
Geotechnical Engineering Journal of the SEAGS & AGSSEA Vol. 50 No. 3 September 2019 ISSN 0046-5828 

 

 

118 

 

A Method to Estimate Shaft and Base Responses of a Pile from Pile Load                           

Test Results 
 

Madhav Madhira1and Kota Vijay Kiran2   

1Department of Civil Engineering, JNTU Hyderabad and IIT Hyderabad, India 
2Department of Civil Engineering, IIT Bombay, Mumbai, India 

E-mail: madhavmr@gmail.com 

 

 
ABSTRACT: A practical method for estimating initial shaft and base stiffnesses and ultimate shaft and base resistances of a pile from pile 

load test results has been proposed. The method employs hyperbolic relationships for the non-linear responses of shaft and base resistances, 

which are solved using iterative procedures to arrive convergence. A large number of empirical correlations are reported in the literature but 

many-a-times they either under-estimate or overestimate the pile response. Similarly, numerical tools that can predict shaft and base resistances 

typically would depend on the expertise of the engineer and also based on various input parameters. Thus, the applicability of the tools therefore 

too is uncertain. The present method discussed in this paper, would help engineers to estimate shaft and base responses of the actual site using 

the initial Pile load test results. The analytical solutions of the method are discussed in detail and the proposed method is applied to few load - 

displacement data available from pile load test results to illustrate its efficacy.  
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1. INTRODUCTION 

Pile foundation is the most effective and economical solution in 

transferring large vertical loads to deeper depths. As the pile is 

subjected to axial load, the soil mass surrounding the pile is vital in 

providing vertical support for the pile. The nature of pile–soil 

interaction is three dimensional and to complicate the problem 

further, response of soil is nonlinear. Finding a closed form solution 

to such a problem is extremely difficult. Several methods have been 

developed to study and predict the response of the composite pile–

soil system. Faruque and Desai (1982) implemented both numerical 

and geometric non-linearities in their three dimensional finite element 

model. Rajashree and Sitharam (2001) developed a nonlinear finite 

element model of batter piles under lateral loading using a hyperbolic 

relation for static load condition and modified hyperbolic relation, 

including degradation and gap for cyclic load condition.  

The ultimate capacity of the pile is estimated considering the 

strengths and unit weights of soil layers with depth, overburden 

pressure and other relevant parameters. The estimated capacities 

always need to be validated by conducting initial maintained load 

tests. The estimated capacity may differ with the actual at site since 

the values of strength, stiffness, interface resistance between pile and 

soil, lateral earth pressure coefficient with depth and soil 

stratification, etc., differ from the design parameters considered for 

estimating the ultimate capacity of pile. The estimation of axial 

capacity of piles involves considerable uncertainties in selection of 

appropriate design parameters and the design rules are not always 

consistent with the installation procedures/processes involved.  

Several methods are used to predict the response of the 

composite pile–soil system. Whitaker and Cooke (1966), Burland et 

al. (1966) and Poulos (1972) proposed a priori methods to predict the 

load-settlement curve/plot till failure load. Different methods for the 

estimating the ultimate pile capacity based on a pile load test to failure 

are proposed by Brinch-Hansen (1963), Chin (1971a&b and Chin and 

Vail, 1973), Davisson (1972), Fellenius (1989) etc. These methods 

relate to different principles, such as limiting maximum settlement 

and ratio of settlement to load. Chin (1971) and Brinch-Hansen 

(1963) relate to the shape of the load-settlement curve and hence can 

be conceptually used for determining the ultimate capacity.  

Axial load transfer curves were initially put forth by Seed and 

Reese (1957) and Coyle and Reese (1966) way back in the 1950s. 

Based on different degrees of complexity and number of soil 

parameters different curve types are reported in  the literature, based 

on theory, on experience, or on both. They are  in general developed 

for specific ground and pile types (Armaleh and Desai 1987; Fleming 

1992; Frank 1974, 1985; Hirayama 1990; Kraft et al. 1981; Liu et al. 

2004; Randolph  and Wroth 1978; Vijayvergiya 1977; Wang et al.  

2012; Zhang et al. 2010, Bohn et al. 2016).  The stiffness of the load 

transfer curves  is either derived from measured soil deformation 

parameter or from an empirical relation. Randolph and Wroth (1978) 

and Fleming (1992) used an equivalent deformation modulus or 

oedometer modulus based on correlations with measured soil 

resistance parameters for the response of pile tip. The linear curves of 

Randolph correspond to elastic estimation with the use of usual 

correlations to determine the stiffness from the linear portion of the 

curve. Hirayama (1990) employed hyperbolic functions to model side 

and base load transfer applicable for bored piles in sands and clays. 

