal shape of the classical Tresca yield 
criterion. 

The hardening parameter,  is given by the following 
mathematical function as: 
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The plastic shear strain is obtained from integration the 

incremental plastic shear strain, dP of the following expression: 
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The NGI soil model employs the non-associated flow rule giving 

rise to the incremental plastic strain, dP, and the corresponding 

derivative of the plastic potential,  



Q

σ
, as follows:  
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Finally, the incremental elastic strain of NGI soil model follows 

a conventional incremental elasto plastic model (e.g. Potts and 
Zdravkovic, 1999) and the decomposition concept of the total 
incremental strain as the sum of incremental elastic strain the 
incremental plastic strain. The above description concludes a 
concise mathematical description of the NGI soil model.  
 
3. PARAMETRIC STUDIES OF INPUT PARAMETERS 

In order to avoid any error from numerical integration of 
constitutive equation of this model or from finite element modelling 
in setting up TC, TE and DSS tests, the paper obtains the data of 
stress strain curves from the model by using the utility tool, PLAXIS 
SoilTest, which is available in PLAXIS2D. This utility can easily 
generate stress strain curves of predefined laboratory tests including 
TC, TE and DSS in undrained shearing conditions without setting 
corresponding finite element modelling. Thus, it ensures that the 
paper has correctly and accurately obtained the data of stress strain 
curves of TC, TE, and DSS tests, which are used to carry out several 
parametric studies and to develop proposed equations of stress strain 
curves of the NGI-ADP model in the next section.   

Figures 3-5 show influence of term Gur/suA to the normalized 
stress strain curves of TC, TE, and DSS, respectively. For 
normalized plots of TC and TE tests, the horizontal axis is the ratio 
of axial strain to the failure axial strain of each test (yy/yfTC, 
yy/yfTE) or shear strain to the failure shear strain (TC/fC, TE/yE), 
while the vertical axis is the ratio of maximum shear stress to the 
undrained shear strength of each test ((13)/2suTC, (13)/2suTE). 
For DSS plot, the horizontal axis is the ratio of shear strain to the 
failure shear strain (xy/fDSS), while the vertical axis is the ratio of 
shear stress to the DSS undrained shear strength (xy/suDSS). In other 
words, the horizontal axes represent shear strain normalized to its 
corresponding failure strain while the vertical axes represent shear 
stress normalized to it corresponding strength. As a result, all 
horizontal and vertical axes of the normalized stress strain curve 
have the range of 0-1. The points where normalized values reach 
unity indicate the state of failure. 
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Figure 3  Effect of Gur/suA to normalized stress strain curves of TC 
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Figure 4  Effect of Gur/suA to normalized stress strain curves of TE 
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Figure 5  Effect of Gur/suA to normalized stress strain curves of DSS 

It should be noted that by presenting stress strain curves in 
normalized axes as explained above, number of parameters affecting 
the model can be systematically reduced. As a result, conclusion of 
parametric studies can be clearly drawn and generalized.  

It can be seen from those figures that the term Gur/suA affects the 
curvature of normalized stress strain curve for all shearing paths, 
TC, TE, and DSS. In general, it can be observed that larger values of 
Gur/suA cause stiffer response of stress strain curve for all tests. 

Figures 6-8 show influence of failure shear strain, fC, fE, fDSS 
to the normalized stress strain curves of TC, TE, and DSS, 
respectively. It can be observed that failure shear strain of each 
mode affects its own curvature of normalized stress strain curve. 
The effect of failure shear strain is similar to that of Gur/suA. The 
normalized stress strain curve tends to be stiffer as the failure shear 
strain increases for all modes of shearing. 
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Figure 6  Effect of fc to normalized stress strain curves of TC 
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Figure 7  Effect of fE to normalized stress strain curves of TE 
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Figure 8  Effect of fDSS to normalized stress strain curves of DSS 

