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ABSTRACT: There is currently an inconsistency in the recommendations that are available in pile design codes and practices regarding the 
required number of proof-load tests and the level of the proof loads. This paper presents the results of a comprehensive investigation that is 
conducted to study the effect of choosing different proof-load test programs on the reliability of piles. This is achieved by utilizing a 
Bayesian approach to update the capacity distribution of piles at a site given the results of the proof-load test program. In the updating 
exercise, an effort is made to update both the mean and the lower-bound capacity to maximize the benefit of the collected proof load data. 
The significance of the results presented lies in the fact that these results constitute necessary input to any practical decision framework for 
choosing the number and the magnitude of the proof load test that would maximize the value of information of the test program. 
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1. INTRODUCTION 

Pile load tests have been long utilized in foundation engineering to 
reduce the uncertainties associated with pile capacity prediction. 
Generally, the foundation is sized based on an empirical design 
method using a reduced factor of safety (typically 2.0) provided that 
it passes a proof-load test up to twice the design load (ASTM D1153 
1994). However, many international design codes and practices 
allow for the use of reduced factors of safety of different 
magnitudes, with the proposed factors of safety being dependent on 
the number and type of pile load tests that are conducted. Some 
common recommendations from international pile design codes are 
summarized in Table 1. These recommendations indicate variability 
in the correlation between the type and number of the specified pile 
load tests and the recommended reduced design factor of safety. In 
addition to the variability between the recommendations, a major 
drawback of any recommendation is that the designer does not have 
any indication of the inherent reliability/safety that is associated 
with the resulting design, since the recommendations are generally 
based on experience and are not associated with any robust 
reliability/risk analysis that supports their use.  
 

Table 1 Worldwide Recommended Safety Factors for Static and 
Dynamic Pile Load Test Programs 

 
In the last decade, some research efforts have targeted analyzing 

the impact of proof-load tests on the design of foundations in the 
framework of a reliability analysis. Examples include the work of 
Zhang and Tang (2002), Zhang (2004), Su (2006), Najjar and 
Gilbert (2009a), and Park et al. (2011). Except for the study by 
Najjar and Gilbert (2009a), current reliability analyses focus on 
utilizing results from proof-load tests to update the mean or median 
of the capacity distribution. Results from these reliability analyses 
indicate that the magnitude of the proof load has to be higher than 
the mean capacity so that the updating process will have a 
significant effect on the reliability. As an example, Zhang (2004) 

recommends conducting 1 to 3 tests using proof loads that are larger 
than 1.5 times the predicted pile capacity (larger than 3 times the 
design load) so that the value of the test can be maximized.  

Proof-load tests that are conducted up to 3 times the design load 
can be quite expensive and time consuming. In addition, the 
likelihood of failing the pile during the test increases significantly as 
the proof-load level increases. For geotechnical engineering 
applications, the left-hand tail of the capacity distribution governs 
the probability of failure since the uncertainty in the capacity is 
generally larger than the uncertainty in the load. As a result, the 
reliability of a foundation is expected to be strongly affected by the 
presence of a lower-bound capacity (Najjar and Gilbert 2009b). This 
is clearly shown in Figure 1 which illustrates the effect of a lower-
bound capacity on the probability of failure for a typical foundation. 
The primary conclusion from Figure 1 is that a lower-bound 
capacity can have a significant effect on the calculated reliability. 
For example, consider a typical case where the factor of safety is 
3.0. If the lower-bound capacity is anything greater than 0.6 of the 
median capacity, the probability of failure is reduced by more than 
an order of magnitude compared to the case where there is no lower 
bound.  
 

