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ABSTRACT: In this paper, existing probabilistic approaches for determining the ultimate resistance of drilled shafts in sands considering 
the spatial variability of soil properties are evaluated and compared. The first approach is realized through random field modeling 
implemented with Monte Carlo simulation (MCS). The second approach is a simplified method based on the spatial averaging technique. 
The third approach is yet another simplified method based on the spatial correlation between spatial averages. The last two (simplified) 
approaches can be efficiently implemented without MCS so that much less computational effort is required. The comparison study shows 
that the three probabilistic approaches yield practically identical results (i.e., probability of failure in the designed drilled shafts). This study 
also highlights the importance of considering the spatial variability of soil properties and the model bias in the design of drilled shafts. 
Results indicate that: (1) neglecting spatial variability often leads to an overestimation of the probability of failure; (2) ignoring the model 
bias results in either overestimation or underestimation of the probability of failure, depending on the compression load applied to the drilled 
shafts. 
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1. INTRODUCTION 

The drilled shafts as a type of deep foundations are widely used in 
the geotechnical design. The ultimate resistance that a drilled shaft 
can carry consists of the shaft resistance and the toe bearing 
resistance. Many mechanical, empirical, and semi-empirical 
approaches are available to predict the shaft resistance and the toe 
bearing resistance of a drilled shaft (e.g., Meyerhof 1976; Reese and 
O’Neill 1988; Kulhawy 1991). Conventional geotechnical design of 
drilled shafts is realized through meeting the minimum required 
factor of safety, which is a deterministic approach and all input soil 
parameters are treated as constants. Due to the inherent variability of 
soil properties and the model uncertainty, a factor of safety greater 
than the minimum required value does not always guarantee safety. 
For this reason, it is rational to model the input soil parameters as 
random variables and perform the design by meeting the acceptable 
(target) failure probability requirement.  

The effect of spatial variability of soil properties can have a 
significant influence on the reliability of deep foundations. The 
spatial variability is generally described by scale of fluctuation, 
which is the maximum distance within which the spatially random 
parameters are correlated (Vanmarcke 1977). In the traditional 
probabilistic analysis in which the spatial variability is ignored, the 
scale of fluctuation is by default set to be infinity or a relative large 
number, which is termed the spatial constant. The typical vertical 
scale of fluctuation for most soil parameters ranges between 0.1 m 
and 3 m, depending on the geological condition and composition in 
the field (Phoon and Kulhawy 1999). The study on probabilistic 
analysis of deep foundations considering spatial variability has been 
reported recently (e.g., Klammler et al. 2010; Zhang and Chen 2012; 
Luo and Juang 2012; Chen and Zhang 2013; Cao et al. 2013; Fan 
and Liang 2013a,b; Fan et al. 2014). Zhang and Chen (2012) 
examined the effect of spatial variability of standard penetration test 
(SPT) data on the bearing capacity of driven piles in sanThe 
importance of considering the spatial variability of soil properties in 
the probabilistic analysis of geotechnical problems has been 
recognized and is widely reported in literature (e.g., Fenton and 
Griffiths 2008; Griffiths and Fenton 2009; Huang et al. 2010; Luo et 

al. 2012a,b; Stuedlein et al. 2012; Zhang and Chen 2012; Chen and 
Zhang 2013). The most rigorous method to model the spatial 
variability of soil is the approach based on the random field theory 
(Vanmarcke 1977). In the random field modeling (RFM), the 
geotechnical model is first discretized into a series of elements with 
equal size. The correlation among the soil elements can be modeled 
by assuming a certain type of correlation structure, e.g., exponential 
correlation function, constant function, triangular function (Most 
and Knabe 2010). Then the spatial correlation can be dealt with 
some techniques such as the local averaging subdivision (Fenton 
and Griffiths 2008) or Cholesky decomposition (Fenton 1997). The 
Monte Carlo simulation (MCS) is generally implemented in random 
field modeling (RFM) and a sufficient number of MCS is required 
to reach converged results. Previous research shows that neglecting 
the spatial variability will lead to either overestimation or 
underestimation of the predicted probability of failure, depending on 
the limiting criteria (Griffiths and Fenton 2004). 