 
Figure 9 shows comparisons of normalized stress strain curves 

between TC, TE and DSS, where Gur/suA = 200, fC= 0.04, fE = 
0.15, fDSS = 0.07. It can be seen that the normalized stress strain 
curve are not unique to each other. The normalized stress strain 
curve of TE test is the stiffest, but that of TC test is the softest, while 
that of DSS test falls in between. This result suggests that stress 
strain curve of each mode is not unique to each other.  
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Figure 9  Normalized stress strain curve between TC, TE, and DSS 

 
The last parametric study of the NGI-ADP model is the 

relationship between suTE and suP, which are not clearly mentioned in 
the model formulation. It should be noted that the mathematical 
formulation of this model set the relationship between the TC 
undrained shear strength (suTC) and the active plane strain undrained 
shear strength (suA) as: suTC = 0.99suA. However, the formulation did 
not give any relationship between the TE undrained shear strength 
(suTE) and the passive plane strain undrained shear strength (suP). It 
may be reasonable to assume the condition that: suTE = suP. However, 
a clear relationship should be figure out in order to obtain a better 
model calibration. Figure 10 shows the parametric study of latter 

relationship. It can be observed that there is linear relationship 
between suTE/suA and suP/suA as: 

uAuPuTE s01.0ss   (7) 

This result indicates that inter-relationship between suTE, suP, and 
suA has small influence on the model calibration in getting a more 
accurate value of input parameter of passive plane strain undrained 
shear strength. 
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Figure 10  Inter-relationship between suTE, suP, suA 
 

In sum, even though parameters of failure strains and undrained 
shear strengths of the NGI-ADP model can be determined directly 
from TC, TE, and DSS test, results of parametric studies of those 
parameters indicate that determining the optimal set of input 
parameter still require process of trial-and-error testing of 
parameters in order to closely match the predicted stress strain 
responses and strengths with the laboratory data of TC, TE, and 
DSS. This is because the curvature of stress strain curve of each 
mode of shearing (TC, TE, DSS) depend on both the ratios of 
unloading/reloading shear modulus to the active plane strain shear 
strength (Gur/suA) and failure shear strain in each test (fC,fE, fDSS). 
Furthermore, parameters of undrained shear strengths in different 
modes of shearing (suTE, suP, and suA) have inter-relationship. 

Therefore, the technique of soil parameter optimization may be 
adopted in order to obtain the optimal set of input parameters of the 
NGI-ADP soil model which best fit the predictions with the soil 
data.  However, before applying the technique of soil parameter 
optimization, closed-form stress strain curves must be determined. 

 
4. PROPOSED EQUATIONS OF STRESS STRAIN 

CURVES FOR THE NGI-ADP MODEL 

Due to mathematical complexity of the NGI-ADP model, analytical 
closed-form expressions of stress strain curve cannot be derived 
explicitly. Instead, stress strain data by this model must be obtained 
by means of numerical integration of constitutive equation using the 
standard method of elasto-plastic model such as explained by Potts 
and Zdravkovic (1999). Nonetheless, it is not possible to determine 
analytical closed-form expressions of stress strain curves of this 
model.  

In addition to integration procedure of constitutive equation, the 
stress strain data of the NGI-ADP model can be obtained through 
data generation by PLAXIS SoilTest as explained earlier. However, 
such processes are not convenient and practical with the technique 
of soil parameter optimization since the model prediction of stress 
strain results must be calculated independently within the 
optimization formulation. Therefore, closed-form expression of 
stress strain curves must be clearly determined such that the 
technique of soil parameter optimization can be implemented very 
efficiently. 
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The paper proposes stress strain equations of TC, TE, and DSS 
tests for the NGI-ADP model as follows: 
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where   A, B, C, D = f(Gur/suA, fC)  
             E, F,G, H  = f(Gur/suA, fE)   
             J, K, L, M = f(Gur/suA, fDSS) 

