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ABSTRACT: Reinforced soil structures are gaining popularity for a variety of reasons mainly because it is safe, economical, aesthetic and 

rapid in constructions. However, the actual behaviour of these structures at failure is still not properly understood. The present study attempts 

to evaluate the internal stability of these structures against pullout failure. Kinematics of failure suggests that the failure surface intersects the 

reinforcement obliquely causing an oblique pullout of the reinforcement. In this paper, an updated discretization technique is used to 

determine the pullout capacity of an inextensible reinforcement resting on a linear elastic Pasternak subgrade and subjected to an oblique end 

force. A parametric study is conducted and a new factor, length correction factor is introduced in the present analysis. The correction factors 

have a significant influence on the pullout response especially for high values of obliquity and end displacement. Present analysis thus gives 

a more realistic value of pullout capacity which is required for the internal stability analysis and design of reinforced soil structures. A case 

study is also presented to validate the proposed analysis. The maximum reinforcement tension is predicted for top few reinforcements using 

the proposed method and the AASHTO Simplified Method. The present analysis gives a better prediction of the mobilized reinforcement 

tension compared to the AASHTO method. 
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1. INTRODUCTION

Reinforced soil structures such as reinforced soil walls and 

embankments (Figs. 1a and b) are gaining popularity as sustainable 

alternatives to the conventional concrete retaining structures since 

they are economical, easy and rapid to construct (Damians et al. 

2016, Won et al. 2016). Stability and economy, however, are two 

major concerns considering their widespread use in critical 

infrastructure projects e.g. construction of highways and railways. 

Internal stability of reinforced soil structures depends on the 

kinematics of failure where the failure surface intersects the 

reinforcement obliquely causing an oblique pullout of the 

reinforcement (Figure 1(a)-(c)) (Gao et al. 2014; Sitar et al. 2005; 

Madhav and Umashankar 2003; MacLaughlin et al. 2001). But, 

conventional methods of analyses consider only the axial direction 

of the pullout force (i.e.,  = 0 and  = 0, refer Figure 1c) and do 

not account for the obliquity of the pullout force and resulting 

complex soil-reinforcement interaction. Consequently, these 

methods fail to predict the soil-wall response accurately and yield a 

highly conservative value of the factor of safety at pullout (Rowe 

and Ho 1993; Madhav and Umashankar 2003; Patra and Shahu 

2012; Bathurst et al. 2009; Allen and Bathurst 2013; Ouria et al. 

2016; Yu et al. 2016). 

Figure 1  Kinematics of failure of reinforced soil structures 

The effect of obliquity of the pullout force on the internal 

stability of reinforced soil wall was first reported by Madhav and 

Umashankar (2003). The analysis considered the response of an 

inextensible reinforcement resting on a set of Winkler’s springs and 

subjected to the transverse component of the oblique pullout force. 

The horizontal component of the pullout force was neglected 

altogether. The equilibrium of forces was applied assuming the soil-

reinforcement interface acting along the horizontal projection of the 

deformed reinforcement and not along the final deformed shape of 

the reinforcement. Consequently, the analysis was valid for small 

end-displacement only.  

Shahu (2007) removed the above anomaly and presented a 

Winkler’s based model for the pullout analysis of inextensible 

reinforcement subjected to an oblique end-force. The equilibrium of 

forces was applied considering the interface stresses acting along the 

deformed shape of the reinforcement. However, the model suffers 

from the inherent drawbacks of Winkler spring based model which 

assumes that displacements occur only under the loaded area. Patra 

and Shahu (2012) removed the above shortcomings by presenting a 

Pasternak subgrade based model for the oblique pullout analysis.  

In all of the above instances, the displacement compatibility is 

disregarded. For inextensible reinforcement, the fundamental 

premise is that the length of the reinforcement remains unchanged 

throughout the pullout. To satisfy the compatibility condition, there 

must be a rigid body movement of the far-end point A (Figure 2a) of 

the reinforcement along the horizontal direction in response to the 

transverse end-displacement wL. The previous analyses however 

neglected this rigid body movement of point A associated with the 

transverse end-displacement. Therefore, the apparent deformed 

length is greater than the actual length of the reinforcement (i.e. 

initial length L for inextensible reinforcement). The larger apparent 

length contributes to a greater mobilization of normal and shear 

stresses which result in inaccurate prediction of the pullout capacity 

and end-displacement especially for higher values of the obliquity  

of the pullout force. 

