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ABSTRACT: Catastrophic landslides and debris slides triggered by typhoons such as Typhoon Morakot (2009) have occurred more 
frequently in the recent years, and caused many casualties and much economic loss in Taiwan. For the purpose of reducing the damage and 
preventing loss of life resulting from geological hazards, this study collects multiple period landslide inventories which contain the 
information of occurrence time, location, magnitude, rainfall intensity, accumulated rainfall to establish the rainfall threshold for shallow 
landslides on a regional scale. This study applies the concept of a hazard matrix which combines the magnitude (landslide ratio of slope units) 
and the possibility of occurrence (historical disaster records) to set up the early warning thresholds. Accordingly, the critical rainfall 
thresholds are build up based on the R24 (24 hours cumulated rainfall) and I3 (3-hour mean rainfall intensity) of historical records. A 
validation result shows the model can predict the possible sediment hazard on the hillslope 2~9 hours before occurrence of landslides. The 
web-GIS based early-warning system is also developed to display the real-time rainfall data and assess the warning signal immediately for 
disaster prevention through increasing the response time. 
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1. INTRODUCTION 

The effect of extreme climate has induced torrential rainfall and 
landslide disasters world-wide recently. Such a great amount of 
rainfall usually falls on a specific region rapidly, as a result of which 
it usually brings severe sediment-related disasters in the 
mountainous areas. The rainfall thresholds for triggering shallow 
landslides have been well discussed and determined in the past 
decade (Chen et al., 2006; Guzzetti et al., 2007; Wu et al., 2011). 
Different analytical approaches are based on the distinct climate 
conditions and regional characteristics. The rainfall thresholds 
related to the sediment hazards can be classified into five categories 
including intensity-duration (I-D diagram, Brunetti et al., 2010; 
Zhou et al., 2014), accumulated rainfall-duration (R-D diagram, 
Martelloni, 2011; Vessia et al., 2014), accumulated rainfall 
(Corominas and Moya, 1999; Bell and Maud, 2000), intensity-
accumulated rainfall, (I-R diagram, Hong et al., 2005) and 
accumulated rainfall-accumulated rainfall (R-R diagram, Osanai et 
al., 2010; Turkington et al., 2014). Generally, neither the magnitude 
nor the types of landslide are taken into consideration for rainfall 
threshold analysis, so the regional rainfall thresholds obtained from 
the above approaches may overestimate or underestimate. It is 
obvious that the occurrence of shallow landslides depends more on 
the rainfall intensity, accumulated rainfall, and degree of weathering 
(hillslope) in comparison with deep-seated landslides. Most 
historical typhoon events in Taiwan also prove clearly that the 
spatial distribution of regional shallow landslides is located in areas 
with high rainfall concentration. Additionally, the early warning 
rainfall threshold for potential debris flow torrents in Taiwan has 
been established and applied to evacuation planning for decades. 
The total number of the potential debris flow torrents has increased 
quickly and is currently 1673. On the basis of long-term hazard 
analysis, the critical rainfall threshold for triggering debris flow has 
been established for each potential torrent. However, the rainfall 
threshold for shallow landslides on a national scale in Taiwan is still 
incomplete and in need of development.  Recent studies related to 
landslide hazards have been focusing on watershed scale or specific 

local sites using different analysis methods (Chang et al., 2008; 
Chang and Chiang, 2009; Keijsers et al., 2011). For the purpose of 
planning operating procedures and disaster prevention, a national 
scale critical rainfall index which covers slopelands of urban and 
mountainous areas at risk for shallow landslides is needed for 
systematic evaluation.  