fC =3yfTC/2  
fE =3yfTE/2 
 

It should be noted that each equation of stress strain curve use 
four coefficients. Coefficient terms (A-D), (E-H), (J-M) are not 
constant, but functions of Gur/suA, and failure shear strains 
(fC,fE,fDSS) of TC, TE, and DSS tests, respectively. Because each 
set of coefficients have very complex mathematical form, their 
expression are not given here. For stress strain curves of TC and TE, 
shear stresses are normalized by their corresponding shear strengths, 
namely suTC, and suTE, instead of active and passive plane strain 
shear strength, suA, and suP, which are the direct input parameter of 
the model. 

Several mathematical functions were tested whether they can 
best fit the data of stress strain curve. Those functions include 
polynomial, exponential, power, logarithm, hyperbola, and rational 
functions. Equations (8)-(10) are the final best mathematical 
functions in the form of rational expression. In addition, the ranges 
of studied normalized parameters cover most real soil behaviours, 
where Gur/suA=50-1000, failure shear strains, fC, fE, fDSS = 0.001-
0.3. Figure 11 shows schematic diagram of an example of 
normalized stress strain curve in any test. Basically, the curve 
increases monotonically from 0 and reaches unity at failure for both 
the normalized shear strain and normalized shear stress. Thus, 
equation of each stress strain curve can be casted in a generalized 
function as: 
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where  f = normalized shear stress 

    x = normalized shear strain 
    a1-a4 = coefficients 
 
Figures 12 and 13 show two examples of verification of the 

proposed stress strain equations by comparing with their stress strain 
predictions and those of the model data. For those two figures, the 
solid lines represent the proposed equations while the symbols 
represent the NGI model data generated by PLAXIS SoilTest. There 
are two sets of input parameter of each figure. The data set 1 
corresponds to the example case of soft clay, where input 
parameters are: Gur/suA=200, fC=0.04, fE=0.15, fDSS=0.07, suA=60 

kPa, suP=24 kPa, suDSS=42 kPa. The data set 2 correspond to the 
example case of stiff clay, Gur/suA=400, fC=0.03, fE=0.12, 
fDSS=0.06, suA=80 kPa, suP=48 kPa, suDSS=64 kPa.  

 

x=Normalized shear strain

f =Normalized shear stress 

failure 

1.0 
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Figure 11  Schematic plot of proposed normalized stress strain curve 
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Figure 12  Comparison between proposed equations and the model 

data set1 
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Figure 13 Comparison between proposed equations and the model 

data set2 
 

It can be observed from both figures that the proposed equations 
of stress strain curve match the model data very accurate in all 
modes of shearing. High accuracy of the proposed stress strain 
equation is confirmed by very high value of coefficient of 
determination or R-squared (R2). The R2 values of both cases are 
about 99.9% for all modes of shearing and for all average results. 

The proposed equations of stress strain curve of the NGI-ADP 
are verified for wide ranges of input parameters of Gur/suA, fC, fE, 
fDSS. All results are very satisfactory where the proposed equations 
accurately match with the model data for all cases which are similar 
to Figure 12 and 13.  Very high accuracy of proposed stress strain 
equation is very crucial so that it will yield an accurate optimal set 
of input parameter when performing soil parameter optimization. 
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5. FORMULATION OF SOIL PARAMETER 
OPTIMIZATION FOR THE NGI-ADP MODEL 

In this paper, there are seven decision variables, X in the soil 
parameter optimization as follows: 

]s,s,s,γ,γ,γ,[GX uDSSuPuAfDSSfEfCur  (12) 

It should be noted all laboratory data concerns with initial stress 
state of isotropic consolidation, meaning that the input parameter of 
initial stress of the NGI-ADP model, K0=1. In addition, the 
parameter of the effective Poisson's ratio is not optimized, but is set 
as constant value as:  = 0.3, according to the typical value 
recommended by model formulation. 