In this paper, a rational approach is presented for the analysis of 

inextensible sheet reinforcement subjected to an oblique end-force. 

The reinforcement is assumed to be a rough membrane resting on a 

linear elastic Pasternak subgrade. An updated discretization 

technique is proposed to determine the exact deformed shape of the 

reinforcement and its influence on the pullout responses, namely, 

pullout capacity, end-displacement, and end-inclination. The 

analysis considers a proper soil-reinforcement interaction by 
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assuming a rigid-plastic interface response. A new factor, length 

correction factor, is introduced in the present analysis. The effect of 

the length correction factor on the pullout behaviour is also studied 

in detail. A case study is also presented to validate the proposed 

analysis. The maximum reinforcement tension is predicted for top 

few reinforcements, which are critical in a pullout, using the 

proposed method and the AASHTO Simplified Method.  

 

2. OBLIQUE PULLOUT ANALYSIS  

2.1 Problem Definition 

Figure 2(a) shows an inextensible reinforcement of length L 

embedded at depth D. The reinforcement is assumed to be a rough 

membrane resting on a linear elastic Pasternak subgrade. The 

Pasternak subgrade represents a shear layer resting on a set of 

Winkler’s springs (Figure 2b) and mathematically expressed as 

follows (Vlazov 1966; Selvadurai 1979): 

2

2

dx

wd
GHwkqp s   (1) 

where q and p are normal stresses at the top and bottom of the 

reinforcement, ks = spring constant, and G = shear modulus.  

The reinforcement is subjected to an oblique pullout force P 

making an obliquity  at a point B where the sliding mass intersects 

the reinforcement. Under the action of the oblique pullout force P, 

the reinforced mobilized maximum tension Tmax at pullout end B in 

the direction L with the horizontal (Figure 2(b)). The deformed 

shape of the reinforcement is shown in Figure 2(c) where the normal 

and shear stresses at the top of the reinforcement are p and f1 and at 

the bottom q and f2.  
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Figure 2 Mechanistic model (Patra and Shahu 2012) 

 

2.1.1 Updated discretization scheme 

An updated discretization technique is adopted in the analysis to 

account for the exact deformed shape of the reinforcement. In the 

earlier analysis (Madhav and Umashankar 2003; Shahu 2007; and 

Patra and Shahu 2012), the discretized length was assumed to be a 

constant horizontal distance equal to the initial length L of the 

reinforcement (Figure 3). However, an inextensible reinforcement, 

under the influence of any transverse end-displacement, undergoes a 

rigid body displacement in the horizontal direction so that the 

deformed length of the reinforcement remains constant. However, 

the horizontal projected length LH (Figure 3) of the deformed 

reinforcement reduces due to this rigid body displacement uA and is 

less than the initial length L of the reinforcement. Therefore, the 

discretization should be done over this changed projected length LH 

as shown in Figure 3. In the present analysis, the above modification 

is incorporated using an updated discretization scheme where the 

discretization is redone in each iteration with respect to the changed 

projected length (A-A’) and the boundary conditions are modified 

accordingly (Figure 3), i.e. the boundary condition is now applied to 

the point A’ instead of A (refer section 2.3). 

L
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Figure 3 Deformed and projected length of reinforcement  

2.2 Formulations 

Figure 4(a) shows a reinforcement element of infinitesimal 

horizontal length dx and unit width. The reinforcement tensions and 

inclinations at horizontal distances x and (x+x) are T and , and 

(T+T) and (+), respectively. The normal and shear stresses at 

the top of the reinforcement are p and f1 and at the bottom q and f2. 

