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ABSTRACT: The paper presents a review of the analytical and numerical procedures developed by the authors for the dynamic analysis of 

soil-pile foundation systems subjected to the propagation of seismic waves in the soil. Inclined and vertical single piles and groups constituted 

by piles with a generic inclination are addressed. For the former, an analytical approach based on the beam on dynamic Winkler foundation 

approach is adopted; the pile is modelled as a Euler-Bernoulli beam and the soil-pile interaction is captured by defining soil impedances 

relevant to the harmonic vibrations of rigid disks available in the literature. The coupled flexural and axial behaviour of the pile is solved 

analytically exploiting exponential matrices. The pile group dynamic problem is similarly formulated but the solution is achieved exploiting 

the finite element approach. Besides numerical models, simplified approaches based on static equivalent methods and simplified formulas are 

also addressed to estimate the maximum kinematic stress resultants on vertical piles subjected to lateral seismic excitations. The reliability of 

the presented tools in capturing the dynamic stiffness and the overall kinematic response of pile foundations is shown by comparing results 

with those available in the literature or achieved through refined finite element models. From an engineering point of view, the proposed 

approaches assure a sufficient accuracy and may substitute refined computational demanding numerical models. 
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1. INTRODUCTION 

Damage sustained during past earthquakes has highlighted that the 

seismic behavior of structures and infrastructures is highly influenced 

by the response of the soil-foundation system. For this reason, modern 

seismic codes have started, at least in particular cases, to address the 

design and the verification of the structure, its foundation and the 

local deposit as a whole system. The substructure method plays a 

significant role for performing soil-structure interaction analysis 

allowing the analysis of the soil-foundation and superstructure 

subsystems separately and a more easily identification of their 

dynamic behaviours through the use of dedicated software. In the 

framework of the substructure method, the dynamic response of soil-

foundation systems in the case of deep foundations can be studied 

with different approaches: i) elastic continuum methods, in which the 

soil is considered as an elastic medium (e.g., Novak M. (1974), 

Gazetas G. and Dobry R. (1984), Basu D. et al. (2009)); ii) Winkler-

type (or p-y curves) methods, which, in their more refined versions, 

can also account for nonlinear soil behaviour in the vicinity of the pile 

shaft (e.g., Nogami T. et al. (1992), Tahghighi H. and Konagai K. 

(2007), Allotey N. and El Naggar M. H. (2008), Tombari A. et al. 

(2017), Carbonari S. et al. (2016)); iii) finite and boundary elements 

and finite difference method in both frequency domain (e.g., Lysmer 

J. et al. (1975), Padrón L.A. et al. (2007), Dezi F. et al. (2009), Dezi 

F. et al. (2016)) or time domain to account for soil non linearity (e.g., 

Wu G. and Finn W. (1997), Wakai A. et al. (1999), Bentley K. J. et 

al. (2000)). In addition, when soil-structure interaction analyses are 

not required and only kinematic interaction effects on piles have to be 

computed, simplified approaches available in the literature can be 

used (e.g., Dobry R. and O’Rourke M. J. (1983), Nikolaou A. S. et al. 

(2001), Dente G. (2005), Dezi F. et al. (2009), Dezi F. et al (2010), 

Dezi F. and Poulos H. (2017)). 

The goal of this paper is to present a general overview of the 

analytical and numerical procedures developed by the authors for the 

dynamic analysis of soil-pile foundation systems subjected to the 

propagation of seismic waves in the soil. Both single piles and pile 

groups with general layouts (including also inclined piles) embedded 

in homogeneous as well as in inhomogeneous soil profiles are 

addressed. In the first section, an analytical approach based on the 

beam on dynamic Winkler foundation approach for the dynamic 

analysis of inclined and vertical single piles is presented; the pile is 

modelled as a Euler-Bernoulli beam and the soil-pile interaction is 

captured starting from local soil-pile impedances available in the 

literature. The coupled flexural and axial behaviour of the pile is 

solved analytically exploiting exponential matrices. In the second 

section, the dynamics of pile groups subjected to the propagation of 

seismic waves is formulated and the solution achieved through the 

finite element approach. Besides numerical models, simplified 

approaches based on static equivalent methods and simplified 

formulas are also presented in both sections (i.e. for single piles and 

pile groups) to estimate the maximum kinematic effects on piles. The 

procedures presented herein may be used in practice or in research to 

obtain realistic estimation of the dynamic impedances, the foundation 

input motion and stress resultants along piles. 

 

2. SINGLE PILES 

2.1 Analytical approach 

In this section an analytical approach for the kinematic interaction 

analysis of inclined single piles, based on the Beam on Dynamic 

Winkler Foundation approach is addressed, and an analytical solution 

is derived. The pile is modelled as a Euler-Bernoulli beam having a 

generic inclination and the soil-pile interaction is captured by 

defining soil impedances according to expressions available in the 

literature for viscoelastic layers undergoing harmonic vibrations of a 

rigid disk. The coupled flexural and axial behaviour of the pile is 

described by a system of partial differential equations, with the 

relevant boundary conditions, that is solved analytically exploiting 

exponential matrices.  

The dynamic problem of the single pile of diameter d and length 

L embedded in a homogenous soil deposit and subjected to the free-

field seismic displacements is formulated in the frequency domain by 

assuming a linear behaviour for the pile and soil (Figure 1a). A Euler-

Bernoulli model is assumed for the pile that is constituted by a linear 

viscoelastic material, characterized by Young’s modulus Ep and 

material damping p, considered according to the correspondence 

principle (Makris N. (1997)).  
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Figure 1  (a) Pile section in the homogeneous stratum; (b) pile section subjected to interaction forces and (c) soil stratum subjected to 

propagating seismic waves and interaction forces 

 

During the motion, the pile interacts with the surrounding soil without 

developing gaps and resultants of the soil reactions r are assumed to 

be constituted by line forces distributed along the pile axis (Figure 

1b); by considering the soil stratum constituted by infinite horizontal 

independent layers with linear viscoelastic behaviour, the 

compatibility condition between the pile and soil displacements, due 

to both the free-field motion and the soil-pile interaction forces 

(Figure 1c), make it possible to express forces r as 

𝐫(ω ; 𝑧) = 𝕴(ω) {[
𝐮𝑓𝑓,ℎ(𝜔 ; 𝑧)

𝑢𝑓𝑓,𝑧(𝜔 ; 𝑧)
] − [

𝐮ℎ(ω ; 𝑧)

𝑢𝑧(ω ; 𝑧)
]} (1)

 (1) 

where  is the circular frequency, uff,h and uff,z are the grouped 

horizontal and vertical components, respectively, of the free-field 

motion and 𝕴 is the 3x3 impedance matrix of the unbounded soil 

layers. Furthermore, uh and uz are the grouped horizontal and vertical 

components of the pile axis displacements at depth z, expressed with 

respect to a global reference system (Figure 1a). 

Matrix 𝕴  can be populated considering results of studies by 

Dobry et al. (1982), Makris N. and Gazetas G. (1993) and Gazetas G. 

and Dobry R. (1984); its components represent forces necessary to 

induce unitary harmonic vibrations of a rigid disk at depth z. The 

equilibrium condition of the pile may be expressed by the Lagrange-

D’Alembert principle that, suitably integrated by parts, furnishes the 

following local balance conditions, expressed with respect to the pile 

local reference system  

 

𝐸𝑝
∗𝐉𝐮𝑡

′′′′ + ω2ρ𝑝𝐉𝐮𝑡
′′ − ω2ρ𝑝𝐴𝐮𝑡 + 𝑐𝑧ζ ∐ (𝐑𝕴𝑹𝑻)𝐮𝑡

1,2
1,2 + 𝑐𝑧ζ ∐ (𝐑𝕴𝐑𝑻)3

1,2 𝑢ζ = 𝑐𝑧ζ ∐ (𝐑𝕴)𝐮𝑓𝑓,ℎ
1,2
1,2 + 𝑐𝑧ζ ∐ (𝐑𝕴)3

1,2 𝑢𝑓𝑓,𝑧

−𝐸𝑝
∗𝐴𝐮𝑡

′′ − ω2ρ𝑝𝐴𝑢ζ + 𝑐𝑧ζ ∐ (𝐑𝕴𝑹𝑻)𝐮𝑡
1,2
3 + 𝑐𝑧ζ ∐ (𝐑𝕴𝐑𝑻)3

3 𝑢ζ = 𝑐𝑧ζ ∐ (𝐑𝕴)𝐮𝑓𝑓,ℎ
1,2
3 + 𝑐𝑧ζ ∐ (𝐑𝕴)3

3 𝑢𝑓𝑓,𝑧

  (2) 