The objective function, F, of the parameter optimization is to 
minimize the residual sum of squares between the laboratory stress 
strain data (TC, TE, DSS) and associated predicted values based on 
proposed equation of stress strain curves presented in the previous 
section. Thus, the objective function has the form as: 

 2
i

ii fy Fsquares, of sum Residual     (13) 

where 
yi = data set values of deviatoric stress for TC and TE and shear 

stress for DSS. 
fi = associated predicted of deviatoric stress for TC and TE and 

shear stress for DSS at the same given axial strain for TC, and TE 
and shear strain for DSS, based on the proposed stress strain curve 
in equations (8)-(10). 

It should be noted that inter-relationship between suTE, suP, and 
suA presented in equation (7), suTE = suP – 0.01suA, together with the 
default expression of the model, suTC=0.99suA must be employed in 
the optimization problem in order to compute deviatoric stress for 
TC and TE. This is because proposed stress strain curves for triaxial 
compression and triaxial extension are presented in terms of shear 
stresses normalized by suTC and suTE, but the NGI model uses suA and 
suP and the model input parameter.   

The optimization problem of finding the optimal set of input soil 
parameter of the NGI-ADP soil model leads to the least square type 
problem, where the residual sum of squares between the data and the 
prediction is minimized. Lower bound value (xLB) and upper bound 
value (xUB) of each decision variable (e.g. Xi = [xLB,xUB]) must be 
given in order to set up a feasible set of variable to be used in the 
searching region. The optimization problem has the form as: 

  






   2

i
ii fy  Minimize (F) Minimize   (14) 

Subject to: 
Gur = [1,100000]   
fC = [0.0001,0.20]    
fE = [0.0001,0.20]  
fDSS = [0.0001,0.20]  
suA = [1,300]    
suP = [1,300]    
suDSS = [1,300]    

 
In this optimization problem, the shear modulus and undrained 

shear strengths, namely Gur, suA, suP, suDSS have unit in kPa, and 
failure shear strains, namely fc, fE, fDSS are dimensionless.  

Numerical solution of the proposed soil parameter optimization 
can be solved using the technique of optimization, namely nonlinear 
least squares or nonlinear regression (e.g. Bjorck, 1996;  
Venkataraman, 2009). For this method, it is required that the first 
derivative of the function must be differentiable. Since the proposed 
stress strain curves in equations (8)-(10) are rational functions, they 

are differentiable. Accordingly, the method of nonlinear least 
squares can be applied. Since the objective function of minimizing 
sum of squared errors are nonlinear and may be nonconvex due to 
rational function of proposed stress strain curve, they may be many 
local optimal solutions which satisfies local optimality conditions. 
Thus, there is no guarantee that the obtained solution is the global 
optimal solution and hence several different initial values of 
decision variables must be repeatedly tried and the global 
optimization solution is obtained from the least of local optimal 
solutions. 

Instead of using classical technique of local optimization such as 
nonlinear regression  which  requires derivative approach and 
changes of initial values of  variables, solution of proposed soil 
parameter optimization can also  be solved using the technique of 
global optimization (e.g. Horst et al., 2000) such as evolutionary 
algorithms, swarm-based optimization algorithms, or differential 
evolution. In this paper, the proposed optimization problem is coded 
in FORTRAN language and the optimal set of soil parameters is 
solved by the state-of-the-art solver, MIDACO (Schlueter et al. 
2009; Schlueter, 2013). MIDACO is an extended ant colony 
optimization which is one of  swarm-based optimization algorithms. 
The distinct feature of  this solver is that it employs an evolutionary 
metaheuristic  search  strategy to determine the global optimal 
solution  from the searching space in an intelligent and efficient way 
as if ants  seek the best path between their colony and a source of 
food. The searching space is generated from multi kernel Gaussian 
probability density function. In addition, MIDACO is a self-adaptive  
algorithm to automatically determine the global optimal solution 
rather  the local optimal solution. Thus, there is no need to change 
initial value of decision variables by users. Furthermore, the 
software does not require property of differentiability of first 
derivative for the nonlinear objective function or nonlinear equality 
or inequality constraints. Since MIDACO is a global optimization 
algorithm, it ensures that the solution presented in this paper 
corresponds to the global optimal solution of soil parameter 
optimization for the NGI soil model. 