This study presents an innovative approach to combine the 
magnitude of landslide and rainfall thresholds derived from the 
Central Weather Bureau (CWB), Taiwan. Adopting the concept of 
the hazard matrix, the work establishes the rainfall thresholds for 
slope units in the whole Taiwan area. This work also explores the 
relationship between the landslide and rainfall characteristics and 
found that 3 hours mean rainfall intensity and 24 hours accumulated 
rainfall are the most dominant parameters. The approach was later 
verified by landslides triggered by typhoons during 2014. 
Regardless of any further application, a real-time rainfall data set 
(Quantitative Precipitation Estimation and Segregation Using           
Multiple Sensor, QPESUMS) which updated hourly has been 
introduced to construct a Rainfall-induced Landslide Early Warning 
System (RiLEWS). This system can complement the inadequate 
warning information for a regional landslide disaster while a 
rainstorm is approaching. Several applications associated with 
disaster mitigation may develop for different aspects and protected 
objects (i.e. villages, road sections close to slopeland, and sediment 
volume in source areas on potential debris flow torrents). 
 
2. STUDY AREA 

Taiwan is located in the western Pacific Ocean, at the convergent 
plate boundary zone of Philippine Sea plate and Eurasian plate, 
causing hundreds of faults and folds in the 35,833 km2 area because 
of tectonic activity (Figure 1). The major geological units of the 
island of Taiwan can be separated into the Coastal Plain (CP), 
Western Foothills (WF), Hsueshan Range (HSR), West Central 
Range (WCR), East Central Range or Tananao Schist complex 
(ECR), Longitudinal Valley (LV), and Coastal Range (CR) from the 
western to the eastern coast (Central Geological Survey, Taiwan). 
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hillslope sliding is dominated for long-term cumulative rainfall. 
Hence, this study chooses 3-hour mean rainfall intensity (I3) as the 
short-term rainfall index and 24-hour accumulated rainfall (R24) as 
the long-term rainfall indices (Liao et al., 2010). Figure 4 shows the 
method for calculating the rainfall indexes. The segment principle of 
rainfall event is defined as the rule of 4 mm (beginning) - 6 hr 
(duration) - 4 mm (ending). This means the rainfall starts to be 
calculated when the cumulative rainfall is greater than 4 mm. Once 
the hourly rainfall is lower than 4 mm for 6 sequential hours, and 
then the total cumulative rainfall value ends. For the purpose of 
understanding the rainfall spatial distribution on regional scale, 
inverse square distance weighting (IDW) method was chosen for 
wide-area interpolation method of rainfall analysis, and providing 
rainfall input parameters in landslide susceptibility analysis in Sec. 
3.5. IDW method suggests that the observed and estimated data 
obey a linear relationship. The magnitude of weighting factors is 
inversely proportional to the square of distance between the 
observed and estimated points. The rainfall data ( തܲ ) for each 
landslide at specific slope unit at any time can be obtained as belows, 

തܲ ൌ ∑ ௜ݓ ௜ܲ
௡
௜ୀଵ ௜ݓ  , ൌ

௛೔
షమ

∑ ௛೔
షమ೙

೔సభ
   (1) 

where,  തܲ  is the rainfall estimation of observed point (unit: mm);                 
௜ܲ  represents the real rainfall value in observed point (unit: mm); 

 ௜ and ݄௜ are the weighting factor and horizontal distance betweenݓ
landslide location and rainfall gauge station; n depicts the number of 
rainfall gauge stations adopted in above analysis.  

 
Table 1 rainfall analysis area for occurrence time of shallow 

landslide events in Taiwan 

occurrence time of landslide number percentage 
within 3 hr of rainfall peak intensity 
(triggering by rainfall intensity) 

218 23.2% 

within 3 hr of 2nd or 3rd highest rainfall 
intensity (triggering by rainfall 
intensity) 

242 25.7% 

does not occur on the peak rainfall 
intensity (triggering by cumulative 
rainfall) 

481 51.1% 

total 941 100% 
   

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Rainfall indices used in the study 
 

3.3 Generation of Slope Unit 

Landslide susceptibility (Lee et al., 2004, 2008a, 2008b) described in 
this study is generated using slope unit (SU) as the analysis element. 
Slope unit is a slope surface area combining with similar 
topographical features and geological characteristics (Guzzetti et al., 
1999; Xie et al., 2004; Figure 5). The boundaries of slope units were 
segmented mainly with river valleys and mountain ridges which fit 
the terrains and topography. All the factors on slope units will be 
averaged to obtain a representative value when comparing with grid 
cell approach. The slope unit is a helpful tool in natural hazard 
management, and it can establish a clear decision making system for 
pre-disaster landslide mitigation management or post-disaster 
operations for government agencies. Once the landslide 

management database is established, it can assist government 
agencies in conducting early warning and decision-making for 
hillslope hazards. 
 