In addition to the rigorous RFM approach, simplified approaches 
based on variance reduction technique (Vanmarcke 1983) can serve 
as alternatives in the probabilistic analysis of geotechnical problems 
when spatial variability is considered (e.g., Peschl and Schweiger 
2003; Most and Knabe 2010; Luo 2012a,b). In these simplified 
approaches, in order to consider the spatial effect, the soil 
parameters with reduced variances are adopted in the probabilistic 
analysis. In this study, these simplified approaches are subdivided 
into two categories: (1) simplified approaches based on spatial 
averaging and (2) simplified approaches based on spatial correlation 
of spatial averages. It should be noted that the simplified approaches 
can be either realized through MCS or some efficient probabilistic 
methods such as first-order reliability method. Comparing with 
MCS, the simplified approaches implemented with efficient 
probabilistic methods consume much less computational effort, and 
thus, have greater potential as tools in the engineering practice.  

In this paper, the aforementioned three probabilistic approaches 
for determining ultimate resistance of drilled shafts in sands under 
compression considering the spatial variability are presented and 
compared. The RFM approach is adopted to examine the spatial 
effect on the estimated failure probability at various levels of scale 
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of fluctuation and variation in soil property and compression load. 
The results based on RFM are then used as a benchmark in the 
comparison study with the two simplified approaches. Comparison 
study shows that the three probabilistic approaches yield virtually 
the same results (i.e., identical probability of failure in the designed 
drilled shafts). However, the simplified approaches are preferred in 
the engineering practice, as they can be implemented with efficient 
probabilistic methods and require much less computational effort. 
This study also points to the importance of considering the spatial 
variability of soil property and the model bias in the design of 
drilled shafts. It is found that neglecting spatial variability leads to 
the overestimation of the probability of failure. Ignoring the model 
bias results in overestimation or underestimation of the probability 
of failure, depending on the load applied to the drilled shafts. 
 
2. PROBABILISTIC      ANALYSIS       OF      ULTIMATE  
 RESISTANCE OF DRILLED SHAFTS 

In the engineering practice, the ultimate resistance (Qult) of a drilled 
shaft can be estimated using in-situ test indices such as the standard 
penetration test (SPT) blow count N (e.g., Meyerhof 1976). Those 
empirical models generally correlate the toe bearing resistance and 
the shaft resistance with the SPT N value. The Qult is the sum of toe 
bearing resistance and shaft resistance. Figure 1(a) shows a 
schematic diagram of a drilled shaft with length of 30 m and 
diameter of 1 m under a compression load of F (note: this figure is 
not to scale). In this study, the following empirical model for the 
prediction of Qult of a drilled shaft is adopted (in kN, GEO 2006): 
 

    2

1

9.5 / 4
n

iult i n
i

Q DL N D N 


                              (1) 

 
in which D is the diameter of the drilled shaft (m), Li and iN  is the 
length (m) and the average N value in soil layer i, Nn is the N value 
for determining the toe bearing resistance. For an assumed idealized 
distribution of SPT N with depth as shown in Figure 1(b), Nn can be 
taken as the average N values between the shaft tip and 2D beneath 
the toe (O’Neill and Reese 1999). The two terms in Eq. (1) represent 
the shaft resistance and the toe bearing resistance, respectively.  

In a deterministic analysis, Qult can be calculated with Eq. (1) if 
the profile of SPT N (for instance Figure 1(b), not to scale) is 
available, and thus Qult is a fixed value. The deterministic bearing 
capacity design is realized through meeting the required minimum 
factor of safety (FS), defined as the ratio of Qult over the load F. 
 

F

(a) Schematic diagram of a bored pile (b) An idealized SPT profile (adapted
from Kramer and Mayfield 2007)
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Figure 1 Design example of drilled shaft and the idealized profile of 

standard penetration test (not to scale) 
 

However, it is well known that the field test indices generally 
involve large uncertainty mainly because of the inherent variability 
of the soil property. In addition, other sources of error such as the 
human error and the model uncertainty can also induce the 
uncertainty in the estimated Qult. Due to those uncertainties, the 

factor of safety greater than the required minimum FS (say 2.5) will 
not always guarantee safety. It is rational to model the soil 
parameters such as SPT N as random variables and consider the 
model uncertainty in the design. For this reason, the bearing 
capacity design of drilled shaft can be realized through meeting the 
acceptable (target) probability of failure (pf) in the probabilistic 
analysis. In this study, pf is defined as the probability that the load 
acting on the shaft exceeds the predicted ultimate resistance:  
 
 

                  f ultp p Q F                                               (2) 

 
The focus of this study is to investigate the effect of spatial 
variability and the model uncertainty on the estimated pf in the 
bearing capacity design of drilled shafts. 
 