Applying vertical and horizontal force equilibrium to the final 

deformed shape of the reinforcement element and using the equation 

for Pasternak subgrade (Eq. 1, Figure 4(b)), one gets following basic 

governing equation as given by Patra and Shahu (2012) 

 tantan2
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The boundary conditions for this problem are (Figure 2(b)):  at x = 0 

(end A), dxdw
 
= 0 and T = 0; and at x = L (end B), w = wL. 
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Figure 4 Soil-reinforcement elements (Patra and Shahu 2012) 

 

Nondimensionalizing and discretizing Wang (Anderson 1982) 

the above governing differential equations and finally simplifying 

(Patra and Shahu 2012), one gets the following expressions for 

reinforcement tension and displacement at each node 
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where = subgrade normal stiffness factor; G* = subgrade shear 

stiffness factor; WL = wL/L = normalized end displacement, T* = 

T/THP where THP = 2DLtanris the axial pullout capacity of the 

reinforcement, X = x/L and i is the number of elements into which 

the reinforcement sheet is divided. 
The assumed boundary conditions are (refer Shahu 2007; Patra 

and Shahu 2012): 

at X = 0, dw/dx=0 and T*= 0; and at X =1.0, W = 1.0 (6) 

 

 

Considering the overall equilibrium of forces on the deformed 

reinforcement (Figure 2c) and after nondimensionalizion, 

discretization and simplifying, one gets (Patra and Shahu 2012) 
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where P* = P/THP,     2tan 1
1

iiLci WWnW  
 = value of θc for 

element i; and   2/1 cicii   

 

2.3 Solutions  

The displacement Wi and tension *
iT at any node i, are obtained by 

solving Eqs. (4) and (5) in conjunction with the boundary condition 

(Eq. 6) and overall equilibrium equations (Eqs. 7 and 8). A trial and 

error procedure is adopted for the solution. For each successive 

iteration, the discretization is redone with respect to the new 

projected length LH, new till it attain a constant value, where LH, new is 

given as 

 ci
H

HH
N

L
LLnewL sec,

*

 (9) 

 

Equation (9) is an empirical relation based on the deformation 

compatibility of the soil reinforcement response. The compatibility 

relation suggests that for an inextensible reinforcement, the length of 

the deformed reinforcement (=  ci
H

N

L
sec

*

) should be equal to the 

initial length L of the reinforcement irrespective of its transverse end 

displacement WL (Figure 3). Thus, equation (9) gives a value of 

projected horizontal length LH,new iteratively when convergence is 

reached (i.e.,   L
N

L
ci

H sec
*

).  

 

3. PARAMETRIC STUDY AND RANGE OF 

PARAMETERS 

In the present analysis, a detailed parametric study is carried out to 

determine the influence of various model parameters on the pullout 

analysis. Sand having relative density: loose to dense is assumed as 

backfill material where detail geotechnical properties are shown in 

Table 1. Following ranges of geometric properties are also used in 

the analysis: reinforcement length L = 2-8 m, depth of reinforcement 

D = 1-10 m and subgrade layer thickness H0 = 1-5 m (Patra and 

Shahu 2012). Considering the above equivalence of geotechnical 

(Table 1) and geometrical properties, Patra and Shahu (2012) 

suggest that the thickness of shear layer H = 0.09-0.54 m. The same 

is assumed in the present analysis. Patra and Shahu (2012) modified 

the shear layer thickness proposed by Vlazov and Leontiev (1966) 

(refer Patra and Shahu 2012; Selvadurai 1997) as H = H0 /. The 

factor  was evaluated by comparing the load-settlement response 

and surface displacement profile of a rigid strip footing resting on an 

elastic half space as obtained from the finite-element (FE) analysis 

and the Pasternak model. The value of  was found to vary from 

11.17 to 9.24 (with an average value 10.02) for subgrade layer 

thickness H0 ranging from 1- 5 m and resulting shear layer thickness 

was found to be H = 0.09-0.54 m (Table 1). 
For the range of parameters used in Table 1 and the above 

geometric properties, the values of nondimensional subgrade 

modulus in vertical compression  and shear G* becomes 27 to 

43,615 and 0.215 to 421, respectively. However, for the present 

analysis, the following range of controlling parameters is adopted:  

= 50-1000, G* = 0-100, interface frictional angle r = 20-45, based 

on the practical consideration as suggest by Patra and Shahu (2012). 

Table 1 Ranges of Parameters (Patra and Shahu 2012) 

Parameters  Sand type 

Relative density  Loose Dense 

E (MPa) 10 81 

ks (kN/m3) 2692 109038 

G (kPa) 3846 31154 

(m) 0.09  0.54 

r (degrees) 20  45 

degrees 0 85 

 

4. RESULTS AND DISCUSSION  

4.1 Displacement and Tension Profile 

Figures 5-6 display the displacement and tension profile of the 

reinforcement subjected to an oblique pullout force. The figures 

show the effect of length correction on the distribution of 

displacement and tension along the horizontal distance of the 

reinforcement.  