The parameters used for defining these functions were based on the 

results of conventional in-situ and laboratory tests. Fleming (1992) 

suggested method to determine interaction parameters by back-

analysis of pile load test data.  

 

2. PROBLEM DEFINITION 

Estimating ultimate resistance, initial stiffness of shaft and base of 

pile based on load displacement from pile load test is important as it 

permits verification of the a-priori predictions based on geotechnical 

parameters, geometry (shape, length and diameter), construction 

methodology and other uncertainties involved at site during 

installation of the pile. The present research addresses the above 

problem of estimating ultimate shaft and base resistances and the 

initial shaft and base stiffness’s from initial pile load test at site. A 

single pile of diameter, d, and length, L (Figure 1) and with load, P, 

is considered. For this analysis, the pile soil system is modelled in 

terms of Winkler type model with different non-linear responses for 

the shaft-soil and base resistances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1  Definition sketch of a single rigid pile system 
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3.  FORMULATION AND COMPUTATION OF PILE 

RESPONSE 

A rigid pile subjected to axial loading derives its resistance from shaft 

and base of the pile. Figures 2a, b and c represent idealized 

representations (assumed to be hyperbolic) of load test results of a 

rigid pile, shaft (pile-soil) and base resistances respectively. The 

slopes of the curves ‘A’, ‘B’, and ‘C’ represent the stiffness modulus, 

kp, of the rigid pile, kτ of shaft and kb base stiffness’s respectively. Pu, 

τmax and qu are the ultimate load on pile, ultimate shaft and base 

resistances, respectively. 

  

 

 

Figure 2  (a) Typical pile load-settlement curve; Assumed (b) Shaft 

and (c) Base Resistance curves 

 

The load, P, in the pile at a displacement, δ, is expressed as the sum 

of the resistances mobilized along the shaft and the base as 
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where and qb are the shaft and base resistances respectively. 

 

Simplifying the stiffness, kp, is expressed in terms of shaft and base 

stiffnesses as 
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Normalizing Equation (2) with respect to the pile’s cross-sectional 

area (πd2/4) 
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where ( )4/./ 2* dkk pp = - normalized stiffness of the pile, kτ and kb 

are shaft and base stiffnesses respectively, 

 

 

Ultimate load capacity, Pu, of a rigid pile is the sum of ultimate shaft 

and base resistances as 
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Where Ps & Pb are the ultimate shaft and base resistances of pile. 

Normalizing the Equation (5) with πd2/4  
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where P*
u = Pu/(πd2/4).  

 

The shaft resistance, τ, corresponding to a displacement, δ, can be 

expressed in hyperbolic relation as 
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Similarly, the base resistance, qb, corresponding to a displacement, δ, 

can be expressed in hyperbolic relation as 
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The load, P1, corresponding to displacement, δ1, during loading is 

expressed in terms of the parameters defined already as 

 

u

b

b

q

k

kd

k

k
LdP

1

1
2

max

1

1
1 .

1

.
.

4

.

.
1

.
...
















+

+

+

=

                                           

[9] 

Normalizing Equation (9) by πd2/4, and simplifying one gets 
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Substituting for kb and qu from Equations (3) and (6), Equation 8 is 

modified to  
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Expressing in simple terms, Equation (12) becomes 
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Similarly P2 is evaluated for displacement δ2 as 
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Equations (13) and (15) are solved to get kτ as 
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Since the ultimate shaft resistance, Ps, is often mobilized at relatively 

smaller displacement than δ2, Equation (15) can be simplified 

considering full mobilization of ultimate shaft resistance as 
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Substituting for the values of qu and  kb in Equation (17), τmax is 

obtained as  
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Equations (13) and (18) are solved by iterative process for kτ, kb, τmax 

and qu.  

 

3.1 Estimation of PU and kP based on Chin (1971a) 

The ultimate pile load capacity, Pu, and pile stiffness modulus, kp, are 

the two key parameters required to determine the four unknown 

parameters (kτ, kb, τmax and qu) of interest. From the available methods 

during literature review to define ultimate capacity and stiffness 

modulus, Chin’s method (1971a) is adopted in the present analysis as 

Chin’s (1971a) method assumes the relationship between load, Pu, 

and settlement, S, (Figure 3) of a pile as hyperbolic, which co-relates 

to the present study.  