 
 

Figure 5 three-dimensional view of slope unit (inset: plane view). 
The different color of each slope unit represents distinct landslide 

susceptibility 
 

3.4 Landslide susceptibility analysis (LSA) 

Landslides, in which the failing mass is primarily comprised of 
debris and earth such as weathered bedrock, colluvium or loose, 
fractured bedrock and failures are via sliding or falling, are referred 
to as debris slides. The mobilization over gentle slopes is generally 
via sliding and on steep slopes via falling. Debris slides generally 
occur on steep slopes and are often triggered by rainfall or intense 
earthquakes. After the failure, a long and narrow strip of exposed 
earth, or scar, is left behind. Loose debris on the scar often deposits 
at the toe of the landslide. This type of debris slide continues to 
enlarge as a result of prolonged movement and severe scour readily 
occurs in areas lacking vegetative cover. Clearly, such landslide 
mechanisms are related to the lithology, topography, and overall 
geologic structure of the slope. Additionally, external effects such as 
precipitation and earthquakes also affect the landslide. This study 
uses a 10 m x 10 m gridded digital terrain model, 1/25,000 bedrock 
engineering geology map, and environmental geology map in 
combination with geographic information system software                  
(i.e. Eradas Imagine, ArcGIS and MapInfo) paired with Fortran 
programming developed for this study to estimate the unit slope 
factor of each unit slope (Figure 6). Once factor selection is 
completed, graph interpretation and correlation analysis are used to 
perform a comprehensive evaluation of the factor. Using this 
analytical approach, the influence of each factor on landslide 
processes is assessed. These results are then referenced to identify 
the factors that have the most influence on landslide processes based 
on geological zoning.  

The logistic regression method is applied in this study to 
evaluate the susceptibility of each slope unit (Guzzetti et al., 1999; 
Ayalew and Yamagishi, 2005). The landslide susceptibility factors 
which are selected in the model include material property 
(classification of rock strength), topographical characteristics          
(dip slope, height of slope, slope roughness, mean gradient, mean 
elevation, ratio of steep slope, terrain curvatures, and terrain 
roughness), geological structure (fault density and fold density), and 
rainfall parameters (mean 3-hourly intensity and cumulative 24-hr 
rainfall; shown as in Table 2, (Franklin, 1975; Wilson and Gallant, 
2000). So far as factor determination is concerned, both gradient and 
terrain roughness are most influential factor on landslide 
susceptibility analysis in this study. Gradient used in the work was 
extracted from 3×3 mesh grid to calculate the slope at the center of 
the cell (cell size: 10 m; Wilson and Gallant, 2000). Terrain 
roughness, which indicates the standard deviation of terrain height 
by means of calculating 13×13 matrix, is also an important 
hydrological index to desceibe landslide characteristic (Kirkby, 
1975; Wilson and Gallant, 2000; Lee, 2014). 
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Figure 6 The flowchart of the landslide susceptibility model   

(revised form Cheng et al., 2013) 
 
The logistic regression method is a special form of log-linear 

model, specifically when the dependent variable is a binary variable.  
The formula is described as follows:   

݈݊ ቀ
௉೔

ଵି௉೔
ቁ ൌ ߙ ൅ ∑ ௞ߚ

௞
௞ୀଵ  ௞௜             (2)ݔ

where, Pi is the landslide susceptibility index (LSI) at the ith slope 
while k landslide susceptibility factors (x1i, x2i,…, xki) are given.  In 
LSA, xki is the landslide susceptibility factor of the ith slope, such as 
slope gradient, slope height, and rock characteristics, etc.  If the ith 
slope is taken as the landslide sample, then Pi=1, and non-landslide 
sample is Pi=0. Through logistic regression analysis, coefficient βk 
for landslide susceptibility factors and regression constant α can be 
obtained for the ith slope. By inputting a given landslide 
susceptibility factor value xki of any slope into the model, the 
landslide susceptibility of that slope can be obtained. 