Figure 5 demonstrate that under the transverse displacement, the 

far-off point A of the reinforcement (Figs. 2 and 3) experiences a 

rigid displacement uA (distance between A to A’, Figures. 2 and 3) 

along the horizontal direction. The magnitude of the rigid 

displacement uA (Figures 2 and 3) is higher for a lower value of 

subgrade normal and shear stiffness factor but for a higher value of 

interface frictional resistance (Figure 5). The effect of length 

correction is mainly manifested with the rigid displacement of the 

reinforcement. For a particular combination of soil-reinforcement 

properties, a higher rigid displacement indicates a greater effect of 

length correction on the pullout response. 

Higher the rigid displacement uA, lower is the mobilized tension 

in the reinforcement (Figure 6).  The decrease in reinforcement 

tension is more for lower values of G* and  and higher values of  

and r. However, the tension in the reinforcement becomes more 

localized at the pullout end for higher values of the rigid 

displacement.  
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Figure 5 Displacement profile (Nominal case: G*=5, =50, =30°, 

=60°, unless stated all other parameters remain unchanged as in 

the nominal case) 

4.2 Localized Pullout Response 

A detailed parametric study is carried out (Figures 7-17) to study the 

effect of various model parameters such as subgrade shear stiffness 

factor G*, subgrade normal stiffness factor , interface frictional 

resistance r and obliquity  on the pullout response. The effect of 

length correction on the pullout response is also quantified. 
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Figure 6 Reinforcement tension profile (Nominal case: G*=5, 

=50, =30°, =60°, Unless stated all other parameters remain 

unchanged as in the nominal case) 
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Figure 7 Effect of subgrade shear stiffness factor on horizontal 

projected length (Nominal case: =50, =30°, =60°, Unless 

stated all other parameters remain unchanged as in the nominal 

case) 

 

4.2.1 Effect of subgrade shear stiffness factor G*  considering 

length correction 

Figures 7-10 show the effect of subgrade shear stiffness factor G*on 

the pullout response with and without considering the length 

correction. As G* increases, the horizontal component of projected 

length increases (Figure 7) and becomes equal to 1.0 (i.e. the initial 

length of the reinforcement).  For lower values of subgrade shear 

stiffness factor G* and normal stiffness factor  but higher angle of 

interface friction r; the effect is more  

However, for lower subgrade shear stiffness factor G* the 

horizontal projected length may become as low as eighty per cent of 

the initial length of the reinforcement.  

Since at higher G* the projected length of the reinforcement 

tends to reach the initial length of the reinforcement, all the 

responses namely, end displacement, mobilized maximum 

reinforcement tension and pullout capacity remain almost equal in 

both the cases: corrected and not corrected. However, the difference 

in the above responses increases for lower G*. In other words, the 

effect of length correction is predominant for lower G* (Figures 7-

15). 
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Figure 8 Effect of subgrade shear stiffness factor on end 

displacement WL (Nominal case: =50, =30°, =60°, Unless 

stated all other parameters remain unchanged as in the nominal 

case) 
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Figure 9 Effect of subgrade shear stiffness factor on maximum 

mobilized reinforcement tension *
maxT  (Nominal case: =50, 

=30°, =60°, Unless stated all other parameters remain 

unchanged as in the nominal case) 
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Figure 10  Effect of subgrade shear stiffness factor on horizontal 

component of pullout capacity *
HP  (Nominal case: =50, =30°, 

=60°, Unless stated all other parameters remain unchanged as in 

the nominal case) 

 

4.2.2 Effect of obliquity considering length correction 

Figures 11-14 show the effect of obliquity on the pullout response 

with and without considering the length correction. Figure 11 shows 

that the as the obliquity  of the pullout force increases the 

projected length decreases. The effect is more for lower values of 

subgrade shear stiffness factor G* and normal stiffness factor  but 

higher angle of interface friction r.  
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Figure 11 Effect of obliquity on horizontal projected length 

(Nominal case: G*=5, =50, =30°, Unless stated all other 

parameters remain unchanged as in the nominal case) 

 

Figures 12-14 show that all the corrected responses: end-

displacement WL, maximum mobilized reinforcement tension *
maxT  

and horizontal component of pullout capacity *
HP are lower than the 

uncorrected values. 