    

with the relevant boundary conditions 

 

(𝐸𝑝
∗𝐴𝑢ζ

′ + 𝐹ζ)�̂�ζ|
0

= 0  ∀�̂�ζ (𝐸𝑝
∗𝐴𝑢ζ

′ − 𝐹ζ)�̂�ζ|
𝐿

= 0  ∀�̂�ζ

(𝐸𝑝
∗𝐉𝐮𝑡

′′′ + ω2ρ𝑝𝐉𝐮𝑡
′ − 𝐅𝑡) ∙ �̂�𝑡|

0
= 0  ∀�̂�𝑡 (𝐸𝑝

∗𝐉𝐮𝑡
′′′ + ω2ρ𝑝𝐉𝐮𝑡

′ + 𝐅𝑡) ∙ �̂�𝑡|
𝐿

= 0  ∀�̂�𝑡

(𝐸𝑝
∗𝐉𝐮𝑡

′′ + 𝐌𝑡) ∙ �̂�𝑡|
0

= 0  ∀�̂�𝑡
′ (𝐸𝑝

∗𝐉𝐮𝑡
′′ − 𝐌𝑡) ∙ �̂�𝑡|

𝐿
= 0  ∀�̂�𝑡

′

  (3) 

 

In Equations (2) and (3), J is the inertia matrix and A is the area 

of the pile cross section, respectively, while Ep
*=Ep(1+2ip) is the 

complex elastic modulus of the pile material (Makris N. (1997)); 

ut and u are the grouped horizontal and vertical pile displacement 

components expressed with respect to the pile local reference system 

whose longitudinal axis  has direction cosine cz (Figure 1a). 

Furthermore, ∐ ∎𝑙,𝑚
𝑖,𝑗  is an operator indicating segments of a generic 

matrix constituted by the subset of rows comprised between i and j 

and the subset of columns comprised between l and m, and R is the 

rotation matrix which allows that allows expressing the local 

displacements starting from the relevant global quantities. Finally, in 

Equation (3), Ft and F are the transverse and longitudinal forces, 

respectively, while Mt is the vector collecting transverse moments 

applied at the pile ends ( = 0 and  = L). 

Equations (2) is a system of ordinary differential equations with 

constant coefficients describing the coupled flexural-axial dynamic 

behaviour of the inclined pile. Unknowns are the complex valued 

function ut() and u() fulfilling Equations (3) that encompass both 

kinematic and static boundary conditions. Solution of system (2) is 

provided in Appendix I for the one-dimensional propagation of shear 

and pressure waves in the vertical direction. Displacements at the pile 

head represents the motion at the foundation level (i.e. the FIM) while 

the soil-pile complex impedance matrix 𝕴 can be obtained through 

the condensation of the soil-pile stiffness matrix on the pile head 

displacements. The latter, which represents forces necessary to induce 

unit-amplitude harmonic displacements at the pile head, is classically 

used in the framework of the sub-structure approach to define 

compliant restraints of superstructures in the inertial interaction 

analysis.  

Differently from classical numerical methods (e.g. finite element 

method and finite difference method), this approach allows 

expressing the problem solution analytically; in the case of 

homogeneous soil deposit the discretization of the pile axis is not 

needed to achieve an accurate numerical solution, although some 

numerical issues relevant to the computation of the exponential 

matrix may require the pile axis subdivision into segments of limited 

length Carbonari et al. (2016). In the case of layered soil deposits, the 

problem can be solved exploiting solution provided in Appendix I for 

the homogenous deposit; assuming uniform soil properties within 

each layer, a different solving system is assembled for each pile 

segment belonging to the homogenous layer and suitable boundary 

conditions are provided at the pile head, at the pile base and at the 

interface between layers, where the pile continuity (with both 

reference to kinematic and static issues) has to be imposed. A similar 

approach can be adopted for the computation of impedance functions. 

Alternatively, the finite element method can be exploited: the 

stiffness matrix is assembled considering contributions of the pile 

segments (provided in Appendix I) and external forces are obtained 

assembling those resulting at the ends of each segment, obtained from 

the system solution assuming homogeneous boundary conditions. 

With this approach, impedances of the soil-pile system descend 

directly from the condensation of the dynamic stiffness matrix on the 

pile head degree of freedom Carbonari et al. (2016). 

In the sequel few applications are presented to demonstrate the 

model potential in capturing the dynamic response of inclined piles 
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in terms of impedance functions, kinematic response factors and pile 

stress resultants, considering results obtained from a Boundary 

Element (BE) formulation available in literature. Further details and 

validation analyses can be found in (Tahghighi H. and Konagai K. 

(2007)). In detail, pile configurations adopted by Padrón L. A. et al. 

(2010) and Medina C. et al. (2014) are considered (Figure 2) for what 

concern impedance functions and kinematic response factors.           

Figure 2 shows a comparison between the impedance functions 

obtained with the proposed model and those available in Padrón L. A. 

et al. (2010); non-dimensional components of the impedance matrix 

(i.e. the translational ℑ𝑥 , vertical ℑ𝑧 , rotational ℑφ𝑦  and coupled 

roto-translational ℑx−φ𝑦 components) are plotted in the same frames 

as a function of the non-dimensional frequency 𝑎0 = ω𝑑 𝑉𝑠⁄  , being 

Vs the shear wave velocity of the soil. Furthermore, d is the pile 

diameter while Ep and Es are the pile and soil Young’s moduli, 

respectively. Concerning horizontal impedance in the x direction, it 

can be observed that real parts are reproduced well for both stiff 

(Ep/Es = 100) and soft (Ep/Es = 1000) soils while some inaccuracies 

characterise the imaginary parts; the latter are generally 

overestimated in the whole frequency range. Vertical impedances are 

well captured with only some slightly differences for the damping 

coefficients (10%). Rotational impedance around axis y (orthogonal 

to the plane of inclination) are well reproduced for vertical or slightly 

inclined piles while errors up to 25% appears for  = 30° and soft soil 

conditions. Finally, the roto-translational behaviour is affected by 

some slightly inaccuracies. As for displacements, the kinematic 

response of the soil-foundation systems subjected to vertically steady 

propagating shear waves in planes xz and yz (Figure 2), scaled to have 

unit displacement amplitude at the ground surface, is analysed. Figure 

2 shows the comparison between the non-dimensional kinematic 

response factors (i.e. the translational 𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧 , and rotational 𝐼φ𝑦 , 

𝐼φ𝑥  components) (Fan K. et al. (1991)) (curves with thick lines) 

evaluated and results available in (Medina C. et al. (2014)) (curves 

with thin lines). The overall trend of results reveals that the response 

obtained with the presented model is overestimated with respect to 

results of a BE approach; in particular, at high non-dimensional 

frequency the response is sensibly over-predicted in the case of stiff 

soils (Ep/Es = 100) with errors up to 100%.  

This is probably due to the adopted local soil-pile impedances, 

which are derived starting from the plain-strain condition and are not 

able to account for the effects induced by the propagation of waves in 

the upper soil sections, characterised by a minor confinement. 

Concerning kinematic stress resultants, results of some applications 

available in (Padrón L. A. et al. (2010)) are considered as 

benchmarks. Applications refer to 12 m long piles with different 

inclination ( = 0°, 10°, 20°, 30°) embedded in a homogeneous soil 

deposit characterised by shear wave velocities Vs of 250 and 110 m/s 

(Ep/Es = 100, 500). The pile Young’s modulus and density are Ep = 

30000 MPa and p = 2.5 t/m3, respectively. The seismic input at the 

ground surface is constituted by an artificial accelerogram with a peak 

ground acceleration ag = 0.375g. 
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Figure 2  Case studies and comparisons of impedances and kinematic response factors with results from literature 
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Figure 3 shows the envelopes of absolute values of shear forces 

and bending moments and the envelopes of axial forces arising along 

the pile because of the kinematic interaction. Benchmark shear forces 

are overall well reproduced, independently on the pile rake angle. 