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ratio of Lower-Bound to Mean Capacity

4.0

3.5

2.5

3.0

Factor of Safety

P
ro

b
ab

ili
ty

 o
f 

F
ai

lu
re

 
Figure 1 Effect of Lower Bound Capacity on Reliability 

 
When a limited number of proof-load tests are conducted on a 

small percentage of foundations at a site, Bayesian techniques can 
be used to update the probability distribution of the foundation 
capacity at the site. In the updating process, the results of proof-load 
tests are typically used to update the middle of the capacity 
distribution (mean or median). However, Bayesian techniques have 
been also utilized to update the lower-bound capacity (rather than 
the mean capacity) at the tail of truncated capacity distributions. 
Najjar and Gilbert (2009a) proved through an illustrative example 
that running successful proof-load tests of relatively small 
magnitude (0.6 of the predicted capacity) on 3% of the piles at a site 
with 1000 piles resulted in a 30% reduction in the required median 

Country FS, No 
Load 
Tests 

FS, with 
Static Tests 

FS, with 
Dynamic 

Tests 

Comments 

USA, 
ASCE 1996 

3 1.6 to 1.9 1.7 to 2 Design capacity is 0.4 
to 1.0 MN. 

Europe, 
EC7 2001 

- 1.64 1.95 More than 5 Static, 
More than 20 Dynamic

Japan 3 2.7 2.7 - 

Sweden 
2000 

- - 
2 If 25% of piles tested.

1.6 If 100% of piles tested.
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factor of safety while still maintaining the same level of reliability. 
The analysis assumes that all the piles survive the proof load tests 
and that the results of the load test program are used to update the 
lower-bound pile capacity.  

This paper presents the results of a comprehensive investigation 
that is conducted to study the effect of choosing different proof-load 
test programs on the reliability of piles. This is achieved by utilizing 
a Bayesian approach to update the capacity distributions of piles 
given the results of the proof-load test program. In the updating 
exercise, both the mean and the lower-bound capacity are updated to 
maximize the benefit of the collected proof load data. The 
significance of the results presented lies in the fact that these results 
constitute necessary input to any practical decision framework for 
choosing the number of proof-load tests and the magnitude of the 
proof load that would maximize the value of information of the test 
program. What distinguishes the work presented in this paper from 
other studies in the literature is the incorporation of the lower-bound 
capacity in the reliability assessments, both in the prior and updated 
distributions of the pile capacity.   
 
2. PROBABILISTIC MODEL FOR PILE CAPACITY 

2.1 General Form 

The main objective of the proposed study centers around updating 
the capacity distribution of piles at a site given results from a pile 
load testing program. In this study, the uncertainty in the pile 
capacity will be assumed to be modeled by a truncated lognormal 
distribution (Najjar 2005). The three parameters that define the pile 
capacity distribution are the mean capacity (rmean), lower-bound 
capacity (rLB) and the coefficient of variation (covR) as indicated in 
Figure 2. For simplicity, the coefficient of variation covR will be 
assumed to be a deterministic parameter that is generally evaluated 
for different pile capacity prediction models using databases of pile 
load tests (ex. Barker et al. 1991, Withiam et al. 1997, Goble 1999, 
Liang and Nawari 2000, McVay et al. 2000, 2002 and 2003, Zhang 
et al. 2001, Kuo et al. 2002, Kulhawy and Phoon 2002, Phoon et al. 
2003a and 2003b, Honjo et al. 2003, Paikowsky 2003, Withiam 
2003 and Gilbert et al. 2005). As an example, Gilbert et al. (2005) 
report covR values of 0.25 and 0.55 for the API (1993) method for 
driven steel pipe piles in clays and sands, respectively. Along the 
same lines, Zhang (2004) reports covR values ranging from 0.21 to 
0.57 for about 14 methods of pile capacity prediction. On the other 
hand, the mean capacity (rmean) and the lower-bound capacity (rLB) 
will be assumed to be random variables (model parameters) with 
prior statistics that could be inferred from existing empirical models. 
The Bayesian updating tool which will be discussed in the next 
section will allow for updating either or both of the above 2 
parameters (rmean and rLB) given the results of pile load tests. 
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Figure 2 Parameters of Truncated Lognormal Capacity 
Distribution 

 
 

 

2.2 Statistical Parameters of Prior Capacity Distribution 

The prior statistics and probability distributions of the two 
parameters rmean and rLB were determined based on several realistic 
assumptions. First, both parameters were assumed to follow a 
lognormal distribution since both rmean and rLB cannot physically 
assume negative values. Second, it was assumed that the mean of 
rmean could be estimated from databases of pile load tests as is 
conventionally done in evaluating the bias of pile capacity 
prediction models. The coefficient of variation of rmean was assumed 
to be equal to 0.1 to account for systematic and random uncertainties 
in the determination of the soil properties at each test site in the 
database, uncertainties due to pile testing procedures and 
instrumentation, and uncertainties due to the interpretation of the 
pile capacity from the load-settlement curves of the pile load tests in 
the database.  

