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ABSTRACT: Load-movement t-z and q-z functions have been established and widely accepted as a tool to characterise pile shaft and toe 

resistances respectively. The functions are best used to represent a short element along the pile. But the question remains whether these 

functions depend on pile diameter and pile depth. This paper discusses the soil-structure interaction and load transfer mechanisms of a single 

pile and reviews the theoretical basis of the t-z and q-z functions. The bearing behaviour of a single circular footing under various conditions 

was also investigated and compared against the toe behaviour of piles. Linear elastic and Mohr-Coulomb soils are used for this study to 

investigate stress versus normalized movement curves for pile behaviour. 

 

Keywords: Shallow foundation, Deep foundation, Piling, t-z, q-z  

 

 
1. INTRODUCTION 

Resistance versus movement curves or load-movement curves for 

shaft and toe resistances are referred as “t-z” functions for shaft 

resistance and “q-z” functions for toe resistance. Pile loading test 

results can be interpreted to characterise the pile behaviour by using 

t-z and q-z functions that represent the response in specific soil layers 

of a short pile element (Fellenius, 2019).  

In finite element programs, “t-z” and “q-z” functions are an 

outcome of the calculations rather than a user input. The functions 

defined are consistent with the laws of mechanics; they satisfy 

equilibrium, compatibility, material constitutive behaviour and the 

defined boundary conditions. Finite element models are able to 

distinctly separate the head, shaft and toe load-movement behaviours 

of piles, which make the results ideal for detailed evaluation of “t-z’ 

and “q-z” functions. 

 

This paper aims to relook into the load transfer mechanisms of a 

footing and a single pile in homogenous soil conditions. The first part 

of the paper discusses the bearing behaviour of shallow foundations 

with respect to various footing sizes, subsequently, to be compared 

with the toe bearing of piles. Following which, head down tests on a 

single pile in homogenous soil with various strength profiles and 

various pile diameters are simulated to investigate the performance of 

the piles and their respective “t-z” and “q-z” functions. Finite element 

package PLAXIS 2D 2018 was used to analyse the shallow footings 

and piles. The study considers footings and pile foundations under 

various conditions as summarised in Table 1. The assumptions 

adopted in this paper are meant for a theoretical study to isolate 

mechanisms for detailed investigation. 

 

 

Table 1  Summary of analyses 

 

2. SHALLOW FOUNDATIONS 

A finite element axisymmetric model was created to study the effect 

of footing size on load-movement curves, and to investigate the 

possibility of normalizing the behaviours of footings of various sizes. 

The FEM mesh has 4810 elements and 39050 nodes, and the 

geometrical size of the mesh is 40 m by 40 m. In this hypothetical 

scenario, linear elastic circular footings of dimensions 800 mm, 1500 

mm and 2000 mm were studied. The footing material has a unit 

weight of 24 kN/m3, and the Young’s modulus is 32 GPa. 

The deformation properties of the soil are fixed with Young’s 

modulus of 25 MPa, and a Poisson’s ratio of 0.3. Unit weight of the 

soil is 20 kN/m3. The study is separated into three distinct strength 

profiles, where the first scenario follows a footing on linear elastic 

soil, the second scenario follows a footing on soil with constant 

strength, and the third scenario follows a footing on soil with varying 

strength with depth. 

Prescribed line displacements were used to simulate loading on 

the footing. The displacements were modelled in 1 mm prescribed 

displacement loading stages up to 10 mm. Displacement control was 

chosen as opposed to stress control input so that the stiffness of the 

footing has a less influence on the problem. Displacement control is 

a model of a perfectly rigid footing. Under stress control loading 

schemes, footings of the same thickness but different diameter can 

have different inherent stiffness. The bending of the flexible footing 

can then be another variable in this study, which can change soil 

response significantly.  

Figure 1 shows the contours of volumetric strain that each footing 

exerts on a linear elastic soil. The bearing behaviour can be 

normalized as the shear strain contours display similitude.  