 
Table 2 Factor selection for four analysis areas 

Factor N C S E 
classification of rock strength 

(I, II, III, IV, V) ○ ○ ○ ○ 
dip slope ○ ○ ○ ○ 
gradient ○ ○ ○ ○ 
slope roughness ○ ○ ○ ○ 
ratio of steep slope ○  ○ ○ 
height of slope  ○   
elevation ○    
terrain curvatures  ○ ○ ○ 
terrain roughness ○ ○ ○ ○ 
fault density ○ ○   
fold density ○ ○ ○ ○ 
moisture index ○ ○ ○  
3-hour mean intensity ○ ○ ○ ○ 
24-hr cumulative rainfall ○ ○ ○ ○ 
*N, C, S, and E indicate the analysis area in northern, 
central, southern, and eastern region in Taiwan. 
 
Previous landslide susceptibility studies have considered 

geologic zoning as the basis of the study and accordingly selected 
factors to assess landslide susceptibility. However, there may be 
many unit slopes within a single geologic zone. If a geologic zone is 
divided into a small number of unit slopes, a model that predicts 
landslide potential based on those unit slopes may not be 
representative or significant. To account for this phenomenon, this 
study appropriately edits the unit slope boundaries in a gradual 
sloped geologic zone comprised of a low-slope hill, a river terrace 
that also includes protected targets that would be at risk if a natural 
disaster were to occur. Additionally, in order to limit the number of 
zones and take account of patterns in precipitation, the boundaries of 
the geologic zones used in this study run along watershed 

boundaries and divide Taiwan into four zones (Figure 1): northern, 
central, southern, and eastern regions. This study defines a slope 
unit as a landslide-slope unit if landslide units account for at least 
1% of the slope units or landslide area greater than 400 m2. Any 
slope unit that do not meet this criterion are categorized as a stable-
slope unit. The landslide inventory acquired from Sec. 3.1 is 
incorporated into this study. Landslide samples from the inventory 
are divided equally into two data sets based on a random sorting 
process: data set 1, which is used as training data, and data set 2, 
which is adopted for model validation. As a final step, the models 
which are developed to estimate landslide potential are examined 
with error matrix, success rate curve (SRC) or prediction rate curve 
(PRC) to evaluate the reliability of landslide prediction results. The 
landslide susceptibility model is highly relates to the effect of 
regional landslide histories, so the landslide susceptibility should be 
updated when new landslide event were available in the region. The 
reasonable update period on regional scale is approximately 4~5 
years to avoid false alarms on reactive landslide area. 

 
3.5 I3-R24 diagram model 

This study uses the “landslide ratio of the slope unit” to categorize 
landslide disaster severity. Using the landslide characteristics and 
the landslide ratio of the slope unit, the landslide severity is 
classified as: Type I - high landslide ratio, Type II - moderate 
landslide ratio and Type III - low landslide ratio. The equation for 
estimating the landslide ratio of the slope unit is described below: 

landslide ratio (%)=(ALS / At)*100%              (3) 

where, ALS: landslide area in the slope unit; At: total area of the slope 
unit. Landslide-slope units are categorized according to landslide 
disaster severity through Eq.(3). Regarding a stable-slope unit, 
because landslide records are not available for the unit slope, the 
severity cannot be assessed by adopting the approach applied to 
landslide-slope units. Therefore, an attempt was made to develop a 
relationship between landslide ratio and susceptibility using 
available observation data. This method was applied to the four 
Taiwan geologic zones. Each landslide location was distinguished 
using a landslide susceptibility value of 0.05. Using only the 
landslide ratio values in slope units within two standard deviations 
of all the values that occurred within each zone, the largest landslide 
ratio possible was identified. Combining the relationship, the 
landslide susceptibility associated with an undisturbed unit can be 
assessed based on the disaster severity. 