0

0.1

0.2

0.3

15 30 45 60 75

W
L

Obliquity

Nominal Nominal
G* = 0 G* = 0
5 5
 

Corrected

Uncorrected

 
Figure 12 Effect of obliquity  on end-displacement WL (Nominal 

case: G*=5, =50, =30°, Unless stated all other parameters remain 

unchanged as in the nominal case) 
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Figure 13 Effect of obliquity  on maximum mobilized 

reinforcement tension *
maxT  (Nominal case: G*=5, =50, =30°) 
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Figure 14 Effect of obliquity on horizontal component of oblique 

pullout force *
HP  (Nominal case: G*=5, =50, =30°, Unless 

stated all other parameters remain unchanged as in the nominal 

case) 

Figure. 14 shows that as the obliquity  of the pullout capacity 

increases, the uncorrected values of horizontal component of the 

pullout capacity *
HP goes on increasing. However, for a greater 

angle of obliquity  (> 60), the corrected pullout capacity again 

reduces which is also evident from the finite element analysis as 

shown by Shahu (2007). But, the earlier analyses by Shahu (2007); 

Patra and Shahu (2012) were unable to capture this behavior as they 

did not incorporate the length correction.  

It can be explained as follows: as the angle of the obliquity of 

the pulout force increases, the normal and shear stresses at the soil-

reinforcement interface increase thereby the pullout capacity *
HP  

increases. At the same time, with the increase in obliquity  there is 

an increase in the rigid body displacement uA or, decrease in the 

projected length of the reinforcement. As the projected length 

reduces, there is a reduction in the mobilized reinforcement tension 

and horizontal component of oblique pullout capacity *
HP . For a 

higher value of the obliquity , the above reduction in the pullout 

capacity arisen from the lesser projected length may dominate over 

the increase in the pullout capacity due to the greater interface shear 

stresses. 

 

4.3 Length correction factor LCF 

A new factor, length correction factor (LCF) is defined in the 

present analysis. The effect of LCF on the pullout responses are 

shown in Figures 15-17.  As the obliquity  of the pullout force 

increases, the value of LCF reduces for all the responses: end 

displacement, maximum mobilized reinforcement tension and the 

horizontal pullout capacity. The effect of length correction is thus 
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greater for higher values of obliquity and angle of interface friction 

and lower values of the normal and shear stiffness of the subgrade, 

thus demanding a greater reduction in the pullout responses.  

For inextensible reinforcement and granular backfill, the pullout 

occurs at relatively lesser end displacement when subjected to an 

oblique pullout. Under such a small value of end displacement, the 

soil-reinforcement response usually shows a linear response. Thus, 

for inextensible reinforcement, the idealization of a conservative 

linear elastic model for subgrade does not results in significant error 

in the analysis as suggested by many researchers (Madhav and 

Umashankar 2003; Shahu 2007; Patra and Shahu 2012). 
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Figure 15  LCF for WL and effect of obliquity (Nominal case: 

G*=5, =50, =30°, Unless stated all other parameters remain 

unchanged as in the nominal case) 
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Figure 16 LCF for maximum mobilized reinforcement tension 

*
maxT  and effect of obliquity (Nominal case: G*=5, =50, =30°, 
unless stated all other parameters remain unchanged as in the 

nominal case) 
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Figure 17  LCF for horizontal pullout capacity *
HP and effect 

of obliquity (Nominal case: G*=5, =50, =30°, Unless 

stated all other parameters remain unchanged as in the 

nominal case) 