However, with reference to Ep/Es = 100 significant differences are 

evident in proximity of the pile head and nearby the pile base. As for 

bending moments, benchmarks are well reproduced expect for the 

local inconsistencies in proximity of the pile head where bending 

moments resulting from the BE approach tend to reduce, probably as 

a consequence of the minor degree of confinement exerted by the 

superficial soil. Finally, envelopes of maximum and minimum axial 

forces along the pile obtained from the applications show 

discrepancies of about 25÷30% with respect to benchmarks for both 

soil conditions (Ep/Es = 100, 500), mainly concentrated in the lower 

half-length of the pile. Overall, the presented model provides a 

reliable prediction of kinematic stress resultants with only some 

minor inaccuracies at the pile head, where usually inertial effects, 

dominating the pile response, are considered for the pile design. 
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Figure 3  Envelops of stress resultants: comparisons with results from literature 

 
2.2 Simplified pseudo-static approach 

A simplified procedure for the evaluation of stress resultants in single 

piles subjected to earthquake soil displacements is presented in this 

section. The procedure allows obtaining not only the peak bending 

moment at the interface between soil layers with impedance contrast 

but also the complete distribution of the stress resultants along the 

pile. The evaluation of the effects induced in piles by the propagation 

of seismic waves in the soil is studied by means of a static equivalent 

procedure that can be easily implemented in commercial finite 

element computer codes for structural analysis or simple 

spreadsheets. A single pile embedded in a layered soil is considered. 

Under the simplifying assumption that the motion of the soil deposit 

due to the seismic excitation is not influenced by the presence of the 

foundation, the pile stress resultants due to kinematic interaction are 

evaluated by assuming the pile as an elastic beam resting on a Winkler 

foundation subjected to the earthquake soil displacements evaluated 

by means of a dynamic response spectrum analysis of the soil deposit. 

The free-field displacement profile developing in a generic soil 

deposit constituted by n homogeneous horizontal layers of thickness 

hj because of the seismic motion applied at the underlying rigid 

bedrock (Figure 4) can be evaluated considering the dynamics of a 

shear deformable column, assuming the soil to behave linearly and 

considering constant elastic modulus and density within each layer. 

By assuming a reference system frame {0; zj} for each layer 

(Figure 4) the equation of motion for the column is given by 

ρ𝑗�̈�𝑠(z𝑗 , 𝑡) − 𝐺𝑗𝑢𝑠
′′(z𝑗 , 𝑡) = −ρ𝑗�̈�𝑏(𝑡)     for  𝑗 = 1, … 𝑛 (4) 

with the relevant boundary and continuity conditions 

𝑢𝑠
′ (z1, 𝑡) = 0                                   for  𝑧1 =0

𝑢𝑠(z𝑗 , 𝑡) = 𝑢𝑠(z𝑗+1, 𝑡)                  for 𝑗 = 1, … 𝑛 − 1; 𝑧𝑗 = ℎ𝑗; 𝑧𝑗+1 = 0

𝐺𝑗𝑢𝑠
′ (z𝑗 , 𝑡) = 𝐺𝑗+1𝑢𝑠

′ (z𝑗+1, 𝑡)     for 𝑗 = 1, … 𝑛 − 1; 𝑧𝑗 = ℎ𝑗; 𝑧𝑗+1 = 0

𝑢𝑠(z𝑛 , 𝑡) = 0                                  for 𝑧𝑛 = ℎ𝑛 

  

(5) 

where Gj and j are the elastic modulus and density of the j-th soil 

layer, respectively, us(zj, t) denotes the horizontal relative soil 

displacement while ub(t) is the soil displacement at the bedrock level. 

By solving the associated eigenvalue problem, the soil displacement 

may be expressed by a linear combination of the r modes as 

𝑢𝑠(z𝑗 , 𝑡) = ∑ 𝑈𝑟(z𝑗)𝑞𝑟(𝑡)∞
𝑟=1      for  𝑗 = 1, … 𝑛 (6) 

 

Substituting Equation (6) into Equation (4), multiplying by Um (i.e. 

the contribution of the m-th mode), integrating over the length of the 

soil column and considering the orthogonality properties of the 

modes, yields 

 

�̈�𝑚(𝑡) + ω𝑚
2 𝑞𝑚(𝑡) = −Γ𝑚�̈�𝑏(𝑡)  (7) 

 

that, for classically damped system, transforms into 

 

�̈�𝑚(𝑡) + 2ξ𝑚ω𝑚�̇�𝑚(𝑡) + ω𝑚
2 𝑞𝑚(𝑡) = −Γ𝑚�̈�𝑏(𝑡)  (8) 

 

In Equations (7) and (8), m and m are the natural frequency and 

the modal participation factor of the m-th mode of vibration, 

respectively, while m is the relevant damping ratio. The latter 

represents the damping of the soil that is generally dependent on the 

strain level to which the ground is subjected. A constant value for the 

modal damping ratio for the m-th mode of the deposit should be 

determined to represent the material hysteretic damping of the whole 

system; thus, if energy dissipation occurs differently in each layer a 

weighted value of the damping ratio may be determined by empirical 

approaches (J.R.A. (2002)). The motion of the continuous deposit 

may be studied by considering an infinite number of Single Degree 

of Freedom (SDF) systems each one governed by Equation (8), which 

foresees the following solution 
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Figure 4  Horizontally layered soil profile overlying a rigid 

formation and pile subjected to the free-field soil displacements 

 

𝑞𝑚(𝑡) = Γ𝑚𝐷𝑚(𝑡) (9) 
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where Dm(t) is the response of the m-th SDF system. The peak soil 

displacement for the m-th vibration mode can be directly computed 

through the earthquake response spectrum by means of the expression 

 

𝑢𝑓𝑓,𝑚(𝑧𝑗) = Γ𝑚
𝑆𝑎(ω𝑚;ξ𝑚)

ω𝑚
2 𝑈𝑚(𝑧𝑗) (10) 

 

where uff,m(z) is the maximum free-field displacement and Sa(m, m) 

is the ordinate of the earthquake pseudo-acceleration response 

spectrum associated to the modal damping ratio m and corresponding 

to the vibration frequency m. Furthermore, Um is the m-th vibration 

mode. The procedure needs the solution of the eigenvalue problem 

associated to Equation (4), which can be easily solved separating 

variables z and t for the definition of the horizontal displacement 

us(zj, t) as follows: 

 

𝑢𝑠(𝑧𝑗; 𝑡) =𝑈(𝑧𝑗)𝑒𝑖ω𝑡 (11) 

 

where U(zj) is the modal displacement function and  is the circular 

natural frequency. The general solution of the problem assumes the 

form 

 

𝑈(𝑧𝑗) = 𝐴𝑗𝑐𝑜𝑠 (
ω

𝑉𝑠,𝑗
𝑧𝑗) +𝐵𝑗𝑠𝑖𝑛 (

ω

𝑉𝑠,𝑗
𝑧𝑗) (12) 

 

where Vsj is the shear wave velocity of the j-th soil layer and Aj and 

Bj are the integration constants depending on the conditions at the 

boundaries of each layer. Considering boundary conditions (5), a 

system of 2n homogeneous equations in the constants Aj and Bj can 

be obtained and natural frequencies of the system can finally be 

computed imposing determinant of the coefficient matrix of above 

system equal to zero. 