After analyzing more than 900 cases, 3-hour mean rainfall 
intensity and 24-hour cumulated rainfall were chosen as the index 
for establishing rainfall thresholds for debris slide. Historical 
records of landslides are plotted in Figure 7, and the formula for 
ellipse is adopted to determine the envelope curve of historical cases. 
The parameter a and b of the ellipse are set according to the slope of 
regression line by applying the least square method. The thresholds 
are determined according to the percentage of historical cases that 
are included by the envelope curve, e.g. the 90% threshold includes 
90% of the historical landslide cases. It means that if the rainfall 
condition exceeds this threshold, the probability of occurring 
landslides is extremely high. Additionally, this study considers 
disaster severity and landslide ratio in the form of a hazard matrix to 
develop landslide warning levels. As shown in Figure 8, Type I 
landslide severity has a high landslide ratio and large scope of 
influence. Resultantly, once the probability of occurrence exceeds 
60%, a red warning level (high danger) is issued. If the probability 
of occurrence is between 30% and 60%, an orange level warning is 
issued (moderate danger). And if the probability of occurrence is 
less than 30%, a yellow warning is issued (low danger). Under 
typical conditions, such as periods of no rainfall, a green warning is 
issued (normal conditions). Type II landslide severity has a lower 
landslide ratio and influence scope relative to Type I. Resultantly, 
only after a probability of occurrence of 90% or greater is obtained, 
would a red warning be issued. For a probability of occurrence 
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The rainfall data of nineteen deep-seated landslide disasters 
caused by typhoon Morakot (2009) in southern Taiwan were 
analyzed to interpret the landslide type (Figure 11). The intensity-
cumulated rainfall threshold can aid in the clarification of shallow 
and deep-seated landslides (otherwise referred to as large-scale rock 
slide). However, the mean rainfall intensity (I~18-58 mm/hr) for 
both types of landslides is overlapped and it is difficult to 
distinguish the characteristic. For these cases, large-scale landslide 
evaluation usually needs to take into account the response of ground 
water beneath the geologic stratum, so the total cumulated rainfall 
seems to be an appropriate rainfall index to determine the threshold 
for triggering a deep-seated landslide (R>890 mm). 

R [mm]

0 1000 2000 3000

I 
[m

m
/h

r]

0

10

20

30

40

50

60

Shallow landslides(metamorphic)
Shallow landslides(sedimentary)
Shallow landslides(plutonics)
Deep-seated landslides

890

18

shallow
landslide

deep-seated landslide

 
 

Figure 11 the relationship between total rainfall and mean rainfall 
intensity for 941 shallow landslides and 19 deep-seated landslides 

 
4.2 Results of landslide susceptibility analysis 

Accuracy and success rate curves can be used to differentiate the 
validity of the landslide susceptibility model. This study defines a 
susceptibility value of 0.5 to categorize all slope units as being 
landslide or non-landslide. From this definition, the model accuracy 
is assessed. Landslide susceptibility value and the classification 
based on the landslide inventory are compared and used to evaluate 
the success rate. The calculation approach associated with the 
accuracy can be expressed using the error matrix. The corresponding 
equations are listed below: 
 

landslide group accuracy = N1/( N1+ N2)                         (4) 

non-landslide group accuracy = N4/( N3+ N4)                 (5) 

overall accuracy =(N1+ N4)/( N1+ N2+ N3+ N4)              (6) 

where, N1 is the total number of slope units classified as landslide 
slope units using the landslide susceptibility analysis that are 
actually landslide slope units listed in the landslide catalog. N2 is the 
total number of slope units classified as non-landslide slope units 
using the landslide susceptibility analysis that are actually landslide 
slope units listed in the landslide inventory. N3 is the total number of 
slope units classified as landslide slope units using the landslide 
susceptibility analysis that are actually non-landslide slope units in 
landslide inventory. N4 is the total number of slope units classified 
as non-landslide slope units that are also listed as non-landslide 
slope units in the landslide inventory. The accuracy of the landslide 
group is represented by the ratio of the number of landslide-slope 
units classified by the model to the total number of landslides listed 
in the inventory. The non-landslide group accuracy is, likewise, the 
ratio of the number of non-landslide slope units classified by the 
model relative to the total number of non-landslide slope units listed 
in the inventory. The quotient of the number of slope units that were 

correctly classified as landslide and non-landslide and the total 
number of slope units is the overall accuracy.  