5. CASE STUDY OF A REINFORCED SOIL WALL 

A case study is presented for a 3.6 m height wall reinforced with 

welded wire mesh (WWM) (Bathurst et al. 2009). Bathurst et.al 

(2009) conducted model tests in a series of four full-scale modular 

block wall at RMC (Royal Military College of Canada) Retaining 

Wall Test Facility. The wall was reinforced with six layers of 

reinforcements using four different types of reinforcement: 

polypropylene (PP) geogrid (Model 1), modified polypropylene 

(Modified PP) geogrid (Model 2), less stiff polyester (PET) geogrid 

(Model 5) and stiff welded wire mesh (WWM) (Model 6) at a 

spacing of Sv = 0.6 m. The backfill was compacted using a vibrating 

plate tamper (light compaction) for model walls 5 and 6 and a 

heavier vibrating rammer (heavy compaction) for model walls 1 and 

2. The modular block units of 300 mm long (toe to heel), 150 mm 

high and 200 mm wide were stacked at 8° batter from vertical. For 

the ease of construction and interpretation of test results, the walls 

were constructed on an instrumented rigid foundation having a stiff 

horizontal toe support. Bathurst et al. (2009) reported the horizontal 

and vertical displacement, horizontal toe load measurements and 

reinforcement tension in each layer at the end of construction and 

post-construction stage. Maximum surcharge levels varied from 85 

to 130 kPa for the four walls during the post-construction stage. 

However, for comparing the measured and predicted loads, 50 kPa 

surcharge load and 30 mm post-construction serviceability limit 

proposed by Allen et al. (2003) for geosynthetic-reinforced soil 

walls with granular backfills was considered. 

Model 6 reinforced with welded wire mesh is chosen for the 

present analysis as it exhibits an inextensible response. Backfill 

material was used as a uniformly graded, rounded beach sand with 

the bulk unit weight  = 17.2 kN/m3 and the peak friction angle  

=44° (Bathurst et al. 2005). The present analysis is used to predict 

the maximum mobilized reinforcement tension for top two layers of 

reinforcement as they are most critical in the pullout. The results are 

also compared with the AASHTO Simplified method (AASHTO 

2002). The maximum reinforcement tension Tmax is determined 

using the following expressions: 

V
*

max zSKPT H   (10) 

Where *
HP = horizontal pullout capacity factor (shown in Table 2) 

obtained from the solution of equations 4-9. 

Figure 18 shows the present analysis predicts the maximum 

value of mobilized tension more accurately whereas AASHTO 

(2002) gives a conservative estimation of the same.  

The interface frictional angle assumed in the present analysis is 

adopted from Bathurst et al. (2001). For predicting the same model 

test results (Model wall 6), Bathurst et al. (2001) assumed the 

interface frictional angle r equal to the peak friction angle = 44°. 

The reinforcement used in the present analysis is welded wire mesh 

(Bathurst et al. 2001 and 2009). The load transfer mechanism for 

this type of reinforcement involves both frictional as well as passive 

resistance (FHWA 2009, GEC 11, Berg et al. 2009). The present 

analysis compares the model tests data for top few reinforcements 

where the normal stresses are low. For lower normal stresses, 

experimental results suggest a higher value of frictional factor 

usually greater than one (Koerner 2012, Bergado et al. 2001). Hence 

a factor equal to one will anyway give a conservative estimation of 

the pullout capacity. 
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Table 2 Parameters used for case study 

G*  r  *
HP 

21.8 9469.5 44 67 1.22 

6.8 4132.3 44 67 1.70 

3.6 3611.1 44 67 1.99 

2.3 4034.3 44 67 2.12 

1.6 5778.4 44 67 2.17 

1.2 15530.1 44 67 2.07 

Note: G=38462 kPa, ks=40793 kN/m3 (Bathurst et al. 

2009; Patra and Shahu 2012), shear layer 

thickness H=3.5 mm as obtained from Alshibli and 

Sture (1999) 
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Figure 18 Measured (Bathurst et al. 2009) versus predicted 

maximum reinforcement tension 

 

6. CONCLUSION 

In this paper, a novel approach is proposed for the analysis of an 

inextensible reinforcement resting on a linear elastic Pasternak 

subgrade and subjected to an oblique pullout force. The result of the 

analysis can be directly incorporated for the internal stability 

analysis of reinforced soil walls.  

An updated discretization technique is used to determine the 

exact deformed shaped of reinforcement. The present analysis 

demonstrates that under the transverse displacement the 

reinforcement experiences a higher value of rigid displacement uA 

along the horizontal direction. Higher the rigid displacement uA, 

lower is the mobilized tension in the reinforcement.  The decrease in 

reinforcement tension is more for lower values of G* and  and 

higher values of  and r. However, the tension in the reinforcement 

becomes more localized at the pullout end for higher values of the 

rigid displacement.  