According to Chin’s (1971) method, the ratio of S/Pu plotted 

against  S  would  be  a  straight  line  fitted  to  the  points (Figure 3).  

The inverse of the intercept, C2, and of the slope, C1, of the fitted line 

give respectively the initial pile stiffness, kp, and the ultimate pile 

load, Pu.  
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Pu = 1/C1                                                                                                                                 [18] 

kp = 1/C2                                                                                                                                  [19] 

 

 

Figure 3  Ultimate failure load according to Chin’s extrapolation for 

Test pile no. 1 at Dharaikuri  

 

3.2  SPT-N based methods for computing Axial Pile capacity 

The shaft and tip resistances for bored piles in sandy soils can be 

computed using SPT based correlations available in the literature. 

Many researchers propose empirical methods derived from back-

analysis of databases of pile loading tests in correlation with N value. 

The end bearing capacity is assumed to be proportional to a 

representative Ne value around the pile base:  

uq = β.Ne                                                                                       [20] 

The limit skin friction stress at a given depth is proportional to the N 

value at this depth:  

max = η.N                                                                                     [21] 

β and η have the unit of stress and are respectively called tip resistance 

factor and skin friction factor. Methods 1-9 summarized in Table 1.  

  

Table 1  Empirical correlations for Shaft and Base resistances 

from SPT-N 

Sl. 

No. 
References η (kPa) β (kPa) 

1 IS Code -2911 
B

L..13
 2 

2 
Bazaraa & 

Kurkur (1986) 
135 if D  0.5 m 

270xD else ( B in m) 

0.67 if D  0.5 m 

1.34xD else(B in 

m) 

3 Decourt (1982) 

400 in sand 

250 in residual silty 

sand 

max
=10x(N/3+1) 

(in kPa) 

4 
Lopes & 

Laprovitera 

(1988) 

98.4 in sand  

87.0 in silty sand 

1.62 in sand 

1.94 in silty sand 

5 Meyerhof (1976) 120 1 

6 
Shioi & Fukui 

(1982) 
100 1 

7 
Aoki & Veloso 

(1975) 
286 in sand 

228 in silty sand 
2.00 in sand 

2.28 in silty sand 

8 
Reese & O’Neill 

(1989) 

60 if B=0.52-1.27 
76/D if B>1.27 m (D 

in m) 

3 

9 Robert (1997) 115 1.90 
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The above mentioned empirical correlations are utilized for 

comparing the estimated results of the method proposed in this paper. 

 

4.    APPLICATION OF THE PROPOSED METHOD  

The proposed method is applied to load displacement plots of pile 

load test results obtained from initial load tests carried out at major 

bridge locations for the on-going National Highway NH31D. The soil 

profiles at these three locations are nearly similar with non-cohesive 

silty sand up to 10 m followed by fine sand. The ground water table 

is close to ground level with seasonal variation of 5 to 6m. The 

detailed properties of the soil strata in the load test sites are reported 

in Table 2. The pile capacity is estimated using the procedure 

described in IS 2911 Part 1 section 2 for piles installed in non-

cohesive soils. The estimated shaft and end bearing resistance for the 

dimensions of the pile are presented in Table 1. The Initial load tests 

were conducted on the test piles to validate the estimated safe axial 

capacities. The load displacement data available is used to estimate 

initial stiffness modulus, kp, of the pile for the ultimate load Pu,on 

pile. The data is analyzed to estimate normalized shaft and base 

stiffness, kτ and kb, respectively corresponding to ultimate shaft, τmax, 

and base resistances, qu. For estimating the base and shaft stiffness’s 

Equations (1) to (18) are used to perform regression analysis. The 

detailed explanation for each test pile location is briefed below. 