The pile, which is assumed to be a Euler-Bernoulli beam with 

constant flexural rigidity EJ resting on a Winkler-type medium 

embedded into p soil layers (1 ≤ p ≤ n), is subjected to earthquake soil 

displacements (10) (Figure 4). The equilibrium condition of a generic 

pile element subjected to the soil displacement profile associated to 

the contribution of the m-th mode of vibration may be written in the 

form 

 

𝐸𝐽𝑢𝑚
′′′′(𝑧𝑗) + 𝑘𝑗[𝑢𝑚(𝑧𝑗) − 𝑢𝑓𝑓,𝑚(𝑧𝑗)] = 0 (13) 

 

where um is the pile displacement and kj is the Winkler coefficient of 

the j-th layer that can be derived from the literature (e.g., Makris N. 

and Gazetas G. (1992)). Solution of Equation (13) assumes the form 

𝑢𝑚(𝑧𝑗) = 𝑒−α𝑗z𝑗(𝐶1,𝑗𝑐𝑜𝑠α𝑗z𝑗 + 𝐶2,𝑗𝑠𝑖𝑛α𝑗z𝑗) + 𝑒α𝑗z𝑗(𝐶3,𝑗𝑐𝑜𝑠α𝑗z𝑗 +

𝐶4,𝑗𝑠𝑖𝑛α𝑗z𝑗) +
4𝑆𝑚α𝑗

4

β𝑗
4+4α𝑗

4 (𝐴𝑗𝑐𝑜𝑠β𝑗z𝑗 + 𝐵𝑗𝑠𝑖𝑛β𝑗z𝑗) (14) 

where 

 

α𝑗
4 = 𝑘𝑗 4𝐸𝐽⁄

β𝑗 = ω𝑚 𝑉𝑠,𝑗⁄

𝑆𝑚 = Γ𝑚
𝑆𝑎(ω𝑚;ξ𝑚)

ω𝑚
2

 (15) 

 

By substituting boundary and continuity conditions at the pile ends 

and at the interface between the soil layers, a system of 4p 

homogeneous equations in the constants C1,j, C2,j, C3,j, C4,j may be 

obtained. The solution of the system allows calculating the 

displacements of the pile sections and consequently the stress 

resultants at each depth of interest for each mode of the free-field 

motion. If the pile is embedded into the bedrock, supports of springs 

of the pile sections below the bedrock are subjected to a null 

prescribed motion. Since the response to earthquake is primarily due 

to the lower modes of vibration only the first few natural frequencies 

and modal shapes must be evaluated to compute the kinematic 

response with a good level of precision. When higher modes have to 

be considered the effects need to be combined with the modal 

Complete Quadratic Combination (CQC); details can be found in 

(Dezi F. et al. (2010)). 

An application is presented below comparing results of the above 

simplified approach with those obtained by a dynamic soil-pile 

kinematic interaction analysis. Single piles of two diameters 

embedded into the three-layered soil profile reported in Figure 5a are 

considered. The model proposed by Dezi et al. (2009) is used for the 

evaluation of the kinematic interaction of the selected case studies 

considering the soil-pile interaction and the radiation damping. The 

concrete piles have Young modulus Ep = 3107 kPa and density 

p = 2.5 Mg/m³. Piles are 24 m long and have a circular cross section 

of diameter d of 600 and 800 mm. A constant soil Poisson’s ratio 

 = 0.4 and a constant material hysteretic damping ξ = 10%, 

compatible with the strain level in the soil, are considered. The 

bedrock is characterized by a shear wave velocity Vsb = 800 m/s and 

a density b = 2.5 Mg/m³. The seismic action is defined at the bedrock 

level and consists of an artificial accelerogram (Figure 5a). The first 

three modes have been considered for an overall effective modal mass 

equal to the 86% of the total mass. Contributions of each mode to the 

pile response are independently evaluated and then combined with the 

CQC. Figure 5b shows the soil displacement profile relevant to the 

first three vibration modes of the soil deposit (Equation (10)) while 

Figure 5c depicts the relevant deformed shapes of piles (Equation 

(14)).  

Figure 6 shows comparisons between results obtained with the 

proposed simplified method and that resulting from the dynamic 

analyses. The effects induced by the contribution of only the first 

mode and the modal CQC of the effects produced by the first two and 

three modes are presented. As expected, by increasing the number of 

modes contributing to the response stress resultants obtained from the 

dynamic analyses are reproduced closer. Further details of the 

procedure efficiency can be found in Dezi et al. (2009). 

 

2.3 Empirical formulas for estimating kinematic bending  

 moments in vertical single piles 

A comprehensive parametric study has been carried out to analyze the 

effects of kinematic interactions in vertical single piles having 

restrained rotational degree of freedom at the head. The objective of 

this study is to examine the influence of the main parameters 

governing the dynamic response of piles (e.g the pile diameter, the 

properties of the layered soil and the bedrock location), and to 

determine simplified formulas for the estimation of pile kinematic 

bending moments.  

The analysis scenario covers a wide range of possible 

homogeneous deposits overlying or not a stiff bedrock, to also 

investigate effects of the layer interface on pile bending moments for 

highly contrasting soil properties and various pile diameters. Layouts 

of the investigated piles are presented in Figure 7a, b while Figure 7c 

reports the adopted parameters. For the homogenous soil deposit, a 

pile length of 24 m is considered while for soil layers overlying the 

bedrock, the pile length is assumed to be 48 m in order to assure a 

suitable embedment of the pile into the bedrock for the 42 m thick 

soil layer; preliminary analyses are performed to assure that the pile 

length does not affect the maximum kinematic bending moments 

attained at the layer-bedrock interface in the case of smaller 

thicknesses of the superficial layer. Piles are considered to have a 

linear elastic behaviour, with a Young’s modulus Ep = 30000 N/mm² 

and a mass density ρp = 2.5 Mg/m³.  

Soil-pile interaction effects are evaluated by means of an analysis 

procedure consisting of two steps: firstly, the free-field motion is 

obtained in absence of piles; secondly, the free-field motion is applied 

to the soil-pile system to perform the kinematic soil-pile interaction 

analysis. In the first step the seismic input motion along the pile is 

obtained by means of a 1D local site response analysis where the 
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seismic action at the outcropping rock is linearly deconvoluted at the 

bedrock level and then propagated through the soil profile (Kramer S. 

L. (1996)). In the second step the kinematic soil-pile interaction 

problem is investigated adopting through the numerical procedures 

developed by the authors (Carbonari S. et al. (2016), and Dezi et al. 

(2009)). The seismic action  at the outcropping bedrock is represented 

by an artificial accelerogram matching the EC8 Type 1 elastic 

response spectrum for ground type A (EN 1998-1 (2004) Eurocode 8) 

and Peak Ground Acceleration (PGA) 0.25g. Figure 8 shows the 

response spectra obtained from the deconvolution analyses for all the 

investigated soil profiles; each graph refers to a specific soil type and 

collects results obtained for different thickness h of the deformable 

layer. Spectral de-amplifications are overall evident in 

correspondence of the fundamental periods of the soil deposits: soil 

profiles with Vs = 400 m/s are particularly responsive to the 

deconvolution process in the range 0÷0.5 s where the periods of the 

soil deposits fall and where the spectrum of the seismic input action 

achieves the maximum values. 

Figure 9 shows an example of the results obtained from the 

applications in terms of kinematic pile bending moments. Different 

curves in each frame refer to soil-foundation layouts (for end-bearing 

piles) characterized by different thicknesses of the superficial layer. 

For the sake of simplicity only results relevant to pile diameters d = 

0.4 m and d = 1.2 m are reported, while the complete set of data are 

addressed in Dezi F. et al. (2009). It can be observed that bending 

moments present peaks in correspondence of the deposit-bedrock 

interface and overall peaks values tend to increase by increasing the 

bedrock depth. Furthermore, in the case of soft soils, bending 

moments at the pile head tend to increase with respect to those 

achieved within the pile shaft.  
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Figure 5  (a) Accelerogram and response spectrum at the bedrock level, (b) free-field maximum displacement profile, (c) pile displacements 

when subjected to the free-field motion 
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Figure 8  Response spectra at the bedrock level for all the investigated soil profiles 

 

Starting from data from the complete set of analyses, empirical 

formulas to predict the kinematic bending moments at the pile head, 

as well as at the deposit-bedrock interface, have been defined and 

calibrated. To this purpose, results are normalized with respect to the 

values obtained for the stiffer soil (Vs = 400 m/s), hereafter called 

M400. With reference to the pile head, analyses of data revealed that 

(i) the M400 values are only slightly dependent on h whereas they are 

very sensitive to the pile diameter; (ii) for each deposit depth h, trends 

of normalised bending moments with respect to Vs are almost 

superimposed for the different pile diameters and are characterised by 

an exponential law; (iii) only for soft soils (Vs = 100-200 m/s) and 

low-depth deposits (h = 6 m) a dependency on the pile diameter is 

evident. With reference to bending moment at the deposit-bedrock 

interface, analysis of data reveals that values of M400 are more 

sensitive to the deposit thickness whereas the above considerations 

hold for the normalised bending moments. 