3. PROBABILISTIC     APPROACHES     CONSIDERING  
 SPATIAL VARIABILITY OF SOIL PROPERTY 

In this paper, three probabilistic approaches are adopted: random 
field modeling approach, spatial averaging approach, and the spatial 
correlation of the spatial averages. These three approaches will be 
discussed in detail and compared in the probabilistic design of 
drilled shafts under compression loading.  In all three approaches, 
the SPT N value normalized by the depth is assumed to follow a 
lognormal distribution, and thus the mean trend of N is shown in 
Figure 1(b) (adapted from the subsurface profile by Kramer and 
Mayfield 2007). The coefficient of variation (COV) of N can range 
from 0.1 to 0.7 (Zhang et al. 2009). Various levels of scale of 
fluctuation (θ) are assumed herein to investigate the effect of spatial 
variability on the probabilistic analysis. To consider the spatial 
variability, the exponentially decaying auto-correlation function 
(e.g., Jaksa et al. 1999) is adopted in this study: 
 
 

                2
exp

 


   
 

                                                  (3) 

 
where   is the absolute distance between any two points in the 
random field and θ is the scale of fluctuation for ln N . 
 
3.1 Random field modeling of soil property 

The random field theory (Vanmarcke 1977) is a rigorous approach 
to model the spatial variability of soil parameters. In this design 
example (Figure 1(a)), since the diameter of the shaft is relatively 
small (D = 1 m) compared to the horizontal scale of fluctuation, 
only the vertical spatial effect is considered in this study. Given the 
idealized profile of SPT N (adapted from the subsurface profile by 
Kramer and Mayfield 2007) as shown in Figure 1(b), the N value at 
the shallow depth (from 0 to 2 m) is relatively small (N = 10). The 
shaft resistance developed within this region has much less 
contribution to the total ultimate load. In this regard, the SPT N from 
0 to 2 m is treated as constant for simplicity. The vertical spatial 
variability from depth of 2 m to 32 m is modeled using random field 
modeling (RFM). Considering that the mean trend of N increases 
with depth (Kramer and Mayfield 2007), the normalized N, defined 
as the ratio of N over depth, is constant with depth. In this study, the 
RFM of normalized N is realized using the Cholesky decomposition 
implemented with Monte Carlo simulation (MCS).  

In RFM, the soil profile from 2 m to 32 m is discretized into 
intervals with equal thickness Δz, as illustrated in Figure 2(a). For 
simple demonstration purpose, only 10 elements are shown in 
Figure 2(a). First, the local averaging over the soil elements needs to 
be performed. The variance reduction factor (Γ2) for the local 
averaging of N over a depth interval Δz can be obtained by setting τ 
= Δz and integrating the exponential function (Eq. 2), according to 
Vanmarcke (1983): 
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In this study, the statistics of the equivalent normal distribution for 
the assumed lognormal distributed SPT N are first computed. Then 
the local averaging is realized by multiplying variance reduction 
factor (Γ2) to the variance of the equivalent normal distribution. 
Thus the mean and the variance of the lognormal distribution with 
reduced variance can be obtained (Griffiths and Fenton 2004).  

The next step is to build the correlation matrix using Eq. (3). The 
correlation matrix consists of the correlation coefficients for all the 
combinations of the elements in Figure 2(a). Figure 2(b) shows the 
illustrative example of spatial averages. 
 

(a) Illustrative example of discretized
soil elements in RFM
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(b) Illustrative example of spatial averages
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Figure 2 Illustrative example of discretized soil elements in random 
field modeling and spatial averages in simplified approach 

 
For instance, to compute the correlation coefficient between 

Element 1 and Element 3, the absolute distance is set to be 2Δz. 
With Eq. (3) and a given scale of fluctuation θ, the correlation 
coefficient between Element 1 and Element 3, ρ13, can be computed. 
This procedure can be repeated and all the elements in the 
correlation matrix (ρ) can be determined. In this study, the 
correlation matrix built with the correlation function is then 
decomposed by Cholesky decomposition method (Fenton 1997):  

 
    TLL                     (5) 

 
With the lower triangle matrix L, the correlated standard normal 
random field can be obtained by linearly combining the independent 
variables as follows (Fenton 1997):      
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


i

j
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                                            (6) 

 
where M is the number of elements in the random field; Zj is a series 
of independent standard normal random variables. Then the 
lognormal random field of N can be generated through the following 
transformation (Fenton and Griffiths 2008): 
 

       exp n n n iN G x            (7) 

 
where xi is the spatial position at which N is modeled; μn and σn are 
the mean and the standard deviation of ln N . 