Case Conditions Weight of soil Strength parameters Figures 

Footing #1 Linear elastic 20 kN/m3 - 1, 2, 3, 4 

Footing #2 Constant strength 20 kN/m3 𝑠𝑢 = 50𝑘𝑃𝑎 5, 6, 7, 8 

Footing #3 Strength increasing with depth 20 kN/m3 𝑐′ = 1𝑘𝑃𝑎, 𝜙 = 32°, 𝜓 = 0 9, 10, 11, 12 

Footing #4 𝑁𝛾 omitted (non-associated flow rule) 0 kN/m3 𝑐′ = 100𝑘𝑃𝑎, 𝜙 = 32°, 𝜓 = 0 13 

Footing #5 𝑁𝛾 omitted (associated flow rule) 0 kN/m3 𝑐′ = 100𝑘𝑃𝑎, 𝜙 = 𝜓 = 32° 14, 16 

Footing #6 𝑁𝛾 & 𝑁𝑐 omitted (associated flow rule) 0 kN/m3 𝑐′ = ~0𝑘𝑃𝑎, 𝜙 = 𝜓 = 32° 15 

Pile #1 Constant strength 20 kN/m3 𝑠𝑢 = 50𝑘𝑃𝑎 17 to 29 

Pile #2 Strength increasing with depth 20 kN/m3 𝑐′ = 1𝑘𝑃𝑎, 𝜙 = 32°, 𝜓 = 0 30 to 35 
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Figure 2 describes the load-movement curve of each footing 

diameter. As expected, the load carried by the footing increases as the 

diameter increases. Figure 3 shows the stress-movement curve of the 

same footings. The reverse is observed, where the smallest diameter 

carries the largest stress. Furthermore, the larger footing needs to 

move more than the smaller footings to obtain similar stress levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1  Contours of volumetric strain for footing sizes 400 mm, 

800 mm and 1500 mm diameter on linear elastic soil  

(Maximum compressive volumetric strain: 1.5-2, 20 intervals) 

 

 

 
Figure 2  Load-movement curves for the various footing sizes on 

linear elastic soil 

 

 

 
Figure 3  Stress-movement curves for the various footing sizes on 

 linear elastic soil 

 

Normalization is achieved by dividing the footing movement by 

the diameter to obtain a pseudo stress-strain curve, where the gradient 

of the curve is proportional to stiffness. The normalized curves, 

shown in Figure 4, show good agreement between the footings of 

different diameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4  Stress vs. normalized movement for footings on linear 

elastic soil 

 

For the following set of footings, a single homogenous soil layer 

is modelled by the well-known linear elastic perfectly plastic Mohr-

Coulomb model. The model is based on Hooke’s law of isotropic 

elasticity and employs a non-associated plasticity framework.  

Figures 5, 6 7 and 8 show the various responses on soil with 

Undrained(B) type of strength. Total stress analysis is performed for 

a case of constant undrained shear strength of 50 kPa. 

 

 
 

Figure 5  Contours of volumetric strain for footing sizes 400 mm, 

800 mm and 1500 mm diameter on soil with constant strength 

(Maximum compressive volumetric strain: 4-4, 20 intervals) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6  Load-movement curves for the various footing sizes on 

soil with constant strength 

 

Similar trends from the constant strength analysis are observed as 

compared to the linear elastic footing, except for the influence from 

the onset of plasticity. This observation is further discussed in the 

third and final set of analyses for footings where a frictional material 

represents the soil. The strength properties of the soil then are 

effective cohesion of 1 kPa, and effective angle of friction of 32 

degrees. Figures 9, 10 and 11 show the load movement curves when 

a frictional soil is used.  
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Figure 7  Stress-movement curves for the various footing sizes on 

soil with constant strength 

 
Figure 8  Stress vs. normalized movement for footings on soil with 

constant strength 

 

 

 
Figure 9  Load-movement curves for the various footing sizes on 

soil with varying strength with depth 

 

With the Mohr-Coulomb model, the varying strength is given by 

𝜏 = 𝑐 + 𝜎′𝑡𝑎𝑛𝜙. Where 𝑐 is the cohesion, 𝜎′ is the effective normal 

stress and 𝜙 is the angle of friction. In a frictional soil, the strength of 

the material close to the ground surface will be small, as there is little 

confining stress. To maintain computational stability, a cohesion 

value of 1 kPa is given to the soil.  