These remarks suggest that an empirical expression of the 

bending moments, both at the head and at deposit-bedrock interface, 

may have the following form: 

𝑀(𝑉𝑠; 𝑑; ℎ; PGA) ≅
PGA

0.25𝑔
𝑀400(𝑑; ℎ)𝑒𝑓(𝑑;ℎ)(𝑉𝑠−400) (16) 

where the ratio PGA/0.25g accounts for different seismic intensities 

owing to the problem linearity. Formulas for evaluating bending 

moments M400(d, h) and the function f(d, h), defining the dependency 

of the exponential regression on d and h, are calibrated with a 

nonlinear least square procedure by fitting data obtained in the 

parametric analysis. 

With reference to the maximum bending moment at the deposit-

bedrock interface, the following polynomial approximations hold: 

𝑀400(𝑑; ℎ) = (55.5𝑑3 + 414𝑑2 − 189𝑑 + 23.4)(−0.001ℎ2 +
0.0718ℎ − 0.2) (17) 

𝑓(𝑑; ℎ) = (−0.05𝑑 + 0.864)(0.000122ℎ − 0.01103) (18) 

With reference to the maximum bending moment at the pile head, the 

following expressions are obtained: 

𝑀400(𝑑; ℎ) = (85𝑑3 − 85.75𝑑2 + 30.93𝑑 − 3.37)(0.000133ℎ2 −
0.00042ℎ + 1.091) (19) 

𝑓(𝑑; ℎ) = (−0.07𝑑 + 1.002)(0.000067ℎ − 0.0113) (20) 

Equation (16) allows predicting bending moments at the critical 

sections of an end-bearing pile embedded in a generic homogeneous 

soil starting from the PGA relevant to soil class A as defined in EC8 

(EN 1998-1 (2004) Eurocode 8), the shear wave velocity of the 

deposit, the pile diameter and the bedrock depth. It is worth noting 

that Equation (16) accounts for both the local site response and the 

soil-pile kinematic interaction. With reference to the pile head, 

Figure 10a compares results obtained through Equation (16) with 

those of the dynamic analysis: errors are generally acceptable for 

design purposes. Less precision is obtained for bending moments at 

the head of piles with very small diameter.  

Figure 10b refers to the deposit-bedrock interface and adds results 

obtained by applying the formula of Nikolaou et al. (2001) (white 

dots), which is only able to predict kinematic bending moments at the 

deposit-bedrock interface. As can be noticed, the proposed formula 

gives better results. 
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Figure 9  Piles kinematic bending moments 
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Figure 10  Bending moments from the design formula and the dynamic analyses: (a) pile head; (b) deposit-bedrock interface 

 

 

3. PILE GROUPS 

3.1 Analytical approach 

In this section, the numerical model developed by Dezi et al. (2016) 

for the dynamic interaction analysis of inclined pile groups is briefly 

addressed. Piles are modelled with linear beam finite elements and 

the soil is assumed to consist of a set of independent horizontal layers 

of infinite extent, making use of the Winkler’s assumption. The pile-

soil-pile interaction and the radiation damping are formulated in the 

frequency domain within each layer by means of elastodynamic 

Green’s functions available in the literature. For the model validation 

and some comparisons, the simplified elastodynamic solutions 

provided by Dobry et al. (1982) and by Roesset J.M. and Angelides 

D. (1980), as well as the damping model of Gazetas G. and Dobry R. 

(1984), are herein used. The presence of a rigid cap is accounted for 

by constraining the displacements of the pile heads. The model allows 

evaluating the kinematic response of pile groups with generic number 

of piles, generic layout and piles inclination; in particular the motion 

of the piles cap and the stress resultants in piles due to the passage of 

harmonic shear or seismic waves in the soil may be computed; in the 

latter case, the incoming free field may be derived from local one 

dimensional or spatial analysis depending on the complexity of the 

site, also accounting for the nonlinear soil behaviour. Furthermore, 

the condensation of the problem on the rigid cap degrees of freedom 

allows obtaining impedances of the pile group; these may be used, in 

conjunction with the pile cap motion, to perform consistent soil-

structure interaction analyses according to the substructure approach. 

A group of n circular piles with same diameter but with different rake 

angles is considered and a global reference system frame {0; x1, x2; z} 

is defined as in Figure 11a. The orientation of the generic p-th pile, 

that is assumed to be a Euler-Bernoulli beam, is definite by the unit 

vector ap of the pile longitudinal axis p, from which an orthonormal 

local reference system frame can be constructed for each pile. For the 

sake of simplicity, the projection of the pile length on the vertical axis 

z is equal to L, for all the piles. The pile group equilibrium condition 

may be expressed in weak form by the Lagrange-D’Alembert 

principle that, in the frequency domain, provides the following 

equation: 

 

∫ 𝐁𝐊𝓓𝐑𝐮(ω; 𝑧) ∙ 𝓓𝐑�̂�(𝑧)𝑑𝑧
𝐿

0
− ∫ 𝐫(ω; 𝑧) ∙ �̂�(𝑧)𝑑𝑧

𝐿

0
− ω2 ∫ 𝐁𝐌𝐮(ω; 𝑧) ∙ �̂�(𝑧)𝑑𝑧

𝐿

0
     ∀�̂� ≠ 𝟎 (21) 

 

where B is the matrix containing the Jacobians of the coordinate 

transformations (from the local to the global reference frame), K is 

the stiffness matrix of the pile group, u is the vector collecting 

displacements of all piles at depth z, R is the overall rotation matrix 

obtained by assembling sub-matrixes Rp of each pile (providing local 

pile displacements from global ones), and 𝓓  is a formal operator 

providing piles curvatures and normal strains from displacements. 

Furthermore, M is the mass matrix of the pile group from which 

inertia forces arising during the motion depend, and r is the vector 

collecting the interaction lateral forces rp developing in each pile of 

the group (Figure 11b).  

The Winkler’s hypothesis, in conjunction with the compatibility  

condition between the pile and soil displacements, due to both the 

free-filed motion uff and the soil-pile interaction forces (Figure 11c), 

make it possible to express forces r as  

 

𝐫(ω; 𝑧) = −�̃�−1(ω; 𝑧)[𝐮(ω; 𝑧) − 𝐮𝑓𝑓(ω; 𝑧)] (22) 

 

where �̃� is the complex valued matrix obtained by assembling sub-

matrixes 𝐃𝑝𝑞(ω; 𝑧), expressing the soil displacements at the location 

of the p-th pile due to a time-harmonic unit point load acting at the 

location of the q-th pile. Taking Equation (22) into account, the global 

balance condition in weak form (21) becomes 

 

∫ 𝐁𝐊𝓓𝐑𝐮(ω; 𝑧) ∙ 𝓓𝐑�̂�(𝑧)𝑑𝑧
𝐿

0
− ∫ �̃�−1𝐮(ω; 𝑧) ∙ �̂�(𝑧)𝑑𝑧

𝐿

0
− ω2 ∫ 𝐁𝐌𝐮(ω; 𝑧) ∙ �̂�(𝑧)𝑑𝑧

𝐿

0
= ∫ �̃�−1𝐮𝑓𝑓(ω; 𝑧) ∙ �̂�(𝑧)𝑑𝑧

𝐿

0
    ∀�̂� ≠ 𝟎 (23) 

 

Differently from the single pile, for which the strong form of the 

balance conditions is derived, the finite element method in the 

displacement based approach is used herein to solve the problem 

numerically, starting from the weak balance condition (23). Piles are 

divided into E finite elements of length Le and the local displacements 

within the elements are expressed by interpolating those at the end 

nodes, according to standard analytical procedures. The pile cap is 

imposed introducing a rigid constraint for pile head nodes and 

defining a master node dF with 6 generalized displacement 

components. By collecting displacements of the embedded pile nodes 

into vector dE, the following linear system can be obtained 

[
𝐙𝐹𝐹 𝐙𝐹𝐸

𝐙𝐸𝐹 𝐙𝐸𝐸
] [

𝐝𝐹

𝐝𝐸
] = [

𝐟𝐹

𝐟𝐸
] (24) 

from which the complex-valued foundation impedance matrix 

𝕴(ω) = (𝐙𝐹𝐹 − 𝐙𝐹𝐸𝐙𝐸𝐸
−1𝐙𝐸𝐹) (25) 

and the Foundation Input Motion (FIM)  

𝐝𝐹(ω) = 𝕴−1(𝐙𝐹𝐹 − 𝐙𝐹𝐸𝐙𝐸𝐸
−1𝐙𝐸𝐹) (26) 

can be derived through simple manipulations.  
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The FIM represents the displacements of the master node because 

of the free-field motion filtered by the pile group. The model has been 

widely tested, in terms of convergence, and validated comparing 

results with those obtained from refined 3D finite element model of 

soil-foundation systems characterized by inclined piles Dezi F. et al. 