As subgrade shear stiffness factor G* increases, the horizontal 

component of projected length increases and becomes equal to the 

initial length of the reinforcement. The above increase is found to be 

greater for lower values of G* but higher values of normal stiffness 

factor  angle of interface friction r and obliquity  of the pullout 

force. In few cases, the horizontal projected length may become as 

low as eighty per cent of the initial length of the reinforcement. 

All the responses namely, end displacement, mobilized 

maximum reinforcement tension and pullout capacity show a 

significant difference after length correction compared to no 

correction. The effect of length correction is predominant for lower 

values of G*. 

As the obliquity  of the pullout capacity increases, the 

uncorrected values of horizontal component of the pullout capacity 

*
HP goes on increasing. However, for a greater angle of obliquity  

(> 60), the corrected pullout capacity again reduces which is also 

evident as reported by Shahu (2007).  

Because, the normal and shear stresses at the soil-reinforcement 

interface increase with the increase in obliquity  of the pullout 

force thereby the pullout capacity *
HP  increases. At the same time, 

with the increase in obliquity  there is an increase in the rigid body 

displacement uA or, decrease in the projected length of the 

reinforcement. As the projected length reduces, there is a reduction 

in the mobilized reinforcement tension and horizontal component of 

oblique pullout capacity *
HP . For a higher value of the obliquity , 

the above reduction in the pullout capacity arisen from the lesser 

projected length may dominate over the increase in the pullout 

capacity due to the greater interface shear stresses. 

 A length correction factor is introduced in the analysis and its 

effect on the pullout capacity is studied. The analysis shows a 

significant effect of the length correction on the pullout responses: 

pullout capacity, mobilized reinforcement tension and end 

displacement. There is a 15-20 % decrease in all the responses 

particularly for high values of obliquity and interface frictional 

angle and lower values of normal and subgrade shear stiffness 

factor. A case study is also presented and the maximum 

reinforcement tension is predicted for top few reinforcements using 

the proposed method and the AASHTO Simplified Method. The 

present analysis gives a better prediction of the mobilized 

reinforcement tension compared to the AASHTO method. Thus, the 

present analysis gives a better prediction of the pullout capacity, 

mobilized reinforcement tension and end displacement which is 

useful for a more rational design of reinforced earth retaining 

structures. 

List of Symbols 

 obliquity of the end-force 

D  overburden depth (m) 

x length of reinforcement element along x-axis (m) 

s length of reinforcement element after deformation (m) 

Es modulus of elasticity (kN/m2) 

G shear modulus (kN/m2) 

 unit weight of the soil (kN/m3) 

G* subgrade shear stiffness factor= DLGH   

H shear layer thickness (m) 

ks modulus of subgrade reaction or spring constant 

(kN/m3) 

L total length of reinforcement (m) 

LH projected horizontal length (m) 

 subgrade normal stiffness factor = DLKs   

n total number of elements 

 poisson’s ratio  

p, q vertical stresses at the top and the bottom surfaces of  

reinforcement (kN/m2) 

P oblique end-force (kN/m) 

 angle of shearing resistance of soil 

r angle of interface shearing resistance between soil and 

reinforcement 

P* normalized oblique pullout force = P/ HPT  

*
HP  normalized horizontal component of oblique pullout 

force  

Sv vertical spacing of reinforcement (m) 

f1, f2 friction stresses or soil-reinforcement interface shear 

resistance on the top and bottom surface of the 

reinforcement (kN/m2) 

T,T+T tension in the reinforcement at distance x and x+x 

respectively (kN/m) 

HPT  axial pullout capacity = 2 DLtan r (kN/m) 

*
maxT  normalized maximum tension in reinforcement 
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,+ slope of reinforcement with horizontal at distance x and 

x+x  

T* normalized tension = T/ HPT  

w vertical displacement of the reinforcement (m) 

W normalized displacement = w/wL 

x, z horizontal and vertical axes 

X  normalized distance = x/L 

Subscripts  

c centre 

H horizontal component 

i node or element or iteration 

L value at X = 1 

max maximum 

0 value at X = 0 
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