 

 

 

 
Figure 10  Stress-movement curves for the various footing sizes on 

soil with varying strength with depth 

 

 
 

Figure 11  Stress vs. normalized movement for footings on soil with 

varying strength with depth 

 

Figure 12 compares the various volumetric strain profiles beneath 

the footings. The depth of influence of the smaller footing is much 

smaller than the larger footing. It was also observed that under normal 

circumstances when footing is large enough, the divergence between 

the normalized curves decreases. 

 

 
 

Figure 12  Contours of volumetric strain for footing sizes 400 mm, 

800 mm and 1500 mm diameter on soil with varying strength with 

depth (Maximum compressive volumetric strain: 4-3, 20 intervals) 
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After viewing these results, one might question, why then the 

numerical results of the footing on frictional soil cannot be 

normalized for these stress-strain plots? One of the possible reasons 

for being unable to normalize is the non-associativity of the 

constitutive model used. To some extent, the question of associated 

or non-associated plasticity is theoretically important for a frictional 

material. A non-associated plasticity condition is obtained when the 

dilation angle is not coincident to the angle of friction, whereas an 

associated plasticity condition happens when the dilation angle equals 

to the angle of friction. In non-associated plasticity, the bearing 

capacity (defined as the condition of plastic response having 

developed in the main portion of the affected soil body) is not 

independent of the footing size. The following series of figures show 

that even the simplistic Mohr-Coulomb model can give issues.  

Early works by predecessors in soil mechanics found in theory 

that load-settlement curves can be normalized to be independent of 

footing size, by plotting a stress versus movement over diameter 

curve. Osterberg (1947) and Skempton (1951) studied effects of 

footing width on clay, Palmer (1948) on pavement, and more recently 

Briaud (1999) on sand. Perhaps a reason why normalization can be 

achieved in theoretical models was because rigid plastic and fully 

associative models were used in all their analyses. Even with a 

frictional soil, convergence can still be obtained if associated 

plasticity is assumed. Normalization is difficult to obtain once the 

problem is non-associative.  

This explains why for footing design, just one 𝑁𝑐 factor can cater 

to all cases regardless of footing size. When a frictional soil is 

encountered, the associative flow-rule complicates things. Real sand 

and gravel have dilative effects, which suggests that the issue at hand 

is no longer associative. Clayey cohesive soil for which the strength 

being characterized with Undrained(B) is less problematic.   

The capability of numerical modelling enables the investigation 

of effects of associative and non-associative plasticity. The moment 

non-associativity is dealt with, which is the real behaviour of most 

frictional soil, then normalized bearing plots becomes questionable.  

The general bearing capacity equation defined by Terzaghi 

(1943), Equation 1, superimposes the contribution of three basic 

components. The three components are soil strength, uniform surface 

surcharge, and soil self-weight. 

 

𝑞𝑢 = 𝑐𝑁𝑐 + 𝑞𝑁𝑞 +
1

2
𝛾𝐵𝑁𝛾  (1) 

Briaud and Gibbens (1997) pointed out that if the stress vs 

movement/diameter curve is unique for a given deposit, then the 

bearing capacity, qu is independent of the footing width. For footings 

at the surface of a frictional material like sand, the general bearing 

capacity equation gives: 𝑞𝑢 =
1

2
𝛾𝐵𝑁𝛾.Here if 

1

2
𝛾𝐵𝑁𝛾  is a constant 

that is independent of B, then 𝑁𝛾 cannot be a constant and must carry 

a scale effect in l/B. 

The contributions from the other bearing capacity components are 

then investigated, while isolating the contribution from the soil’s self-

weight. The approach of investigation follows that discussed by 

Griffiths (1982). The 𝑁𝑞 component is considered by applying a 20 

kPa surcharge on the top soil surface of the model. The 𝑁𝑐  

component is considered by assuming a large cohesion value of 100 

kPa. Associativity is modelled by assuming the dilatancy angle is the 

same value as the friction angle, a value of 32 degrees.  

For the same set of parameters other than associated plasticity, it 

was observed that the calculation with associated flow rule manages 

to collapse the curves to a narrower band, Figures 13 and 14.  

When the cohesion is set to 0 kPa; with only the contribution due 

to 𝑁𝑞  (uniform surface surcharge), the curves start to diverge after a 

certain strain level, as shown in Figure 15. This indicates that the 

contribution due to the 𝑁𝑐  factor is critical for the normalization of 

the curves.  