In the illustrative example shown in Figure 2(a), the spatially 
varied N values of Element 1 to 8 can be used to calculate the shaft 
resistance and the N values of Elements 9 and 10 can be used to 
calculate the toe bearing resistance. It is noted that Figure 1(a) is just 
a schematic diagram for illustration purposes and the actual element 
size in RFM (at an interval of 0.25 m) is much smaller than the 
specified θ. For the design example in Figure 1(a), the region with 
depth between 2 m and 32 m is subdivided into 120 elements with 
an equal interval of 0.25 m. With the aforementioned RFM 
procedure, the spatial variation of N is simulated at two levels of θ 
(0.5 m and 10 m) and the results are shown in Figure 3. It is 
observed that smaller θ yields more drastically varied N, indicating a 
more significant spatial effect. When the value of θ approaches zero, 
the correlation coefficient computed using Eq. (3) will be 
approximately zero (except the diagonal elements), indicating it is a 
stochastic simulation without any correlation among those elements. 
On the other hand, the larger θ results in more spatially uniformly 
distributed N. It should be noted that when the value of θ approaches 
infinity (or relative large comparing to the scale of the model), the 
correlation coefficients calculated using Eq. (3) will be 
approximately equal to unity, which means that this is the spatial 
constant case and all elements as in Figure 2(a) are perfectly 
correlated. The spatial constant case is equivalent to the traditional 
probabilistic analysis without considering the effect of spatial 
variability of soil property.  

The aforementioned RFM procedure is for one realization of the 
random field. To investigate the inherent spatial variability, this 
procedure needs to be implemented with MCS. In each simulation, 
failure occurs if the estimated Qult is smaller than the compression 
loading (F).  Given a sufficient number of MCS, the probability of 
failure can be calculated as the ratio of the number of failure over 
the total number of MCS (referring to Eq. 2).   
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Figure 3 Simulated spatial variability of SPT N values based on the 
SPT profile in Figure 1 (assuming COV = 0.3) 

 
3.2 Spatial averaging approach 

The spatial variability of soil property over a certain region can also 
be approximately averaged as one random variable that represents a 
soil parameter (Vanmarcke 1977). This simplified approach is very 
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useful and could be an alternative to RFM when a soil profile is 
simple and the characteristic length can be reasonably assessed (e.g., 
Peschl and Schweiger 2003; Most and Knabe 2010; Suchomel and 
Mašín 2010; Luo et al. 2012a, 2012b). In a random field where 
spatial variability exists, it is observed that the overall variation of 
soil property over a larger domain is generally smaller than that over 
a smaller domain. In other words, the variance of soil property over 
a large domain is reduced by a certain extent comparing with that of 
a small domain. This reduction in variance can be evaluated using 
the variance reduction factor. The variance reduction factor is a 
function of the scale of fluctuation θ and characteristic length L. 
Given the exponential correlation function (Eq. 3), the variance 
reduction function has the same form as Eq. (4) by replacing Δz 
with L: 
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1 exp
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L L
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
 
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In this study, the characteristic length L, which specifies the 
averaging length for the one-dimensional case (Most and Knabe 
2010), is set to be the vertical scale of the RFM region (30m, which 
is the depth between 2 m and 32 m). The reduced variance is the 
product of the variance reduction factor and the original variance.  
Similarly, when the variance reduction technique is used to simplify 
the effect of the spatial variability of a lognormal distributed N, as is 
assumed in this paper, only the variance of its equivalent normal 
distribution ( ln N ) needs to be reduced through multiplying the 
variance reduction factor (Griffiths and Fenton 2004).  