 

 

 

Case study 1: The load displacement plot generated for initial pile 

load test (PLT) carried out on a pile for a major bridge at Dharaikuri 

of West Bengal is shown in Figure 4. The pile capacity is estimated 

using the procedure described in IS 2911 Part 1 section 2 for piles 

installed in non-cohesive soils. The estimated shaft and end bearing 

resistance for the dimensions of the pile are 2942.2 kN and 1357.8 kN 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4  Comparison of measured and predicted load-displacement 

curves for pile load test (PLT) at Dharaikuri, W. Bengal 

 

 

 

 

The length and diameter of the pile installed are 24 m and 1 m 

respectively. Using linear regression over the approximated linear 

portion of the curve, the ultimate pile capacity, Pu is obtained as 

15.8MN (Since, the slope of the fitted line, C1 = 6.326E-05) and the 

initial stiffness, kp is 1666 MN/m (Since, the intercept C2 = 6E-07) 

from Figure 3. The shaft and base resistance parameters, kτ, kb, τmax 

and qu, estimated based on the proposed method are 8.79 MN/m3; 

1,277.84 MN/m3; 33.5 kPa and 16.92 MPa respectively. The load – 

settlement curve predicted based on the estimated parameters 

compares very well as is to be expected.  

For the present site, the skin and base resistances values attained 

show higher base response than compared to shaft resistance, this is 

accounts to pile interaction with Gravelly pebbles. 

 

Case study 2: Figure 5 presents similar analysis, results and 

comparison of measured and predicted load-settlement curve for 

initial pile load test (PLT) carried out at a major bridge location across 

River Mahananda. The length and diameter of the pile installed are 

24m and 1m respectively. The ultimate load and initial stiffness 

modulus, kp, of the pile are computed as 16.34 MN and 3,125MN/m 

respectively based on which the corresponding values of the 

parameters kτ, kb, τmax and qu contributing to the pile response are 25.0 

MN/m3; 1,578.8 MN/m3; 56 kPa, and 16.3 MPa respectively. In this 

case, the shaft and base responses fairly contribute equally when 

compared to other two cases. 

 

 

 

 

 

Table 2  Geotechnical Properties of the load test site 

Sl. 

No 
Site Location Depth Stratum description 

Shear Parameters 

N N’’ 
γ 

(kN/m3) 
Cu 

(kPa) 
φ φ* 

1. Dharaikuri, WB 

0-2.4m 
Top fill of firm/soft clayey silt with sand and 

gravel 
- - - 7 7 17 

2.4-5.5m Medium Dense Sand with traces of gravels 0 34 31 34 30 18 

5.5-7m 
Very Dense Sand with traces of gravels & 

pebbles 
0 34 31 88 55 20 

7-35m Gravel Pebbles and boulders in sandy matrix 0 34 34 100 51 20 

2. Mahananda, WB 

0-6m 
Silty Clay/Clayey Silt with medium plasticity 

(CI/MI) 
40 0 0 8 8 17.5 

6-10.88m 
Medium Dense to Dense Silty/Clayey Sand 

(SM/SC/SW/SP) 
0 34 31 30 23 18.5 

10.88-

35m 

Very Dense Silty/ Clayey Sand with gravels 

(SM/SC/SW/SP) 
0 34 31 100 49 20 

3. Karala, WB 

0-5.5m Loose Silty/Clayey Sand (SM/SC/SW/SP) 0 28 25 6 8 17.5 

5.5-10m 
Medium Dense to Dense silty/clayey Sand 

(SM/SC/SW/SP) 
0 34 31 31 24 19 

10-35m 
Very Dense Silty/ Clayey Sand with gravels 

(SM/SC/SW/SP) 
0 34 31 81 38 20 

Cu- Cohesion, φ- Friction angle, φ* Reduced friction angle, N-Observed SPT-N Value, N’’-Corrected SPT-N, γ-Unit weight of the soil 
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Figure 5  Comparison of measured and predicted load-displacement 

curves for pile load test (PLT) at Mahananda, W. Bengal 

 

Case study 3: Similar results as the above two case studies are 

presented in Figure 6 comparing measured and predicted load-

settlement curves for pile load test (PLT) carried out at a major bridge 

foundation across River, Karala. The length and diameter of the pile 

installed are 25m and 1m respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6  Comparison of measured and predicted load-displacement 

curves for pile load test (PLT) at Karala, W. Bengal 

 

The ultimate load and initial stiffness modulus, kp are computed 

as 15 MN and 1428 MN/m respectively. The parameters kτ, kb, τmax 

and qu contributing to the pile response in resisting loads are 17.4 

MN/m3; 148.5 MN/m3; 115 kPa, and 8.178 MPa respectively. The 

load-displacement plot from PLT is compared with estimated data, 

and matches well with the actual. 

As can be seen from the soil profile, major portion of the pile 

length of about 15 m is surrounded by dense sand which resulted in 

higher skin frictional resistance and lower tip resistance.  