All analyses of soil parameter optimization were carried out on a 
Windows 7-based system, Intel Core I7-4770 CPU, @ 3.40 GHz 
and 8 GB memory. 

 
6. PARAMETER OPTIMIZATION FOR BANKGKOK 

SOFT CLAY 

Two  sites  data  of  Bangkok  soft  clay  were  used  to  determine 
the input soil parameters of the  NGI-ADP  model, including the 
AIT data (Khan, 1999) and the Chula data  (Thongchim, 2003), 
shown in Table 2. The available laboratory results of these two sites 
include undrained shear tests of isotropic consolidation of triaxial 
compression (TC) and triaxial extension (TE). However, the 
laboratory results of undrained direct simple shear test (DSS) were 
unavailable for those two sites. Since the NGI-ADP soil model 
requires the DSS test data, the paper obtains the DSS data by 
assuming that they are approximated from the average stress strain 
curve of TC and TE tests. Research studies of Ladd (1991) and Ladd 
and DeGroot (2003) showed that undrained shear strength and 
failure strain of DSS mode falls in between those of TC and TE. 
Thus, it is reasonable to assume that the DSS stress strain curve 
should fall in between that of TC and TE, similar to undrained shear 
strength and failure strain. 

Accordingly, the shear stress of the DSS test is simply equal to 
the average of shear stresses of TC and TE tests at the same given 
shear strain of TC and TE. The interpolation of DSS shear strain is 
at the interval of 0.005 for both TC and TE tests. Since the NGI 
model cannot describe the stress strain relationship in softening 
behavior, some laboratory data of stress strain curve for TC and TE 
having softening parts are truncated and replaced with constant 
values of maximum deviator stresses. 
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Table 2  Properties of Bangkok soft clay for parameter optimization 

Soil data AIT site Chula site

Depth (m) 5.0-5.5 8.5-9.5

Water content, w (%) 92 62.6

Liquid limit, LL (%) 114 79

Plastic limit, PL (%) 35 37

Plasticity index, PI (%) 79 42

Specific gravity, Gs 2.7 2.68

Moisture unit weigth, t (kN/m
3
) 14.7 16.3

Undrained triaxial compression test (TC) Yes Yes

Undrained triaxial compression test (TE) Yes Yes

Undrained direct simple shear test (DSS) N.A. N.A.

Isotropic consolidation stress for TC and TE (kPa) 84 80  
 

In order to obtain the DSS stress strain curve, the axial strain 
(yyTC, yyTE) versus deviatoric stress of TC test, (yyxx)TC, and TE 
test, (yyxx)TE must be converted to their corresponding shear 
stresses (TC,TE) and shear strains (TC,TE) as: 
 
TC shear stress: TC = (yyxx)TC/2 (15) 
TC shear strain: TC = 3yyTC/2 (16) 
TE shear stress: TE = (yyxx)TE/2 (17) 
TE shear strain: TE = 3yyTE/2 (18) 
Approximated DSS shear stress, xy = 0.5(TC + TE) (19) 
Approximated DSS shear strain, xy = 0.5(TC + TE) (20) 

 
Figures 14 and 15 show results of stress strain curves using the 

proposed technique of soil parameter optimization. Computational 
times of soil parameter optimization using MIDACO solver for each 
soil data are about 1-2 minutes in order to determine the optimal set 
of input parameter as summarized in Table 3. It can be seen that the 
predicted stress strain responses and undrained shear strength match 
extremely well with the soil data for all tests and all sites. This 
excellent matching is confirmed by a very high value of average 
coefficient of determination, R2 = 99.89 and 99.68% for AIT and 
Chula data, respectively.  
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Figure 14  Results of parameter optimization of AIT site 