Since disaster prevention efforts are responsive in nature, this 
study primarily uses the landslide group accuracy to assess the 
accuracy of the model. The overall accuracy of the model considers 
the degree of incorrect classifications and provides an accuracy 
measurement representative of landslide and non-landslide 
prediction results. The success rate curve and prediction curve is 
used to assess the ability of the model to interpret training and 
prediction data (Table 3). Utilizing the Area Under Curve (AUC), 
the performance of the model is assessed. For AUC values between 
0 and 1, when the AUC value is near 1, a smaller range is required 
to interpret landslide area. Conversely, when the AUC value is near 
0, a large range of values is needed to interpret the landslide area. In 
general, the larger the AUC value, the better the model. The results 
of the model are not representative when the AUC is lower than 0.5. 

This study divided Taiwan into four zones. For each zone, 
landslide events that were triggered during events that caused 
expansive landsliding across the zone are adopted as the sample 
group. For the northern zone, events that caused extensive 
landsliding were Typhoons Nari, Aere, and Talim and are used to 
run model training. Utilizing the landslides from these storms, 
validation results show a cumulative landslide and stability accuracy 
of 80% (AUC=0.854, Table 4). This result demonstrates that the 
model is very steady and reliable. The central and southern zones 
use the Typhoons Sepat and Sinlaku as the training data. The 
modeled landslide and non-landslide cumulative accuracy is 64% 
(AUC=0.729) and 61% (AUC=0.608), respectively. The eastern 
coast model uses landslides associated with Typhoons Haitang, 
Sepat, Morakot, and Namadol. Results show that the modeled 
landslide and non-landslide cumulative accuracy is 75% 
(AUC=0.718). Overall, the performance of the model for each zone 
is reasonable and demonstrates that the model can be applied to 
predict landslide activity for non-extreme typhoons or other 
precipitation events. Additionally, since precipitation associated 
with rainfall is heavily affected by the path of the typhoon, 
variations in the distribution of the rainfall have an important effect 
on the predictive ability of the model. In order to improve the 
predictive ability of the model for future typhoon events, the current 
database need to be updated with all new rainfall-triggered landslide 
data. 
 

Table 3 Training accuracy and AUC of the model in each zone  

Analysis area ALS ANLS TA AUC 
Northern Taiwan 80.81% 80.73% 80.73% 0.862 
Central Taiwan 75.57% 70.09% 71.31% 0.777 
Southern Taiwan 73.24% 70.86% 70.98% 0.767 
Eastern Taiwan 81.70% 75.34% 75.69% 0.836 
ALS: Accuracy of landslide set; ANLS: Accuracy of non-landslide 
set; TA: Total Accuracy

 
Table 4 Verification accuracy and AUC of the model in each zone 

Analysis area ALS ANLS TA AUC 
Northern Taiwan 82.18% 79.58% 79.73% 0.854 
Central Taiwan 63.67% 64.55% 63.76% 0.729 
Southern Taiwan 68.08% 61.57% 61.47% 0.608 
Eastern Taiwan 68.11% 75.78% 75.11% 0.718 
ALS: Accuracy of landslide set; ANLS: Accuracy of non-landslide 
set; TA: Total Accuracy