Using the spatial averaging technique, all the elements in the 
RFM region (for instance, Element 1 to Element 12 in Figure 2(a)) 
are combined as one random variable with the reduced variance in 
the subsequent probabilistic analysis. When there is no spatial 
variability (spatial constant case), the variance reduction factor is 
obtained by setting θ equal to infinity or a relatively large value. For 
the spatial constant case, the variance reduction factor is 
approximately equal to 1, indicating there is no reduction. In this 
spatial averaging approach, the continuously varying spatial random 
field of soil property is averaged over a certain domain, in which the 
geometric average is adopted to determine the shaft resistance; the 
geometric averaging of a lognormal random field can maintain the 
type of distribution and mean value of its equivalent normal 
distribution (Fenton and Griffiths 2008). In contrast, the 
conventional approach for ultimate resistant of drilled shafts 
employs the arithmetic average of N of a certain domain to compute 
the shaft resistance. For convenience of presentation and discussion 
later, this simplified approach using spatial averaging technique is 
denoted as S1 and is readily implemented with MCS in this paper. 
 
3.3 Spatial correlation of spatial averages 

The second simplified approach to investigating the effect of spatial 
variability is based on the spatial correlation of spatial averages 
(Vanmarcke 1977). Considering that the empirical model (Eq. 1) 
consists of two terms for the shaft resistance and toe bearing 
resistance, respectively, two spatial averages are classified and 
shown in Figure 2(b). The first spatial average (denoted as uD1) 
covers the region from 2 m in depth to the bottom of the shaft (D1 = 
28 m), which is used to calculate the shaft resistance. The second 
spatial average (denoted as uD2) covers the region from the bottom 
of the shaft to 2D below the tip (D2 = 2 m), which is used to 
calculate the toe bearing resistance. In addition to uD1 and uD2, a 
third spatial average (denoted as uD12) that covers the region with a 
vertical distance of D12 (in Figure 2(b)) can also be determined.  

The spatial averaging technique utilized in the simplified 
approach S1 is then used to determine the two spatial averages uD1 
and uD2. As such, the lognormally distributed N is first transformed 
into the equivalent normal distribution ln N . Then the variance 
reduction factors for uD1 and uD2 (denoted as Γ2(D1) and Γ2(D2)) can 

be computed with Eq. (4) by setting Δz equal to D1 and D2, 
respectively. Then the reduced variances for uD1 and uD2 are 
computed using the corresponding variance reduction factor and the 
variance of ln N . It should be noted that uD1 and uD2 are in the same 
random field and thus the correlation between the two spatial 
averages needs to be considered in the probabilistic analysis. This 
paper adapts the correlation coefficient of two spatial averages 
proposed by Vanmarcke (1977), which takes the following form:  
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in which  Γ2(D1), Γ

2(D2) and Γ2(D12) are the variance reduction 
factors for the spatial averages uD1, uD2 and uD12 respectively. These 
variance reduction factors are computed with Eq. (4) by setting Δz = 
D1, D2, and D12, respectively.  

This study adopts MCS to determine the statistical distribution 
of the estimated ultimate resistance (Qult) and the probability of 
failure at a certain level of compression load F. Comparing with the 
RFM approach and S1 based on spatial averaging technique, this 
second simplified method is an intermediate approach using the 
spatial correlation between spatial averages. In this paper, this 
simplified approach is denoted as S2 for convenience of 
presentation. The focus of this study is to compare the 
aforementioned three probabilistic approaches (RFM, S1 and S2) for 
determining the probabilistic ultimate resistance of a drilled shaft 
considering the effect of spatial variability.   
 
4. PROBABILISTIC ANALYSIS OF DRILLED SHAFTS  
 CONSIDERING SPATIAL VARIABILITY 

In this section, the effect of spatial variability of SPT N on the 
probabilistic analysis is first investigated and demonstrated with 
RFM, which is a rigorous approach to deal with the spatial effect. 
The research results obtained from the RFM approach then serve as 
a benchmark in the subsequent comparison study for the two 
simplified approaches (S1 and S2). As will be shown in the 
subsequent sections of this paper, RFM, S1 and S2 yield comparable 
results (i.e., probability of failure) in the design example shown in 
Figure 1(a). 
 