 
The major advantage of using technique of soil parameter 

optimization is that users obtain the optimal set of input soil 
parameter automatically and efficiently without process of trial-and-
error testing of each parameter. This technique ensures that the 
obtained soil parameters generate anisotropic stress strain responses 
and undrained shear strengths best fitted by the soil data for all 
undrained tests as shown in Figures 14 and15. 
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Figure 15  Results of parameter optimization of Chula site 

 
Table 3  Optimal set of parameter for Bangkok soft clay 

Parameter AIT Site Chula site

Gur/suA 684 255

fC 0.15 0.136

fE 0.219 0.208

fDSS 0.171 0.166

 0.3 0.3

suA (kPa) 44.1 39.7

suP (kPa) 32.2 31.1

suDSS (kPa) 37.1 34.8

0/suA 0 0  
 

7. CONCLUSION 

This paper reviewed capabilities of a recent developed constitutive 
soil model, the NGI-ADP. The model was formulated in terms of 
generalized 3D state of stress and suitable for undrained 
deformation and stability analyses by finite element. The main 
feature of this model is that it can simulate anisotropic stress strain 
responses and strengths in generalized modes of shearing, which is 
completely defined by matching undrained shear strengths and 
failure strains in three independent shearing modes, namely TC, TE 
and DSS.  

Parametric studies presented in this paper indicated that 
characteristic curvature of stress strain in each mode of shearing 
depended on the values of Gur/suA and its corresponding shear strain 
fC, fE, DSS. In addition, it was found that there was inter-
relationship between suTE, suP and suA. Even though it seemed that 
direct input of undrained shear strength and failure shear strains 
from those tests can be made, a more fitting of stress strain 
curvature and strengths requires a manual trial-and-error testing of 
those input parameters in order to closely match with those stress 
strain curves. 

In order to obtain the optimal set of input parameters of the NGI-
ADP model efficiently without the process of a trial-and-error 
testing, a technique of soil parameter optimization was proposed in 
this paper. In addition, expressions of stress strain curves of three 
stress paths (TC, TE, DSS) were also proposed in conjunction with 
method of parameter optimization. The proposed equations could 
match very accurately those stress strain curves generated from the 
model.  

Formulation of soil parameter optimization was based on 
statistical approach of least squares. The objective function is to 
minimize the residual sum of squares between the laboratory stress 
strain data (TC, TE, DSS) and associated predicted values based on 
proposed equations of stress strain curves. There are seven decision 
variables or soil parameters to be optimized simultaneously. The 
developed system of soil parameter optimization could determine 
the optimal set of soil parameter automatically and efficiently, 
where the optimal solution was solved by the global optimization 
solver, MIDACO. 
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The developed soil parameter optimization system was applied 
to determine the optimal set of input soil parameters of NGI-ADP 
model for Bangkok soft clay. Two laboratory soil data of Bangkok 
clay included AIT site and Chula sites. Data of DSS test were 
assumed to be the average between TC and TE since data of DSS 
was unavailable for those sites. The results showed that predicted 
stress strain curves could match accurately with laboratory data of 
all tests, including, TC, TE, DSS for two sites of Bangkok soft clay.  
The proposed technique of soil parameter optimization makes it 
possible to easily, automatically and reliably determine the optimal 
set of input soil parameters of the NGI-ADP model, which best fits 
the laboratory soil data of TC, TE, and DSS. The technique does not 
require manual trial-and-error testing or parametric studies of input 
parameters. Since this soil model is available in the finite element 
code, PLXIS2D, the proposed and developed technique of soil 
parameter optimization is valuable in determining the soil parameter 
of the NGI model where anisotropic undrained stress strain strengths 
are required in the finite element analysis of undrained ground 
movement and stability in geotechnical engineering practice. 
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