With regards to the prior statistics of rLB, it was assumed that the 
mean of rLB is equal to about 0.5 of the mean of rmean. This value is 
supported by the results presented in Gilbert et al. (2005) who show 
based on analyses of databases for driven piles in clays and sands 
that the ratio of the lower-bound capacity to the mean capacity for 
driven piles could range from 0.4 to 0.9, with an average of about 
0.55 to 0.60.  The lower-bound capacities are computed using 
physical models (ex. Najjar 2005 and Gilbert et al. 2005) and are not 
based on statistical minimum values of pile capacity. The prior 
coefficient of variation in rLB was assumed to be equal to 0.2 (Najjar 
and Gilbert 2009b) to account for (1) uncertainty due to spatial 
variability in the soil properties needed in the estimation of the 
lower-bound capacity and (2) uncertainty in the models available for 
predicting the lower-bound capacity. Table 2 summarizes the 
statistical parameters used in the reliability assessments conducted 
in this paper. It is worth noting that the load, s, was assumed to 
follow a lognormal distribution with a coefficient of variation of 
0.15 as is the convention. For comparison, the coefficients of 
variation specified by AASHTO (2004) to represent the uncertainty 
in bridge loads are 0.13 and 0.18 for the dead and live load 
respectively. For illustration and computational purposes, the mean 
load was assumed to take a value of 200 tons. A numerical estimate 
of the mean load is needed to illustrate the methodology presented 
in this paper for updating the pile capacity distribution using proof 
load tests. The results and conclusions will however be general and 
independent of the actual value of the mean load.  
 
2.3 Simplified Probability Models for rmean and rLB 

The model parameters to be updated based on proof-load test results 
are the mean and the lower-bound of the pile capacity at a given site. 
Given the mathematical complexities that are expected to exist in 
updating the probability density functions (PDFs) of rLB and rmean, a 
decision was made to model the two variables as discrete random 
variables rather than continuous variables. As a result, the lognormal 
distributions that model the uncertainties in rLB and rmean were 
replaced with probability mass functions (PMFs) that provided a 
simplified but accurate representation of the variation of the 
lognormal distribution. For each random variable, the range of 
values to be represented by the PMF was selected based on an 
analysis that ensured a mathematically adequate coverage of the 
probability density function. In general, the minimum value in the 
PMF was chosen to be that corresponding to the mean value minus 4 
standard deviations while the maximum value was chosen to be 
equal to the mean plus about 10 to 20 standard deviations. Once the 
minimum and maximum values that define the range of the PMF 
were chosen, the range was divided into 44 equal intervals, resulting 
in a total of 45 values of rLB or rmean in the PMF. These numbers 
were chosen using trial and error to ensure that the simplification 
that is brought by replacing the PDF with a PMF does not 
compromise the accuracy in modeling the uncertainty in rLB and 
rmean for both the prior and the updated distributions. 
 
 

mean 
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Table 2 Statistics of Model Parameters 

 
Note: FS is the mean factor of safety (ratio of mean capacity to 
mean load) and x is the ratio of the mean lower-bound capacity to 
the mean of the mean pile capacity. 
 