 

 
Figure 13  𝑁𝛾 component omitted (non-associated flowrule) 

 

 

 
Figure 14  𝑁𝛾 component omitted (associated flowrule) 

 

 
Figure 15  𝑁𝛾 & 𝑁𝑐 component omitted (associated flowrule); only 

contribution from uniform surcharge is considered 

 

From these figures it can be said that for almost perfect 

normalization of the stress vs movement/diameter curves, two basic 

ingredients are necessary: associated flow rule and the omission or a 

small contribution of the 𝑁𝛾  component. Cohesive soils are more 

likely to exhibit a well-defined collapsed stress versus 

movement/diameter ratio as opposed to granular soils, where 

divergence eventually occurs at a larger strain. 
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 The volumetric strain contours for the footing on soil with  𝑁𝛾 

component omitted and associated flowrule is assumed, presented in 

Figure 16, show much better similitude in comparison to those when 

a non-associative flow was assumed, Figure 12, which is one of the 

reasons why normalizing the curves is possible.  

 

 
 

Figure 16  Contours of volumetric strain for the footing model when 

𝑁𝛾 component omitted and associated flowrule is assumed 

(Maximum compressive volumetric strain: 4-1, 20 intervals) 

 

3. SINGLE PILE BEHAVIOUR IN HOMOGENOUS SOIL  

WITH CONSTANT STIFFNESS AND CONSTANT 

STRENGTH  

This section address piles with diameters of 400 mm, 800 mm and 

1500 mm that are loaded by 1 mm prescribed head displacement 

loading stages until 25 mm head movement is achieved. Total stress 

analysis with Undrained(B) type of strength is performed with 

undrained shear strength of 50 kPa. The pile is a linear elastic pile and 

has a density of 24 kN/m3, and a Young’s modulus of 32 GPa. The 

soil deformation properties were similar to those used in the footing 

study, that is, elastic-plastic shaft shear resistance. Figure 17 shows 

the finite element setup. The FEM mesh has 3532 elements and 29038 

nodes, and the geometrical size of the mesh is 40 m by 40 m. The 

importance of the interface element is discussed later for the shaft 

resistance. 

Figures 18, 19 and 20 show the load distribution curves for the 

three different pile sizes. The toe resistance and shaft resistance will 

be discussed separately, starting with the toe resistance. 

 

 
 

Figure 17  Finite element model mesh (dimensions in meters) 

 

 
Figure 18  Load-movement for 400 mm diameter pile  

 

 
Figure 19  Load-movement for 800 mm diameter pile  

 

 
Figure 20  Load-movement for 1500 mm diameter pile  

 

3.1 Toe resistance 

The toe load-movement curves from each pile are plotted together in 

Figure 21. The overall toe behaviour is similar to observed behaviour 

in shallow raft foundations and plate load tests, where the bigger 

diameter experiences a softer response, but it can be loaded further to 

a higher value.  

It is expected that a larger footing carries a bigger force for the 

same displacement. But using the concepts of Terzaghi’s subgrade 

modulus, the reverse effect is obtained. Stress vs movement relations 

are similar to subgrade modulus, which does not have consistent units 

for normalized plots; when comparing Figures 22 and 23. In the 



Geotechnical Engineering Journal of the SEAGS & AGSSEA Vol. 50 No. 3 September 2019 ISSN 0046-5828 

 

 

151 

 

design of most shallow foundations using structural software (like 

SAFE), Winkler spring models are used. However, the approach goes 

against the fundamental understanding of foundations, where the 

bigger the foundation the more movement is needed to mobilize the 

same stress.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21  Toe load vs. toe movement for various pile diameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22  Unit toe stress vs. toe movement for various pile 

diameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23  Unit toe resistance vs. normalized toe movement for 

various pile diameters 

 

When normalizing both axes by transforming into a pseudo stress-

strain plot, the curve should be coincident. In essence, the toe 

resistance of piles happens to be similar to that of shallow footings, 

except that the embedment effect becomes more prominent. The 

conditions for normalization of shallow footings have been discussed 

in the earlier sections. 