(2016). Both the foundation impedances, the kinematic response and 

the pile stress resultants have been considered in the validation 

process; for the sake of brevity, only few results are reported below 

for what concern impedances, referring to a homogeneous soil deposit 

and two piles configurations. Figure 12 shows the pile group layouts 

and compares the translational impedance of the case studies obtained 

from the presented model with those achieved through a refined 3D 

solid model. Impedances are expressed in the form ℑ𝑖 = 𝑘𝑖 + 𝑖𝑎0𝑐𝑖  

where 𝑎0 = ω𝑑 𝑉𝑠⁄ , where d is the pile diameter and Vs is the shear 

wave velocity of the soil, and stiffness and damping coefficients are 

plotted separately; the proposed model, characterized by a very low 

computational effort compared to that of the 3D model, is able to 

predict the dynamic response of the investigated case studies with a 

good level of accuracy.  

 

3.2 Empirical formulas for estimating kinematic bending  

 moments in vertical pile groups 

The model presented in the previous section is used to perform a 

comprehensive parametric investigation to analyze effects of 

kinematic interactions in floating and end-bearing pile groups. Like 

for the single pile, the objective of this study is to examine the 

influence of the main parameters governing the dynamic response of 

pile groups, and to determine simplified formulas for the estimation 

of pile kinematic bending moments. To this purpose a sub-set of the 

soil profiles previously adopted for the single pile are considered 

(Figure 7), limited by the assumption of a pile diameter d = 1 m. The 

pile Young’s modulus and mass density are assumed to be 

Ep = 30000 N/mm² and ρp = 2.5 Mg/m³, respectively. 2x2, 3x3, 4x4 

and 5x5 pile groups characterized by three different pile spacing s are 

considered (s/d = 2, 3, 5) for a total number of 39 analyses, in the case 

of floating piles, and 117 analyses in the case of end-bearing piles. 

The analysis scenarios cover a wide range of possible two-layered soil 

profiles and make it possible to investigate the effects of the layer 

interface on pile bending moments for highly contrasting soil 

properties. 
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Figure 11  (a): Pile group with inclined piles; (b) foundation subjected to interaction forces and (c) soil subjected to propagating seismic 

waves and interaction forces 
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Figure 12  3D refined finite element model and lateral dynamic impedances for inclined pile foundations in homogeneous soil 
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The seismic action, applied in one of the two principal directions 

of the pile groups, is constituted by the single artificial accelerogram 

adopted for the parametric investigation of single piles, so that results 

presented in Figure 8 hold. 

With reference to end-bearing piles, post-processing of data from 

the applications reveals that the group effect on the maximum 

bending moments is evident at the pile cross sections located at the 

bedrock interface; with respect to results of the single fixed-head pile, 

bending moment in the corner pile generally reduces by increasing 

the number of piles constituting the group. At the piles head the group 

effect is less significant and reductions of the bending moments, with 

respect to the single pile, are evident only in the case of a surface 

bedrock location (h = 6 m). For floating piles, the kinematic bending 

moment arising in the corner piles of the groups is very similar to 

those of the single pile within the whole pile length and slight 

reductions are visible only in the case of soft soil (Vs = 100 m/s). 

Furthermore, by reducing the s/d ratio a decrease of the maximum 

bending moments at both the pile head and at the bedrock interface 

can be observed. Further details on the data post-processing are 

available in Dezi F. and Poulos H. (2017). 
With the aim of proposing simplified empirical formulas to 

predict the maximum kinematic bending moment in the piles of the 

group (both at the pile head and at the deposit-bedrock interface), a 

representative set of piles is selected for each group and the relevant 

bending moments are normalized with respect to the one resulting 

from the single pile analysis.  

As an example, Figure 13 shows the normalized kinematic 

bending moments at the pile head and at the bedrock interface for 

deposits with shear wave velocity Vs = 200 m/s and for s/d = 3. Dots 

are used to plot results of each pile while lines are adopted to connect 

the maximum values attained for each group, which has a practical 

interest from the design point of view. By increasing the number of 

piles constituting the group, results are generally more scattered. 

External piles, and particularly corner ones, are characterized by 

greater bending moments while inner piles are protected. With 

reference to the maximum values, mostly attained at corner piles, 

specific trends of the normalized bending moments are clearly 

evident at both the pile head and at the deposit-bedrock interface: with 

respect to single pile, increments of the kinematic bending moments 

at the head are observed (considering the most stressed pile of the 

group) by increasing the number of piles constituting the group while 

at the deposit-bedrock interface bending moments in the most 

stressed pile of the group reduces by increasing the number of piles. 

Furthermore, very similar curves are obtained for different shear 

wave velocities and bedrock locations.  

By comparing the maximum normalized bending moments from 

all the analyses, it can be observed that, with reference to a specific 

s/d ratio, curves obtained for different shear wave velocities are very 

similar (for both the pile head and the deposit-bedrock interface), 

excepting those of deposits characterized by a surface bedrock (h = 6) 

for which interactions within moments arising at the head and at the 

bedrock interface are expected. Furthermore, moderate differences 

are observed by changing the s/d ratios; clearly, greater group effects 

are obtained for s/d = 2. Furthermore, the dependency of the 

normalized maximum bending moments on the bedrock location is 

slightly evident for deposits with h = 12 and 18 m. 

Previous remarks suggest that an empirical expression of the 

bending moments, both at the head and at deposit-bedrock interface, 

may have the following form: 

 

𝑀𝑚𝑎𝑥
𝐺 = 𝑀𝑠α (𝑛;

𝑠

𝑑
) (27) 

 

where 𝑀𝑚𝑎𝑥
𝐺  is the maximum bending moment arising in the piles of 

the group at the head or at the deposit-bedrock interface, 𝑀𝑠 is the 

relevant single pile bending moment,  is the group factor depending 

on the number of piles and the pile spacing, and n is the number of 

pile constituting the square group. It is worth noting that Equation 

(27) is independent on the seismic intensity, consistently with the 

assumption of linear soil and pile behavior. For high levels of seismic 

shakings the soil nonlinear behaviour, as well as the possible 

formation of soil-pile gaps, have to be taken into account. However, 

such phenomena are expected to affect both the group and the single 

pile response, mitigating effects on the normalized bending moments.  
The following expressions are proposed for the group factor  

 

α (𝑛;
𝑠

𝑑
) = 𝑎 (

𝑠

𝑑
) 𝑙𝑜𝑔(𝑛) + 𝑏 (

𝑠

𝑑
) (28) 

 

in which coefficients a and b assume different expressions depending 

on the considered pile cross-sections. For the pile head 

 

𝑎 = 0.16 (
𝑠

𝑑
)

−0.28
 𝑏 = 0.58 (

𝑠

𝑑
)

0.23
 (29) 

 

while for the deposit-bedrock interface 

 

𝑎 = −0.12 (
𝑠

𝑑
)

−0.30
 𝑏 = 0.88 (

𝑠

𝑑
)

0.04
 (30) 

 

Figure 14 shows comparisons between the theoretical values of 

factor  and values resulting from Equation (27); the grey regions are 

those in which the application of the proposed formula will lead to 

underestimate the maximum bending moment in the piles of the group 

(assuming the results obtained from the numerical procedure as 

benchmarks). The errors obtained are generally acceptable for design 

purposes (about 10% in the grey region). 