3. RELIABILITY OF PROOF-TESTED PILES 

3.1 Updating the Parameters of the Capacity Distribution 

When a limited number of proof-load tests are conducted on a small 
percentage of foundations at a site, Bayes’ Theorem (Eq. 1) could be 
used to update the probability distribution of the model parameters 
for a given set of data such that: 
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normalizing constant.  
One of the challenges associated with the use of Bayes’ theorem 

within this framework is numerically finding a solution for the 
updated probability density function of the model parameters given 
the measured data. The decision to represent both the prior and 
updated distributions of the mean and lower bound capacities using 
probability mass functions was specifically made to tackle this 
challenge and to avoid high computational costs. This simplification 
significantly facilitates the solution of Equation 1. For illustration 
purposes, if “n” proof-load tests are conducted using a proof-load 
level rproof, and if all the piles are able to withstand the proof load, 
the prior probability distribution of the lower-bound capacity can be 
updated such that: 
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where  )('' LBr rP
LB

and )(' LBr rP
LB

 are the updated and prior lower-

bound probability mass functions respectively and R and R are the 
parameters of the lognormal distribution which are calculated as a 
function of rmean and covR. The updated distribution of the lower-
bound capacity is then used to calculate an updated estimate of the 
reliability of the foundations at the site. It should be noted that 
Equation (2) is only illustrative since it is assumed that rmean is 
deterministic and rLB is the random parameter that is being updated. 
In reality, rmean in this paper is also assumed to be a random 

parameter that follows a given PMF. As a result, Equation 2 needs 
to be amended to take that into consideration by adding the 
contribution of all possible values of rmean (in the likelihood function 
and in the normalizing constant) and weighing them by their 
respective probabilities (evaluated from the prior PMF of rmean). The 
same principal is used to update rmean instead of rLB and in updating 
rmedian and rLB together.  

A MATLAB algorithm was developed to automate the updating 
process and the calculation of the probability of failure and the 
reliability index. Using adaptive refinement, and as mentioned 
previously, a predetermined range of the PDF was selected to be 
represented by the PMF. Once the range of the random parameter 
was chosen, 45 equal intervals were selected within this range.  

 
For the specific case that was considered in this paper, the mean 
load was chosen to be 200 tons, thus rendering a fixed interval width 
of approximately 20 tons for the mean of the capacity and about 15 
tons for the lower bound capacity. The algorithm returns the updated 
PMF’s and the corresponding probabilities of failure as output. 
  
3.2 Formulation of the Reliability Problem 

For the case where a truncated lognormal distribution is used to 
model the capacity, r, and a conventional lognormal capacity is used 
to model the load, s, the probability of failure pf could be calculated: 
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where Φ() is the standard normal cumulative distribution function, 
 () is the standard normal probability density function, and  is the 

reliability index. The probability of failure in Equation (3) is for one 
combination of rLB and rmean and is calculated using numerical 
integration. For the case where rLB and rmean are random model 
parameters, the total probability of failure will be obtained using the 
theorem of total probability by incorporating all the probabilities of 
failure for all combinations of rLB and rmean and weighing them by 
the probabilities of each combination.  
 
4. EFFECT OF TEST PROGRAM ON RELIABILITY 

4.1 Updated Mean and Lower Bound of Pile Capacity  

With the mathematical formulation devised in the previous sections, 
a systematic analysis could be conducted to investigate the effect of 
choosing alternative load test programs on the reliability of the pile 
design. In the analysis, the parameters that will be changed are: (1) 
the level of the proof load, rproof (relative to the design load which is 
assumed as the mean load in this paper), (2) the number of proof 
load tests, and (3) the magnitude of the design factor of safety. To 
isolate the effect of the lower bound capacity from the mean 
capacity, the updating process for a given proposed load test 
program will first be conducted by updating the mean capacity only. 
The analysis is repeated for the case where the lower-bound capacity 
is updated only. Finally, the updating will be done for the two 
parameters simultaneously. This analysis will isolate the importance 
of the lower-bound capacity on the design of the piles at the site.  

For illustration, it is assumed that the mean of the pile load in a 
given site is equal to 200 tons and that all other statistical parameters 
for r and s are in line with the values presented in Table 2. It was 
assumed that the ratio of the mean of rLB to the mean of rmean is equal 
to 0.5. With these assumptions, it could be shown that the required 
mean factor of safety would have to be around 3.0 to achieve a 
typical target reliability index of 3.0 for the piles at the site.  