Another hypothesis for the reason of variation in toe behaviour in 

piles for the different pile diameters is apart from the mechanics of 

associated plasticity. On loading a pile, the yielding zone is not 

similar to the shallow bearing capacity problem as mentioned due to 

the embedment effect. For each variation of pile size, the failure 

obtained does not display exact similitude. As the diameter of the pile 

varies, the smaller diameter has a small loaded volume. Where the 

volume of the plasticized zone would be proportional to the diameter 

of the footing, it will not follow proportionality for the toe of a pile. 

Figure 24 shows the contours of volumetric strain for the various pile 

diameters. Due to the embedment effect, the plots have slightly 

different contours and similitude is not obtained. This might explain 

why in the stress plot in Figure 22, the 400 mm diameter pile exhibits 

an unexpected response and crosses over the 800 mm diameter pile. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24  Contours of volumetric strain at the pile toe for diameters 

400 mm, 800 mm and 1500 mm 

(Maximum compressive volumetric strain: 3-3, 20 intervals) 

 

3.2 Shaft resistance 

Following toe resistance, the shaft resistance of the pile is compared 

for the various diameters. In order to model the shaft behaviour of 

piles correctly, an interface element has to be included to capture the 

soil-structure interaction. In each interface element, Newton-Cotes 

integration were used instead of Gauss integration in Plaxis 

(Brinkgreve et al., 2018). As 15 noded elements were used in this set 

of analyses, each interface element would then have five pairs of 

nodes, where the positions of the stress points coincide with those of 

the node pairs. Each node pair would have identical coordinates in the 

finite element formulation, implying that the interface element has 

zero thickness. The interface elements allow for slipping, and slip will 

occur as the pile is much stiffer than the soil. The slippage is 

calculated by multiplying the shear stress at the interface by the 

virtual thickness of the interface, divided by the shear modulus of the 

interface element. 

An 𝑅𝑖𝑛𝑡𝑒𝑟 parameter is used to determine the shear modulus of the 

interface element 𝐺𝑖 , shown in equation 2. An 𝑅𝑖𝑛𝑡𝑒𝑟  value of 1 

implies a rigid interface, where the interface properties would be the 

same as the soil properties adjacent to it. A 𝑅𝑖𝑛𝑡𝑒𝑟  value of 0.7 is 

adopted throughout this study to represent a normally rough interface. 

 

𝐺𝑖 = 𝑅2
𝑖𝑛𝑡𝑒𝑟𝐺𝑠𝑜𝑖𝑙  (2) 

 The 𝑅𝑖𝑛𝑡𝑒𝑟  value is also used to characterize the interface 

strength where values are scaled from the surrounding soil, as shown 

in equations 3 and 4. Likewise in the undrained scenario, cohesion is 

replaced by undrained shear strength. 

 

𝑐𝑖 = 𝑅𝑖𝑛𝑡𝑒𝑟𝑐𝑠𝑜𝑖𝑙  (3) 

𝑡𝑎𝑛 𝜑𝑖 = 𝑅𝑖𝑛𝑡𝑒𝑟𝑡𝑎𝑛𝜑𝑠𝑜𝑖𝑙  (4) 
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After applying the prescribed displacement at the pile head, the 

relative displacement between pile and soil can be obtained 

subtracting the displacement of the node pairs in each interface.  

The plot of shaft resistance against relative displacement is shown 

in Figure 25. Right at the interface, the rate of mobilisation of shaft 

resistance is independent of diameter. For this particular soil model 

and strength profile, slippage occurs at around 1.26 mm from the unit 

shaft resistance against relative movement, same for all the pile 

diameters and at all depths. This shows that for this particular pile in 

this particular soil, a single t-z function can represent the entire shaft 

resistance behaviour.  

 
Figure 25  Unit shaft resistance against relative movement 

 

The overall shaft resistance is obtained by deducting the toe 

loading from the total load. The shaft loads are then plotted with head 

movement of the pile, Figure 26. When plotted against pile head 

displacement, observations are similar to Mark Randolph’s theory 

(Fleming et al., 2014), expressed in Equation 5. 

 

𝜔 = ∫
𝜏0𝑟0

𝐺𝑟
𝑑𝑟 =

𝜏0𝑟0

𝐺
ln (

𝑟𝑚

𝑟
) =

𝜏0𝑑

2𝐺
ln (

𝑟𝑚

𝑟
)

𝑟𝑚

𝑟
  (5) 

Where 𝜔 is the deflection of the pile, 𝑟𝑚 is the maximum radius 

where the deflections in the soil become negligible, 𝜏0 is the limiting 

shear stress on the pile shaft, and 𝑟0 is the pile radius. 