The accuracy of Equation (27) is evaluated comparing results 

with those obtained from the analytical procedure presented in the 

previous section (benchmarks). All cases of the parametric 

investigation are taken into account and the maximum kinematic 

bending moments in single piles are evaluated adopting the simplified 

formulas for single piles and the static equivalent method discussed 

in the previous sections; in the latter case, only the contribution of the 

first vibration mode is considered. Figure 15a, b compares results 

from the dynamic applications with those of the simplified formulas: 

errors are generally acceptable for design purposes and largely 

compensated by the simplicity of application of the empirical 

proposed formulas. 
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Figure 13  End-bearing piles: normalised bending moment at the pile head and at the bedrock interface for Vs = 200 m/s and s/d = 3 
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Figure 14  Comparisons of exact values of factor  and values from Equation (27): (a) pile head; (b) deposit-bedrock interface 
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Figure 15  Comparisons of bending moments from dynamic analyses and from Equation (27): (a) 𝑀𝑠 estimated with empirical formulas;  

(b) 𝑀𝑠 estimated with the pseudo-static approach 

 

4. CONCLUSIONS 

A review of some analytical and numerical procedures for the 

dynamic analysis of soil-pile foundation systems in the framework of 

the sub-structure approach has been presented. Single piles and pile 

groups with a generic inclination and layout are considered and the 

relevant dynamics is formulated in the frequency domain through 

both analytical and numerical approaches. In addition, simplified 

methods for the evaluation of the kinematic interaction effects on 

piles are shown. The reliability of the presented tools in capturing the 

dynamic stiffness and the overall kinematic response of pile 

foundations is briefly investigated comparing results of the presented 

approaches with those available in the literature or achieved through 

refined finite element models.  

From an engineering point of view, the analytical and numerical 

methods herein presented are recommended for performing soil-

structure interaction analyses as they assure an accuracy similar to 

that obtained from computationally demanding 3D solid soil-

foundation finite element models. On the other hand, the simplified 

approaches are suitable for computing kinematic interaction effects 

when an overall soil-structure interaction analysis is not required. 

Anyhow, kinematic effects on piles must be combined with those 

resulting from inertial interaction analyses, suitably accounting for 

their possible non-synchronous occurrence during earthquakes. 

 

APPENDIX 1 

The analytical solution of system (2) (Section 2.1) is obtained 

introducing vector 

𝐱(ω ; ζ) = [𝐮𝑡 𝑢ζ 𝐮𝑡
′ 𝑢ζ

′ 𝐮𝑡
′′ 𝐮𝑡

′′′]
𝑇

 (A1) 

which collects the unknown functions and its higher-order 

derivatives. Taking Equation (A1) into account, system (2) and the 

relevant boundary conditions (3) can be rewritten in the canonical 

form 

 

𝐱′ − 𝐖(ω)𝐱 = 𝐜(ω; ζ) (A2) 

 

[𝐃(ω)𝐱 + 𝐏(ω)] ∙ ∐ �̂�1
1,5 |

0
= 0  ∀�̂�

[𝐃(ω)𝐱 − 𝐏(ω)] ∙ ∐ �̂�1
1,5 |

𝐿
= 0  ∀�̂�

 (A3) 

 

where W and D are complex valued matrices, depending on the 

stiffness of the pile cross section and on the impedance of the soil 

layers, while c and P are vectors depending on distributed soil-pile 

reaction forces and loads concentrated at the pile ends, respectively. 

The general solution of system (A2) is obtained by summing the 

complementary solution (solution of the associate homogeneous 

equation) to a particular solution depending on the external loads. It 

can be demonstrated that such a solution may be written as 

 

𝐱 = 𝐄(ω; ζ)𝐠(ω) + 𝐄(ω; ζ) ∫ 𝐄−1(ω; ζ)𝐜 𝑑ζ (A4) 

 

in which E is the exponential matrix of B and g is the vector of the 

integration constants that has to be calculated from the boundary 

conditions (A3). Equation (A2) is of general validity and the 

evaluation of the particular solution requires the expression of the free 

field motion to be known. The case of one-dimensional propagation 

of shear and pressure waves in the vertical direction is herein 

considered, which leads the following expression of vector c: 

 

𝐜 = 𝐐ℎ(ω)𝑒𝑖𝑘ℎ𝑐𝑧ζζ + 𝐓ℎ(ω)𝑒𝑖𝑘ℎ𝑐𝑧ζζ + 𝐐𝑧(ω)𝑒𝑖𝑘𝑧𝑐𝑧ζζ +

𝐓𝑧(ω)𝑒𝑖𝑘𝑧𝑐𝑧ζζ  (A5) 

 

where kh and kz are the complex wavenumbers associated to the 

propagation of shear and pressure waves, respectively, while Qh, Th, 

Qz and Tz are vectors of integration constants depending on the 

boundary conditions (i.e. at the ground surface and at the bedrock 

level) [8]. Considering Equation (A5), Equation (A4) yields 

 
𝐱 = 𝐄𝐠𝑓(ω) +�̃�ℎ + �̃�𝑧  (A6) 
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where 

�̃�ℎ = 𝐄 [(𝑖𝑘ℎ𝑐𝑧ζ𝐈 − 𝐖)
−1

𝐄−𝟏𝐐ℎ(ω)𝑒𝑖𝑘ℎ𝑐𝑧ζζ − (𝑖𝑘ℎ𝑐𝑧ζ𝐈 + 𝐖)
−1

𝐄−𝟏𝐓ℎ(ω)𝑒𝑖𝑘ℎ𝑐𝑧ζζ]

�̃�𝑧 = 𝐄 [(𝑖𝑘𝑧𝑐𝑧ζ𝐈 − 𝐖)
−1

𝐄−𝟏𝐐𝑧(ω)𝑒𝑖𝑘𝑧𝑐𝑧ζζ − (𝑖𝑘𝑧𝑐𝑧ζ𝐈 + 𝐖)
−1

𝐄−𝟏𝐓𝑧(ω)𝑒𝑖𝑘𝑧𝑐𝑧ζζ]
 (A7) 

 

are the particular solutions for shear and pressure waves propagating 

in the vertical direction, respectively, and gf is the vector of the 

integration constants that has to be calculated from the boundary 

conditions. Once the solution is determined, stress resultants in the 

pile can be determined. For the evaluation of the soil-foundation 

impedances, the following homogeneous problem with non-

homogeneous boundary conditions can be considered 

 

𝐱′ − 𝐖(ω)𝐱 = 𝟎  (A8) 

 

∐ 𝐱(ω; 0)1
1,5 = 𝐱0

∐ 𝐱(ω; 𝐿)1
1,5 = 𝐱𝐿

  (A9) 

 

which, according to Equation (A4), admits solution 

 
𝐱 = 𝐄𝐠𝑑(ω)  (A10) 

 

Substituting Equation (A10) into (A9) allows computing the vector 

of integration constants  

𝐠𝑑(ω) = 𝐆 [
𝐱0

𝐱𝐿
]  (A11) 

 

where 

 

𝐆 = [
∐ 𝐄(ω; 0)𝑎𝑙𝑙

1,5

∐ 𝐄(ω; L)𝑎𝑙𝑙
1,5

]  (A12) 

 

Finally, forces at the pile head can be computed through Equations 

(A3) 

 

[
𝓡0

𝓡𝐿
] = [

−𝐃𝐄(ω; 0)𝐆

𝐃𝐄(ω; 𝐿)𝐆
] [

𝐱0

𝐱𝐿
]  (A13) 

 

In Equation (A13) the stiffness matrix of the pile is evident, and 

impedances can be finally obtained through a condensation of the 

stiffness matrix on the pile head displacements. 