If proof load tests are to be conducted on a limited number of 
piles at the site, the required mean factor of safety could be reduced 
provided that the majority of the tests are successful. To illustrate 

Design Parameter Mean,  Coefficient of 
Variation,  

Load, s s 0.15 

Mean of Pile Capacity, rmean FS.s 0.1 

Lower-Bound Pile Capacity, rLB x.FS.s 0.2 

Coefficient of Variation of Pile 
Capacity, r 

0.4 - 
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this concept, it is assumed that 15 statistically independent proof 
load tests of up to 2 times the design load (assumed to be the mean 
load) are conducted on 15 piles that are designed and constructed at 
a reduced mean factor of safety of 2. If the tests were successful, the 
results of the load test program could be used to update the capacity 
distribution of the piles at the site. This is illustrated in Figures 3a, 
3b, and 3c where the results of the testing program are used to 
update the probability mass functions of the mean capacity alone, 
the lower-bound capacity alone, and the joint PMF of the mean and 
the lower bound capacity, respectively. Results in Figure 3 indicate 
that the impact of the successful proof load tests is to shift the 
distributions of both the mean capacity and the lower-bound 
capacity to the right. In other words, the probabilities of relatively 
low values of the mean and lower-bound capacities decrease, while 
the probabilities of the higher values increase as a result of the 
updating process. The shifting of the mean and the lower-bound 
capacity to the right is expected to translate into improvements in 
the reliability index and reductions in the probabilities of failure of 
the piles at the site, thus allowing for the utilization of lower factors 
of safety for a given level of reliability. 
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Figure 3 Updating the Probability Mass Functions of rmean and               
rLB (15 proof load tests, rproof = 2 x Design Load, FSmean = 2.0) 

 

Further analysis of the data on Figure 3 indicates that when the 
updating process is conducted on the joint PMF of rmean and rLB, the 
major thrust of the updating process is on updating the lower-bound 
capacity rather than the mean. This observation could be explained 
by two facts. First, the uncertainty in the prior distribution of rLB 
(r,LB=0.2) is larger than the uncertainty in the prior distribution of 
rmean (r,mean =0.1). This makes the lower-bound capacity a more 
favorable parameter for updating. Second, the likelihood function in 
Equations 1 and 2 is expected to be more sensitive to changes in the 
lower-bound capacity (clearly illustrated in Figure 1) than the mean 
capacity, particularly for values of rLB that exceed 0.4 to 0.5 of the 
mean capacity, as is the case in this problem.  
 
4.2 Updated Pile Reliability for FSmean = 2.0  

For the case considered in Figure 3, the mean design factor of safety 
was assumed to be equal to 2.0. For the prior scenario (assuming no 
load tests are conducted), this relatively low factor of safety results 
in a relatively small and virtually unacceptable reliability index that 
is slightly less than 1.9. When 15 successful proof load tests with 
rproof equal to twice the design load are conducted, the distribution of 
pile capacity at the site is updated through the PMFs of rmean and rLB 
as indicated in Figure 3. The positive effect of the updating process 
is reflected in improved values of the reliability index as indicated in 
Figure 4. For the specific case of the 15 proof load tests that are 
conducted to twice the design load and assuming a factor of safety 
of 2.0, results on Figure 4 indicate that the reliability index increases 
from its prior value of 1.9 to values of about 2.2, 2.55, and 2.85 for 
cases where the mean capacity is updated alone, the lower-bound 
capacity is updated alone, and both the mean and the lower-bound 
capacity are updated together, respectively. 

The variation of the reliability index with the number of proof 
load tests for different proof load levels is presented in Figure 4. 
Results on Figure 4 indicate that the effect of almost all the proof 
load test programs is to increase the reliability compared to the case 
where no proof load tests are conducted. As expected, the reliability 
index generally increases as the number of proof load tests increases 
and as the proof-load level increases. Results on Figure 4a indicate 
that utilizing the results of the proof load tests to update rmean, results 
in relatively small increases in the reliability index. For example, the 
reliability index increases from around 1.9 (for the case where no 
proof tests are conducted) to a maximum of about 3.0 for the case 
where 30 tests are conducted to up to 3 times the design load. 