4.1 Random field modeling (RFM) of spatial variability of  
 SPT N 

It is quite well known that the spatial variability of soil property has 
a significant influence on the probabilistic analysis of geotechnical 
engineering (Fenton and Griffiths 2008).  It is advisable to compare 
the assumption of spatial constant case (no spatial variability) with 
those of various levels of spatial variability. In the RFM of the 
design example in Figure 1(a), the spatial constant case can be 
realized using a relatively large value of scale of fluctuation, say θ = 
100 m. A series of sensitivity studies with the following ranges of 
parameters is performed: 

 

COV = 0.1, 0.2, 0.3 and 0.6 
θ = 0.5 m, 3 m, 10 m, 50 m and 100 m 
 
The variability of soil property results from various sources of 

uncertainty may be grouped into two categories: aleatory uncertainty 
and epistemic uncertainty. The aleatory uncertainty includes spatial 
variability and random testing errors, while the epistemic 
uncertainty is related to measurement procedures and limited data 
availability (Whitman 1996). The sample statistics adopted in this 
study represent only the spatial variability of soils. The effect of 
other sources of uncertainty on the ultimate resistance of drilled 
shafts is not the focus of this paper, although further investigation of 
those uncertainties is warranted. Given that the COV and the θ is for 
the normalized N, the aforementioned RFM procedure based on the 
Cholesky decomposition is performed using each pair of COV and 
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θ. In this study, the level of failure probability of interest is 10-5. The 
number of MCS samples should be at least 10 times of the 
reciprocal of the target failure probability (Ang and Tang 2007). 
Thus the number of MCS in this study is set to be 106 for each pair 
of COV and θ. Then the statistical distributions of the Qult are 
obtained and the mean values and COV can be determined using 
MCS. It is found that the spatial variability has very limited 
influence on the mean of Qult.  

Figure 4 shows the variation of the ultimate resistance as a 
function of COV and θ. It is observed that at the same level of COV 
of normalized N, the COV of ultimate resistance increases with θ. 
The spatial variability has a significant influence on the variation of 
the resulting ultimate resistance: smaller θ leads to smaller COV of 
Qult. In Figure 4, it is also observed that at the same level of θ, 
smaller COV of normalized N results in smaller COV of Qult. 
Through comparison of the COV of Qult for spatial constant case (θ 
= 100 m) and the case with spatial variability (say, θ = 3 m), it is 
concluded that there is an effect of reduction in the variation of N 
when spatial variability exists, which leads to a smaller variation of 
Qult. This conclusion is consistent with the theory of variance 
reduction, which will be presented in the approaches S1 and S2 in 
section 4.2. With the statistical distributions of Qult, the probability 
of failure for this design example can also be estimated with Eq. (2) 
if a certain level of compression load F is applied. Figures 5(a) and 
5(b) show the estimated probability of failure at various 
combinations of F and θ for COV = 0.3 and 0.6, respectively. It 
should be noted that the horizontal axis is set in the reverse order 
and F = 2000 kN approximately corresponds to a factor of safety of 
1.0. At the same level of θ, the probability of failure increases as F 
approaches to 2000 kN. At the same level of F, the probability of 
failure for the spatial constant case (θ = 100 m) is much larger than 
the case with spatial variability (say θ = 3 m). For instance, in 
Figure 5(a), at F = 1800 kN, pf is estimated to be 27.4% for θ = 100 
m, comparing with 2.4% for θ = 3 m. The research results here 
support the previous research conclusions that neglecting the spatial 
variability of soil property leads to the overestimation of the 
probability of failure in the design of piles and drilled shafts (e.g., 
Luo and Juang 2012; Zhang and Chen 2012). Thus, the need to 
consider the spatial effect in the design of drilled shafts is 
highlighted in this paper. 
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Figure 4 Coefficient of variation (COV) of ultimate resistance as a 
function of scale of fluctuation and COV 
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(a) COV = 0.3 
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(b) COV = 0.6 
 

Figure 5 Estimated probability of failure at various levels of 
compression load using RFM 