 

 
Figure 26  Load-movement curve for the shaft resistance 

 

It should be noted that the deflection of pile is the absolute 

movement of pile shaft, not the relative movement of pile against soil. 

The theory assumes an elastic model with no interface element; the 

pile and soil are fully connected to each together. When using elastic 

theory, the soil moves together with the pile during compression. The 

soil is looped around the pile as a coaxial cylinder, and the elastic 

theory is used to calculate the movement of the coaxial cylinder. In 

this theoretical model, the pile movement with a fixed shear stress 

must then be a function of radius. In other words, for vertical 

equilibrium, the magnitude of shear stress on each pile must decrease 

inversely with the surface area. This is described by Equation 6. 

 

𝜏 =
𝜏0𝑟0

𝑟
  (6) 

The absolute displacement in pile loading curves has its own 

practical value, this is because extensometers are usually not installed 

in the pile nor is there any measurement of soil movement; most 

measurements are based on absolute displacements of the pile head 

and, occasionally, also the pile toe. 

During the loading process, the pile will displace vertically, and 

it will shorten. The elastic shortening, obtained by deducting the toe 

movement from the head movement, will give the minimum relative 

displacement of pile and soil. The maximum relative displacement 

possible occurs if the pile head moves but the toe does not move. The 

real relative movement between pile and soil is somewhere in 

between these two scenarios. An accurate interpretation can only 

come from finite element analysis as movement from all elements 

whether pile or soil can be tracked.  

These two extremes represent two possible interpretations of 

results from actual loading tests; head movement only against head 

movement minus toe movement at any load. Both interpretations can 

give different pile behaviours in terms of the pile slip displacements. 

The total pile shortening can be taken as a measure of relative 

displacement, plotted in Figure 27.  However, it is then assumed that 

the entire pile has achieved full mobilization of shaft resistance, and 

the frictional resistance is neglected. 

Figures 28 and 29 show that the normalization of shaft resistance 

is not possible, due to other mechanics to be further explored. 

 
Figure 27  Unit shaft resistance vs. pile shortening 

 

 

 
 

Figure 28  Unit shaft resistance vs. movement 
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Figure 29  Attempt to normalize unit shaft resistance against head 

movement divided by the diameter of the pile 

 

4. SINGLE PILE BEHAVIOUR IN HOMOGENOUS SOIL 

WITH CONSTANT STIFFNESS AND VARYING 

STRENGTH  

The following study follows pile diameters of 400 mm, 800 mm, 1500 

mm and 2000 mm, in soil with constant stiffness, and strength that 

varies with depth (frictional material). 

The typical load distribution curve for piles in soil with varying 

strength with depth does not differ much from the previous section 

with constant strength, as the same constitutive model is used,               

Figure 30. However, the rate of mobilisation of the shaft resistance 

right at the interface boundary between soil and pile varies with depth 

and pile diameter. 

 

 
Figure 30  Pile load-movement curve for 400 mm diameter pile in 

drained soil conditions 

 

Figure 31 plots all the relative movement curves against unit shaft 

resistance for depths 2.5m, 5m, 7.5m and 12.5m, for the various pile 

diameters. The interface at the shaft has the same shear stiffness for 

all the pile depths and diameters. Figure 32 normalizes the shaft 

resistance against the individual peak resistances. 

Grouping the normalized shaft resistance against relative 

movement curves, the plotted curves by pile size do not give much 

insight into the pile behaviour. However, when grouped according to 

pile depth it can be seen that at shallow depth, the slippage occurs at 

similar values. While at a deeper location, the range where slippage 

occurs increases slightly. Another observation is that the slip 

displacement is a function of depth. It is logical that more movement 

is required to mobilize the peak strength as the deeper soil has a higher 

maximum strength. When plotting the curves of shaft resistance 

versus normalized relative movement, Figure 33, it is again shown 

that the deeper points of the pile require a larger movement to fully 

mobilize their resistance. However, as the pile diameter increases the 

range where slip occurs reduces to a much narrower band. 