On the other hand, results on Figure 4b indicate that updating the 
lower-bound capacity results in significant increases in the 
reliability index, with maximum values exceeding 6 for the largest 
number of tests and the highest proof load levels. These results are 
significant because they indicate that for the probabilistic model of 
the pile capacity that was adopted in this paper, the results of a proof 
load testing program could be more efficient at updating the lower-
bound capacity than the mean capacity. The results on Figure 4c 
where the proof load tests were used to update the joint PMF of the 
mean and lower-bound capacity confirm this observation since the 
updated marginal PMFs indicate that the lower-bound capacity 
governed the reliability index since it was the most affected by the 
updating process compared to the mean capacity (see Figure 4c).  

A general comparison between the results on Figures 4b and 4c 
indicates that updating rmean and rLB together (Figure 4c) generally 
results in slightly higher values of the reliability index compared to 
the case where only rLB is updated. However, this observation is 
reversed for the few cases where the calculated reliability index was 
very large (generally greater than 4.0), where higher reliability 
indices were calculated for the case where only rLB was updated. 
From a physical standpoint, this observation might not be logical 
and is expected to be attributed to inaccuracies in the numerical 
computations and assumptions which could only be evident at such 
small values of the probability of failure and which are not expected 
to be relevant at typical target risk levels for foundation design 
(target reliability indices ~ 3.0).   
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4.3 Factor of Safety vs Reliability for Different Test Programs  

Since the main objective of this paper is to study the effect of 
choosing different proof-load test programs on the required factor of 
safety for piles, the target factor of safety needed to achieve target 
reliability indices of 2.5, 3.0, and 3.5 for the different proof load 
testing programs considered in this study was calculated and plotted 
in Figures 5a, 5b, and 5c, respectively. The results in Figure 5 show 
that different combinations of factor of safety, proof load level, and 
number of proof load tests could be selected to achieve the desired 
level of reliability.  

For the most common case where the target reliability index is 
generally taken as 3.0, Results on Figure 5b indicate that designers 
have the option of choosing test programs that are based on a few 
number of load tests that are conducted to a relatively high proof 
load level or load tests that include larger number of proof tests that 
are conducted to a relatively smaller proof load level. As an extreme 
case, one could choose a relatively large factor of safety 
(approximately 3) without conducting any proof load tests. On the 
other extreme, one can choose a relatively aggressive load testing 
program (ex. 12 tests up to 3 times the design load) to minimize the 
factor of safety to a value of 2.0. Alternatively, the same reduced 
factor of safety of 2.0 could be achieved with a smaller proof load 
level (1.5 x design load) but with a larger number of tests (27 tests). 
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Figure 4 Effect of Load Test Program on the Reliability of Pile 
Design (FSmean= 2) 

 
For cases involving foundation systems that are redundant 

(example, large pile groups), it has been shown that the added 
redundancy allows for reducing the target reliability index of the 
individual foundation without compromising the reliability of the 
foundation system. For a reduced reliability index of about 2.5, 
results on Figure 5a indicate that no load tests are required to 

achieve the target reliability index if mean factors of safety that are 
greater than 2.5 are adopted. However, further reduction in the 
required factor of safety could be achieved with proof load testing. 
For example, the factor of safety could be reduced to 2.0 by running 
9 tests up to 3 times the design load, or 15 tests up to 1.5 times the 
design load. 