 

5. RESULTS AND DISCUSSION 

The main purpose of this study obtains the shaft and base response 

parameters i.e. kτ, kb, τmax and qu based on load-settlement curve of a 

PLT test. Figures 4-6 present some of the comparative load-

displacement curves along with relevant sub-surface profiles. A close 

match in the load-displacement curves are obtained for all the three 

sites of the present study. These comparisons confirm that non-linear 

load transfer functions employed in the present study successfully 

map the load displacement behaviour in the field.  

Table 3 summarizes the data from the three test sites and 

compares the estimated results with the shaft and base resistance 

values, calculated using various empirical correlations. As can be 

observed, the values obtained from the proposed method are will 

comparable with the correlations detailed in IS 2911 (Part 1 Sec 2) 

i.e. pertaining to SPT-N. Along with IS Code 2911 method, the results 

obtained are well in agreement with the methods of Aoki & Veloso 

(1975), Decourt (1982) and Bazaraa & Kurkur (1986). The values 

attained using the methods Shioi & Fukui (1982), Lopes & 

Laprovitera (1988) and Robert (1997) are significantly less than the 

present method implying under prediction of the pile bearing 

capacity.   

Meyerhof’s method under-predicts in most of the cases with an 

average value of 2.8 for the ratio μ. The pessimistic prediction which 

may justify the large use of this method was already highlighted by 

many authors working on similar databases. According to Table 1, 

the factor β and η of Reese’s method for bored piles seem to be 

lowest, resulting in underestimation of the shaft and base responses 

compared to the present proposed.  

The practical implication of the method is thus made evident from 

the comparisons made and application of the method to available test 

data. Future work will compare the shaft and base responses derived 

from avaialble numerical tools to the values estimated using this 

study. 

Table 3  Summary of predicted results using the proposed method and empirical correlations 
 

Test Location 

Site Location-

1: 

Dharaikuri 

Site Location-2: 

Mahananda 

Site Location-3: 

Karala 

Site Location-1: 

Dharaikuri 

Site Location-2: 

Mahananda 

Site Location-3: 

Karala 

Method max  

(kPa) 

qu 
(MPa) 

max  

(kPa) 

qu 
(kPa) 

max  

(kPa) 

qu 
(kPa) mmax,

estmax,




 

m,u

est,u

q

q
 

mmax,

estmax,




 

m,u

est,u

q

q
 

mmax,

estmax,




 

m,u

est,u

q

q
 

Present Method 34 16.9 56 16200 115 8200 1.0 1.0 1.0 1.0 1.0 1.0 

IS Code 2911 88 15.9 67 15288 57 11856 0.4 1.1 0.8 1.1 2.0 0.7 

Bazaraa & 

Kurkur (1986) 
59 13.8 45 13230 38 10260 0.6 1.2 1.2 1.2 3.0 0.8 

Decourt (1982) 157 12.75 122 12250 105 9500 0.2 1.3 0.5 1.3 1.1 0.9 

Lopes & 

Laprovitera 
(1988) 

86 44.37 65 4263 55 3306 0.4 3.8 0.9 3.8 2.1 2.5 

Meyerhof 

(1976) 
44 61.20 33 5880 28 4560 0.8 2.8 1.7 2.8 4.0 1.8 

Shioi & Fukui 
(1982) 

44 51.0 33 4900 28 3800 0.8 3.3 1.7 3.3 4.0 2.2 

Aoki & Veloso 

(1975) 
101 11.63 76 11172 65 8664 0.3 1.5 0.7 1.5 1.8 0.9 

Reese & 

O’Neill 

(1989) 

146 3.06 110 2940 94 2280 0.2 5.5 0.5 5.5 1.2 3.6 

Robert (1997) 84 5.86 64 5635 54 4370 0.4 2.9 0.9 2.9 2.1 1.9 
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6. CONCLUSION 

This paper reported a simple method based on the analysis of initial 

pile load test data for the purpose of determining the shaft-soil and 

base stiffnesses and the ultimate shaft and base resistances. The 

proposed method was applied to few test data, and the estimated shaft 

and base response parameters could accurately interpret the load-

transfer behaviour. This was evident as the predicted load – 

displacement plots based on the computed results compare well with 

the measured load - settlement curves. Hence, It is now possible to 

estimate the average shaft and base stiffnesses and resistances of the 

pile as installed from initial load test and compare the predictions with 

assumed values. A large data base can be built for all such cases 

which may help in revising the Indian Standard (IS) Code.  
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