 

 
Figure 31  Unit shaft resistance against relative movement curves 

for various pile diameter at different depths 

 
Figure 32  Normalized shaft resistance against relative movement 

curves for various pile diameter at different depths                          

(grouped according to depth) 

 

 
Figure 33  Normalized shaft resistance against normalized relative 

movement curves for various pile diameter at different depths 

 

Figure 34 shows the toe load-movement curves for the four piles. 

Converting the plot into a stress vs movement/diameter curve as in 

Figure 35, it is observed that the smallest pile exhibits the softest 
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response. During the loading sequence, the piles experience a change 

in stiffness, piles with smaller diameter more so than those with larger 

pile diameters. Again, these plots show that when the pile diameter is 

large, the divergence between the normalized curves decreases. 

 

 
Figure 34  Toe load-movement curves  

 

 
Figure 35  Toe stress vs. normalized toe movement  

 

5. CONCLUDING REMARKS 

The paper first discussed about the mechanisms of shallow 

foundation systems by comparing against homogenous linear elastic, 

constant strength, and varying strength soil (constant friction angle). 

The importance of associated and non-associated flow was examined 

and the contribution from 𝑁𝑐 , 𝑁𝑞 and 𝑁𝛾 factors were presented. In 

order to obtain a normalized stress vs movement/diameter curve, 

associated plasticity and the omission of the 𝑁𝛾 factor were found to 

be the two key ingredients needed. In that sense, q-z functions may 

be back-calculated from deep footings on the same soil provided that 

the stress vs movement/diameter curve can be unique for a given soil.  

A single pile was modelled in the same set of homogenous soil 

and it was shown that t-z and q-z curves can be obtained by tracking 

the gauss points at the interface and at the toe of the pile. The 

calculated t-z curve from interface shear stress against movement 

shows that in a homogenous soil with constant strength, it is possible 

to use a single t-z function to characterise the pile. In a frictional soil, 

multiple t-z functions have to be used, depending on the depths along 

the pile.   

The overall shaft resistance against absolute head movement was 

observed to be a function of diameter and this explains why larger 

piles would need more movement to mobilise the same stress level, 

while the rate of mobilisation of shear stress at the interface remains 

constant in soil with constant strength. 

Results from the pile analyses suggest that it is not recommended 

to adopt a unique q-z curve for the pile toe of different pile diameters 

on the same soil, especially for frictional materials. The interaction 

between the pile and soil comprise of complex compressive and 

shearing responses which make simple normalization difficult, and 

not absolutely true. 

 

6. REFERENCES 

Briaud, J. L., & Gibbens, R. (1997). Large-scale load tests and data 

base of spread footings on sand (No. FHWA-RD-97-068). 

United States. Federal Highway Administration 

Briaud, J. L., & Gibbens, R. (1999). Behavior of five large spread 

footings in sand. Journal of Geotechnical and 

Geoenvironmental Engineering, 125(9), 787-796. 

Brinkgreve, R. B. J., Kumarswamy, S., Swolfs, W. M. & Foria, F. 

(2018). PLAXIS 2018 manual. PLAXIS bv, Delft, Netherlands. 

Fellenius, B. (2019). Basics of foundation design—a textbook. Pile 

Buck International, Inc., Vero Beach, FL, Electronic Edition, 

www.Fellenius.net, 484 p. 

Fleming, K., Weltman, A., Randolph, M., & Elson, K. (2014). Piling 

engineering. CRC press. 

Griffiths, D. V. (1982). Computation of bearing capacity factors using 

finite elements. Geotechnique, 32(3), 195-202. 

Osterberg, J. S. (1947). Discussion in symposium on load tests of 

bearing capacity of soils. ASTM STP, 79, 128-139. 

Palmer, L. (1948, January). Field Loading Tests for the Evaluation of 

the Wheel-Load Capacities of Airport Pavements. 

In Symposium on Load Tests of Bearing Capacity of Soils. 

ASTM International. 

Skempton, A. W. (1951). The bearing capacity of clays. In Proc. of 

Building Research Congress (Vol. 1, pp. 180-189). ICE. 

Terzaghi, K. (1943), Theoretical soil mechanics, Wiley, New York. 

 

 

 