For cases where the desired level of reliability is required to be 
higher than the typical acceptable reliability levels (example, 
sensitive structures, heavily loaded foundations with no redundancy, 
etc.), reliability indices that are in excess of 3.0 may be desired. 
Results on Figure 5c indicate that if a target reliability level of 3.5 is 
desired, the required number of proof load tests and the level of the 
proof loads will need to be higher compared to the previous cases 
where the reliability index was lower. As an example, one possible 
design scenario could involve the use of a factor of safety of 3.0. To 
achieve the desired reliability level with this design scenario, the 
designer has the option of using a test program consisting of 5 load 
tests up to 3 times the design load or 21 load tests up to 1.5 times the 
design load. Another design scenario could consist of using a 
reduced factor of safety of 2.0. In this scenario, the designer could 
choose a program consisting of 15 tests conducted up to 3 times the 
design load or 43 tests conducted up to 1.5 times the design load. 
Other combinations of design scenarios and load testing programs 
could also be selected to achieve the same reliability level. 
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Figure 5 Required Factor of Safety to Achieve a Target Reliability 
Level of  = 3.0 for different Load Testing Programs 

 
4.4 Effect of Failures on the Updated Reliability   

In all the results and observations presented in the previous sections 
of this paper, it was assumed that all the tested piles survived the 
proof load tests. In reality, a proof load testing program could 
witness a number of foundation failures during its implementation. 
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The impact of these failures could be incorporated in the updating 
methodology presented in this paper by modifying the likelihood 
function to reflect both survivals and failures. When a number of 
piles fail during a proof load test program, the updated probability of 
failure is expected to increase compared to the case where all the 
piles survive the proof tests. With a large percentage of failed piles, 
the updated distributions of the mean pile capacity and lower-bound 
capacity could shift to the left, resulting in updated probabilities of 
failure that are even greater than the prior probability of failure 
(Zhang, 2004).  

To investigate the impact of failures on the updated reliability of 
the pile design, an analysis was conducted whereby several design 
scenarios (as reflected in the assumed mean factor of safety), several 
proof load testing programs (as reflected in the number of proof load 
tests), and several alternatives for the results of the proof load tests 
(as reflected in the number of failed piles) were considered. The 
mean factor of safety was varied from 2.0 to 3.0 and the updated 
reliability indices for test programs involving 5, 10, 20, and 30 proof 
load tests that are conducted up to twice the design load was 
calculated. For each proof load test program considered, the analysis 
was conducted for the cases where no failure occurred and for 5 
other cases whereby a certain percentage of the test piles was 
assumed to have failed. The reliability indices that are associated 
with these cases are presented in Figure 6 together with the 
reliability indices of the base case whereby no test program is 
implemented at the test site.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A thorough analysis of the results on Figure 6 lead to several 
interesting observations: (1) as expected, for a given design scenario 
and a given proof load test program, the updated reliability index 
was found to decrease as the percentage of failed piles increase, (2) 
the magnitude of the relative decrease in the updated reliability 
index seems to decrease as the number of failed piles increase, (3) 
the design scenarios that involve relatively large factors of safety 
generally suffer the most from the negative impact of the pile 
failures, and (4) the percentage of failed piles that seem to result in 
an updated reliability index that is almost equal to the prior 
reliability index (i.e., the proof load test program becomes 
inefficient) seems to be in the range of 30 to 40% of the tested piles. 

The above observations are significant in that they shed light on 
the impact of failures of proof-load tested piles on the updated 
reliability of the pile design. In the design phase of a project, and 
before the proof-load testing program is established, a designer has 
to consider all the possible scenarios that could occur with regards 
to the possible results of the proof load test program. The likelihood 
of occurrence of each possible test result could be evaluated using 
the prior distribution of the pile capacity at the site. These 
likelihoods could be combined with the calculated updated 
reliability indices for the different test scenarios and utilized within 
a decision making framework at the design stage of the project to 
establish the load test program that would maximize the value of 
information of the test program.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 Effects of Pile Failures on the Updated Reliability Index 

1.5

2.0

2.5

3.0

3.5

4.0

4.5

2 2.25 2.5 2.75 3

No Load Tests (Prior Case)

R
el

ia
b

ili
ty

 In
d

ex
, β

Median Factor of Safety

10 pile load tests at 2DL

No Failures

1 Failure

3 Failures

6 Failures
8 Failures

All Piles Fail
1.5

2.0

2.5

3.0

3.5

4.0

4.5

2 2.25 2.5 2.75 3

No Load Tests (Prior Case)