 
4.3  Rainfall threshold for shallow landslide 

Utilizing the methods described in Section 3.5, landslide disaster 
severity analysis results are listed in Table 5. For landslide 
susceptibility values greater than 0.844, landslide disasters are more 
likely to occur on slope units having a landslide ratio greater than 
0.25 relative to other slope units. These slope units are categorized 
as “Type I, high landslide ratio” slope units. If the landslide 
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susceptibility value is equal to or less than 0.515, the landslide 
disasters resulting from slopes having a landslide ratio of 0.10 or 
less are the most likely. These slope units are categorized as “Type 
III, low landslide ratio” unit slopes. If the landslide susceptibility 
value associated with the slope unit is between 0.515 and 0.844, the 
slope unit is categorized as a “Type II, moderate landslide ratio” 
slope unit. The rainfall threshold required to trigger landslide 
activity is calibrated based on this slope unit categorization system. 
 

Table 5 Landslide susceptibility and magnitude classification in 
central Taiwan 

landslide 
ratio 

landslide 
susceptibility 

landslide magnitude 

0.30 0.910 0.844 ~ 1.000 
Type I 0.25 0.844 

0.20 0.764 0.515 ~ 0.844 
Type II 0.15 0.661 

0.10 0.515 0.000 ~ 0.515 
Type III 0.05 0.265 

 
As mentioned, this study divides Taiwan into four zones: 

northern, central, southern and eastern. For each zone, a landslide 
triggering rainfall threshold is constructed. As a result of site 
specific characteristics including geology, topography and rainfall, 
the landslide triggering rainfall threshold associated with each 
landslide disaster severity varies by location (Figure 12). In the 
northern zone, most landslide hazards are categorized as having a 
moderate landslide ratio, but in the southern zone, most landslide 
hazards are categorized as having a low landslide ratio (Figures 12 
(a)-(c)). Resultantly, Type I slope units are generally slope units 
having a landslide ratio greater than 12%. The Type II slope units 
are generally unit slopes having a landslide ratio that varies between 
9% and 12%. The Type III slope units have a landslide ratio of less 
than 9%. The calibrated rainfall thresholds for each type of slope 
unit are listed in Table 6. If 24-hour accumulated rainfall is between 
500 to 550 mm or the 3-hour mean rainfall intensity is greater than 
50mm/hr, a red warning is issued (high dangerous level). If 24-hour 
accumulated rainfall exceeds 300 to 450 mm or the 3-hour mean 
rainfall intensity is between 30 to 45 mm/hr, an orange warning is 
issued (moderate-high dangerous level). If 24-hour accumulated 
rainfall is between 200 to 300 mm or 3-hour mean rainfall intensity 
is between 20 to 30 mm, a yellow warning is issued (moderate 
dangerous level). Any precipitation amounts that are less than those 
thresholds represent a green warning level (low danger level). 
Regarding shallow landslide hazards in central Taiwan                   
(Figures 12(d)-(f)), slope units that are categorized as Type I are all 
slope units having a landslide ratio greater than 25%.Type II slope 
units are slope units having a landslide ratio between 10% and 25%. 
Additionally, the slope units with landslide ratio less than 10% are 
categorized as Type III. The rainfall thresholds for each type are 
listed in Table 7. Rainfall thresholds corresponding to landslide 
danger levels in the southern and eastern zones in Taiwan are shown 
in Figs. 12(g)-(l), and Tables 8, 9. In general, rainfall thresholds are 
slightly higher in the southern zone relative to the northern, central 
and eastern zones. Current research results can already be applied as 
a reference for establishing preliminary warning systems. However, 
long term validation of these values against future precipitation 
events and sequential update of the values is still needed. 
 

 
(a) Northern Taiwan-type I (b) Northern Taiwan-type II 

 
(c) Northern Taiwan-type III (d) Central Taiwan-type I 

 
(e) Central Taiwan-type II (f) Central Taiwan-type III 

 
(g) Southern Taiwan-type I (h) Southern Taiwan-type II 

 
(i) Southern Taiwan-type III (j) Eastern Taiwan-type I 

 
(k) Eastern Taiwan-type II (l) Eastern Taiwan-type III 

 
Figure 12 Preliminary rainfall thresholds in Taiwan 
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