 

APPENDIX II 

The following symbols are used in this paper: 

 

Vectors and matrices 

B Jacobian matrix 

𝐜 Vectors of distributed forces 

𝐃 Complex valued matrix 

�̃� Soil deformability matrix 

d Piles nodal displacements 

E Exponential matrix 

Ft Concentrated forces 

𝐠 Vector of integration constants 

𝕴 Impedance matrix 

𝐉 Inertia matrix  

K Pile group stiffness matrix 

𝓚 Impedance matrix of unbounded soil 

Mt Concentrated moments 

𝐏 Vectors of concentrated loads 

𝐐ℎ, 𝐐𝑧 Vector of integration constants 

R Rotational matrix 

𝓡 Sub-vector of pile head forces 

r Soil-pile interaction forces 

𝐓ℎ, 𝐓𝑧 Vector of integration constants 

u Pile groups displacements 

�̂� Pile groups virtual displacements 

uff Free-fields motion 

uh Pile global displacements 

ut Pile local displacements 

�̂�𝑡 Pile local virtual displacements 

𝐖 Complex valued matrix 

𝐱 Vector of unknown functions 

�̂� Vector of virtual unknown functions 

�̃�ℎ, �̃�𝑧 Particular solutions 

Z Stiffness sub-matrix 

  

Operators 

𝓓 Operator providing curvatures and strains 

∐ ∎

𝑙,𝑚

𝑖,𝑗

 Operator extracting segments of a matrix 

  

Scalars 

A Area 

Aj, Bj Integration constants 

a Non-dimentional frequency 

ag Acceleration 

a, b Functions 

C1,j, C2,j, C3,j, C4,j Integration constants 

c Damping coefficient 

czζ Cosine director 

Dm Response of the SDF system 

d Pile diameter 

Ep, Es Young’s moduli 

Ep
* Complex pile Young’s modulus 

F Concentrated force 

Gs Soil elastic shear modulus 

h Layer thickness 

𝐼 Non-dimensional kinematic response factor 

Jp Inertia about a principal axis 

k Winkler coefficient  

L Pile length 

𝑀 Bending moment 

𝑀400 Bending moment for Vs = 400 m/s 

𝑀𝑚𝑎𝑥
𝐺  Pile group maximum bending moment 

𝑀𝑠 Single pile bending moment 

𝑞𝑟, 𝑞𝑚 Generalised displacements 

𝑆𝑎 Ordinate of the earthquake pseudo-

acceleration response spectrum 

s Spacing of piles 

U Modal displacement function 

𝑈𝑟, 𝑈𝑚 Modal shapes 

um Pile modal displacement 

ub Bedrock displacement 

us Soil displacement 

uz Pile global displacement 

u Pile local displacement 

�̂�ζ Pile local virtual displacement 

Vs, Vsb Shear wave velocities 

x, y, z Global reference system 

α Group factor 

m Modal participation factor 

 Pile inclination 

 Stiffness coefficient 

p, s, sb Mass densities 

p, s, sb Poisson ratios 
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 Circular frequency 

m Modal damping ratio 

p, s, sb Material damping ratios 

𝜁 Local abscissa of the pile axis 

 

 

5. REFERENCES 

Allotey N., El Naggar M. H. (2008) “Generalized dynamic Winkler 

model for nonlinear soil–structure interaction analysis.” 

Canadian Geotechnical Journal; 45:560–573. 

Bentley K. J. and El Naggar M. H. (2000) “Numerical analysis of 

kinematic response of single piles.” Canadian 

Geotechnical Journal; 37:1368-1382. 

Basu D, Salgado R. and Prezzi M. (2009). “A continuum-based model 

for analysis of laterally loaded piles in layered soils.” 

Geotechnique; 59(2):27–140. 

Carbonari S., Morici M., Dezi F. and Leoni G. (2016) “Analytical 

evaluation of impedances and kinematic response of 

inclined piles.” Engineering Structures; 117:384-396. 

Dente G. (2005) “Pile foundations: guidelines on geotechnical aspects 

for designing in seismic areas (in Italian).” Patron Editore, 

Bologna, Italy. 

Dezi F., Carbonari S. and Leoni G. (2009) “A model for the 3D 

kinematic interaction analysis of pile groups in layered 

soils.” Earthquake Engineering & Structural Dynamics; 

38:1281–1305. 

Dezi F., Carbonari S. and Leoni G. (2009) “Kinematic bending 

moments in pile foundations.” Soil Dynamics and 

Earthquake Engineering; 30(3): 119-132. 

Dezi F., Carbonari S. and Leoni G. (2010) “Static equivalent method 

for the kinematic interaction analysis of single piles.” Soil 

Dynamics and Earthquake Engineering; 30(8): 679-690. 

Dezi F., Carbonari S. and Morici M. (2016) “A numerical model for 

the dynamic analysis of inclined pile groups.” Earthquake 

Engineering & Structural Dynamics; 45:45–68. 

Dezi F. and Poulos H. (2017) “Kinematic Bending Moments in 

Square Pile Groups.” International Journal of 

Geomechanics; 17(3). 

Dobry R., Vicente E., O’Rourke M. J. and Roesset J. M. (1982) 

“Horizontal Stiffness and Damping of Single Piles.”  

Journal of Geotechnical Engineering Division ASCE; 

108(GT3): 439–459. 

Dobry R. and O’Rourke M.J. (1983) Discussion on “Seismic response 

of end-bearing piles” by Flores Berrones R. and Whitman 

R.V. Journal of the Geotechnical Engineering Division, 

ASCE.; 109(5):778-781 

EN 1998-1 (2004). Eurocode 8 “Design of structure for earthquake 

resistance.” Part 1: General rules, seismic actions and rules 

for buildings. 

Fan K., Gazetas G., Kaynia A., Kausel E. and Ahmad, S. Kinematic 

(1991) “Seismic response of single piles and pile groups.” 

Journal of Geotechnical Engineering; 117(12): 1860–1879.  

Gazetas G. and Dobry R. (1984) “Simple radiation damping model 

for piles and footings.” Journal of Engineering Mechanics 

ASCE; 110(6):937–956. 

J. R. A. (2002) “Specifications for highway bridges – Part V: Seismic 

Design.” Japan Road Association. 

Kramer S. L. (1996) “Geotechnical Earthquake Engineering.” 

Prentice Hall, Upper Saddle River, RJ. 

Lysmer J., Udaka T., Tsai C. F. and Seed H. B. (1975) “FLUSH: a 

computer program for approximate 3-D analysis of soil-

structure interaction problems.” Report/No. EERC75–30. 

Berkeley: University of California; Earthquake 

Engineering Research Center. 

Makris N. and Gazetas G. (1992) “Dynamic pile-soil-pile interaction.” 

Part II: L.ateral and seismic response. Earthquake 

Engineering & Structural Dynamics; 21(2):145-162. 

Makris N. and Gazetas G. (1993) “Displacement phase differences in 

a harmonically oscillating pile.” Geotechnique; 43(1):135–

150. 

Makris N. (1997) “Causal hysteretic element.”  Journal of 

Engineering Mechanics ASCE; 123(11):1209-1214. 

Medina C., Padrón L. A., Aznárez J. J., Santana A. and Maeso O. 

(2014) “Kinematic interaction factors of deep foundations 

with inclined piles.” Earthquake Engineering & Structural 

Dynamics; 43(13):2035-2050. 

Nikolaou S., Mylonakis G., Gazetas G. and Tazoh T. (2001) 

“Kinematic pile bending during earthquakes: analysis and 

field measurements.” Géotechnique; 51(5): 425–440. 

Nogami T., Otani J., Konagai K., Chen H. (1992) “Nonlinear soil-pile 

interaction model for dynamic lateral motion.” Journal of 

Geotechnical Engineering; 118:89–106. 

Novak M. (1974). “Dynamic stiffness and damping of piles.” 

Canadian Geotechnical Journal; 11:574–598. 

Padrón L.A., Aznárez J.J. and Maeso O. (2007) “BEM–FEM 

coupling model for the dynamic analysis of piles and pile 

groups.” Engineering Analysis with Boundary Elements; 

31(6):473-484. 

Padrón L. A., Aznárez J. J., Maeso O. and Santana A. (2010) 

“Dynamic stiffness of deep foundations with inclined piles.” 

Earthquake Engineering & Structural Dynamics; 39(12): 

1343-1367. 

Roesset J. M. and Angelides D. (1980) “Dynamic stiffness of piles; 

Numerical Methods in Offshore Piling.” Institution of Civil 

Engineers, London; 75–82. 

Tahghighi H. and Konagai K. (2007) “Numerical analysis of 

nonlinear soil-pile group interaction under lateral loads.” 

Soil Dynamics and Earthquake Engineering; 27(5):463-

474. 

Tombari A., El Naggar M. H. and Dezi F. (2017) “Impact of ground 

motion duration and soil non-linearity on the seismic 

performance of single piles.” Soil Dynamics and 

Earthquake Engineering; 100:72–87. 

Wakai A., Gose S. and Ugai K. (1999) “3-D Elasto-Plastic Finite 

Element Analyses of Pile Foundations Subjected to Lateral 

Loading.” Soils and Foundations; 39(1):97-11.  

Wu G. and Finn W. (1997) “Dynamic nonlinear analysis of pile 

foundations using finite element method in the time 

domain.” Canadian Geotechnical Journal; 34:44–52.

 