 
4.2 Comparison between RFM and simplified approaches 

The focus of this paper is to compare the estimated probability of 
failure among the three approaches, RFM, S1 and S2. With the 
aforementioned procedures for RFM, S1 (simplified approach based 
on spatial averaging) and S2 (simplified approach based on spatial 
correlation between spatial averages), a series of MCS are 
performed to investigate the effect of spatial variability of SPT N on 
the probability of failure for the design example in Figure 1(a) at a 
compression load of 1600 kN. For each combination of COV and θ, 
the number of MCS is 106 in all three probabilistic approaches. 
Following the procedures presented in Section 3, the comparisons of 
estimated probability of failure at various levels of scale of 
fluctuation are shown in Figure 6(a) and 6(b) for COV = 0.3 and 
0.6, respectively. It is found that the three approaches (RFM, S1 and 
S2) yield virtually identical probability of failure at various 
combinations of COV and θ. The simplified approaches (S1 and S2) 
can serve as alternatives to the RFM approach in this case study.  
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To further demonstrate the potential of the simplified approaches in 
the probabilistic analysis of drilled shafts considering spatial 
variability, another series of comparison studies is performed at 
various levels of compression load (F). The same procedures are 
repeated and the comparisons of the estimated failure probability 
among the three approaches are shown in Figure 7 for COV = 0.3. 
For the four levels of scale of fluctuation (θ = 0.5 m, 3 m, 10 m and 
100 m) shown in Figure 7, the RFM approach and the simplified 
approaches (S1 and S2) results in almost identical probability of 
failure, regardless of the magnitude of compression load F. The 
same procedures of RFM, S1 and S2 are further repeated at a higher 
level of variation of normalized N, COV = 0.6, and the results are 
shown in Figure 8 for θ = 0.5 m, 3 m, 10 m and 100 m. It is also 
observed in Figure 8 that the three probabilistic approaches are 
almost equivalent at the higher variation of normalized N. The 
research results presented in Figures 7 and 8 indicate the simplified 
approaches (S1 and S2) can yield consistent probability of failure as 
those obtained from the RFM approach, and thus S1 and S2 can 
serve as alternatives to RFM.  

In this comparison study, all three approaches are conducted 
using MCS. It should be noted that RFM necessarily involves the 
random field theory and MCS, and thus it may not be practical in the 
engineering practice due to the large computational effort required. 
Considering that the simplified approaches (S1 and S2) can be easily 
realized with analytical methods, such as point estimate method 
(PEM), first-order second moment method (FOSM), and first-order 
reliability method (FORM), which require much less computational 
effort comparing to MCS and can be implemented easily in a 
spreadsheet (e.g., Luo and Juang 2012), the simplified approaches 
may be preferred in the probabilistic analysis of drilled shafts 
considering the spatial variability of soil property. For the two 
simplified approaches (S1 and S2), S2 is relatively complicated 
since three variance reduction factors are needed and the spatial 
correlation (as in Eq. 6) has to be considered. S1 is relatively easier 
because the entire random field is treated as one spatial average and 
only one variance reduction factor needs to be computed. This study 
advocates S1 as it requires the least amount of computational effort 
in the analysis of the ultimate resistance of drilled shafts. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) COV = 0.3       (b) COV = 0.6 
 

Figure 6 Comparison of estimated probability of failure at various levels of scale of fluctuation among RFM, S1 and S2 at F = 1600 kN 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) θ = 0.5 m                                 (b) θ = 3 m     
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) θ = 10 m            (d) θ = 100 m    
 

Figure 7 Comparison of estimated probability of failure among the three approaches RFM, S1 and S2 for COV = 0.3 
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(a) θ = 0.5 m              (b) θ = 3 m                                                  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) θ = 10 m            (d) θ = 100 m   
 

Figure 8 Comparison of estimated probability of failure among the three approaches RFM, S1 and S2 for COV of = 0.6 
 

 
4.3 Effect of model bias on the probability of failure 

The probabilistic analysis of the ultimate resistance of drilled shafts 
presented so far is performed assuming no model bias in the 
empirical model (Eq. 1). When the model bias is to be considered, 
Eq. (1) can be adapted by multiplying a bias factor (BF), defined as 
the ratio of the measured over the predicted ultimate resistance, 
express as follows: 

             2

1

9.5 / 4
n

iult i n
i

Q BF DL N D N 


    
 
                    (10) 

 

In the previous probabilistic analysis, the BF is assumed to be a 
constant of 1.0. When the model bias exists, the mean of BF may 
not necessarily be unity and should be modeled as a random 
variable. Zhang et al. (2009) calibrated the model bias of Eq. (1) 
using a database in Hong Kong. The calibration results by Zhang et 
al. (2009) are adopted herein. The mean value of BF (μBF) is set to 
be 1.41. Two levels of COV of BF (COVBF) are selected to be 0.2 
and 0.3. In this paper, the BF is assumed to follow the lognormal 
distribution (Zhang et al. 2009). 