R
el

ia
b

ili
ty

 In
d

ex
, β

Median Factor of Safety

5 pile load tests at 2DL

No Failures

1 Failure

2 Failures

3 Failures
4 Failures

All Piles Fail

1.5

2.0

2.5

3.0

3.5

4.0

4.5

2 2.25 2.5 2.75 3

R
el

ia
b

ili
ty

 In
d

ex
, β

Mean Factor of Safety

30 pile load tests at 2DL No Failures

1 Failure4 Failures

10 Failures
15 Failures

20 Failures
1.5

2.0

2.5

3.0

3.5

4.0

4.5

2 2.25 2.5 2.75 3

R
el

ia
b

ili
ty

 In
d

ex
, β

Mean Factor of Safety

20 pile load tests at 2DL No Failures

1 Failure
3 Failures

6 Failures
10 Failures

16 Failures



Geotechnical Engineering Journal of the SEAGS & AGSSEA Vol. 46 No.2 June 2015 ISSN 0046-5828 
 

 

100 
 

5. CONCLUSIONS 

Based on the results of a load-test program, the use of lower factors 
of safety can be justified for the final foundation design. A less 
conservative design results in savings in installation costs and 
material costs. The cost of conducting load tests with large proof 
loads can be very high. As such, less conservatism in the design can 
be achieved with test programs where a larger number of piles are 
tested to relatively small proof-load levels. The example design 
scenarios that were presented in this paper illustrate this concept. A 
decision analysis that incorporates alternative load-test programs 
can be conducted in the design phase of a project to provide a basis 
for choosing the number of proof-load tests and the magnitude of 
the proof load that would maximize the value of information of the 
test program. 

Based on a comprehensive assessment that was conducted in this 
paper with regard to the impact of choosing different proof load 
testing programs on the design of piles, the following conclusions 
can be made: 

1. There is a current and pressing need for establishing simple 
but realistic methodologies for designing proof load test 
programs for piles and associating these programs with 
decisions regarding the required design factors of safety. This 
need is present at the design stage of a project and should be 
addressed for different levels of reliability. 

2. The Bayesian updating approach, coupled with some 
simplifications regarding the probabilistic modeling of the 
pile capacity distribution, could provide a realistic framework 
for satisfying the above need. 

3. The use of a truncated lognormal distribution that could 
incorporate the existence of a physical lower-bound pile 
capacity adds a realistic component to the pile capacity model 
and makes the updating process more flexible. The flexibility 
results from the fact that the data that is collected during the 
proof load testing program could be used to update the mean 
capacity (as is the convention) in addition to the lower-bound 
capacity. 

4. In general, the impact of conducting a number of successful 
proof load tests is to shift the distributions of the mean 
capacity and lower-bound capacity to the right, resulting in an 
improved reliability index and a reduced probability of 
failure. The impact of the proof load tests increases as the 
number of proof-tested piles increase and as the level of the 
proof-load tests increase. In addition, the higher the required 
target level of reliability, the more the successful tests that are 
needed and the higher the associated safety factors.  

5. The positive impact of proof-load test programs was found to 
decrease when the results indicated a number of failed piles. 
The percentage of failed piles that seem to result in an 
updated reliability index that is almost equal to the prior 
reliability index (i.e., the proof load test program becomes 
inefficient) seems to be in the range of 30 to 40% of the 
tested piles. 

It should be noted that the results presented in this paper are 
based on several assumptions that were made with regards to the 
general form of the probability distribution of the pile capacity and 
to the statistics associated with this probability distribution. A major 
assumption is related to the fact that the coefficient of variation of 
the pile capacity was assumed to be constant (0.4) and was not 
updated in the analysis. Another major assumption is related to the 
fact that the ratio of the mean lower-bound capacity to the mean of 
the mean capacity was assumed to be 0.5. Although these 
assumptions are realistic and representative of many pile design 
scenarios, there could be cases where the coefficient of variation of 
the capacity is greater or less than 0.4, and cases where the ratio of 
the lower bound to the mean capacity could be greater and less than 
0.5. The results presented in this paper could be affected by these 
assumptions.   
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