To illustrate the effect of model bias, the design example in 
Figure 1(a) is used herein and the COV of normalized N and θ are 
assumed to be 0.3 and 3 m, respectively. Following the 
aforementioned procedure of the RFM approach, MCS is performed 
to determine the probability of failure at various compression loads 
F, for two combinations of μBF and COVBF: (1) μBF = 1.41, COVBF = 
0.2 and (2) μBF = 1.41, COVBF = 0.3. The estimated probability of 
failure as a function of F is shown in Figure 9. For comparison 
purpose, the case with no model bias, which is the curve with the 
RFM approach in Figure 7(b), is re-plotted in Figure 9.  

The effect of mode bias on the probabilistic analysis is 
significant. If the curve of no model bias and the curve with COV of 

 

0.2 are compared, a critical load of approximately 1800 kN is 
observed: when the load on the drilled shaft is relatively small 
(smaller than 1800kN), the probability of failure for the curve with 
model bias is larger than that without model bias. This trend 
reverses when the load exceeds 1800 kN and the failure probability 
for the case with model bias is smaller than that without considering 
model bias. It is concluded that if the model bias is neglected, the 
probability of failure is overestimated at relatively large load and the 
probability of failure is significantly underestimated when the load 
is relative small. The smaller value of F indicates a larger factor of 
safety. This indicates even though a conservative deterministic 
design is adopted (using a large factor of safety), the actual 
probability of failure can be higher than expected. In other words, a 
“conservative” deterministic design can be un-conservative because 
of the existence of model bias. Similar conclusions are drawn if the 
curve of no bias and the curve with COV of 0.3 are compared. 
Therefore, the model bias should be included in the probabilistic 
analysis of the ultimate resistance of drilled shaft.  

Finally, a comparison among the three probabilistic approaches 
(RFM, S1 and S2) with the consideration of model bias is 
conducted. In this comparison study, the model bias follows a 
lognormal distribution with μBF = 1.41, COVBF = 0.2. The COV and 
θ are assumed to be 0.3 and 3 m, respectively. Figure 10 shows the 
probability of failure with various levels of load based on MCS. The 
three approaches still yield identical results when the model bias is 
considered in the probabilistic analysis. However, it is advisable to 
adopt the simplified approaches (S1 and S2) in the probabilistic 
analysis of drilled shafts considering the spatial variability of soil 
properties. The simplified approaches can be implemented with 
efficient probabilistic technique in lieu of MCS, which significantly 
saves the computational effort (e.g., Luo et al. 2012a, 2012b). 
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Figure 9 Effect of model bias on probability of failure using RFM 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 Comparison of estimated probability of failure among the 
three approaches RFM, S1 and S2 with                                           

the consideration of model bias 
 

5. CONCLUSIONS 

In this paper, a series of probabilistic analysis of the ultimate 
resistance of drilled shafts considering the effect of spatial 
variability of soil property is conducted. The procedures of three 
probabilistic approaches for modeling spatial variability are 
illustrated: a traditional random field modeling (RFM), a simplified 
approach based on spatial averaging technique (S1), and a simplified 
approach based on spatial correlation between spatial averages (S2). 
In this study, the effect of spatial variability of SPT N on the 
estimated probability of failure is investigated using the RFM 
approach. It is concluded that the negligence of spatial variability 
leads to the overestimation of the probability of failure in the design 
of drilled shafts. The results based on RFM are then used as a 
benchmark in the subsequent comparison study.  

The focus of this paper is to compare the three probabilistic 
approaches (RFM, S1 and S2) for the design of drilled shafts. The 
results show that the simplified approaches (S1 and S2) can yield 
consistent probability of failure with those obtained from the RFM 
approach, and thus S1 and S2 can serve as alternatives to RFM. In 
lieu of Monte Carlo simulation, it should be noted that the simplified 
approaches (S1 and S2) can also be easily realized using reliability 
methods, which requires much less computational effort and thus 
can be a practical tool in the probabilistic analysis of drilled shafts 
considering spatial variability. Comparing with S2, S1 requires less 
computational effort and may be preferred in the engineering 
practice. This study also shows the model bias should be included in 
the probabilistic analysis of the ultimate resistance of drilled shafts. 
Neglecting the model bias will result in an overestimation or 
underestimation of the probability of failure, depending on the load 
applied to the drilled shafts.  

It should be noted that the results presented in this paper are 
limited to single drilled shaft under compression load considering 
one-dimensional spatial variability with the assumed soil 
parameters. Further studies to consider the effects of three-
dimensional soil variability in more realistic scenarios involving 
drilled shaft group subjected to more complex loading conditions 
are warranted.    
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