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ABSTRACT: This paper presents a solution for partially penetrated prefabricated vertical drains (PVD) with less computational time and 

more accuracy than previous analytical solutions. A new impermeable boundary region at drain’s end is introduced to simplify boundary 

conditions and reduce the number of variables. Moreover, Laplace transform technique is utilized in this solution which could help to estimate 

smooth excess pore pressures with depth even in the early stage of consolidation. Results of the new modified solution have been verified 

against results of the current literatures. A case study by vacuum consolidation technique is presented to verify the current solution. Excess 

pore water pressure in the soil and the drain and are well agreement with the proposed solution.  Derived degree of consolidation from field 

settlements shows not much differences than current approach. Those verifications indicate that the proposed solution is an effective tool in 

solving the consolidation problems of partially penetrated vertical drain. 
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1. INTRODUCTION 

Prefabricated vertical drains (PVDs) are widely used for soft soil 

improvement because it is a cost-effective and time-saving solution.  

There are different anchor’s types depending on construction methods 

and installed machines (Bo et al., 2015). In specific, steel plate anchor 

is the most applicable type in the PVD’s installation because it can be 

easily assembled and can protect soil intrusion into mandrel as shown 

in Figure 1. The anchor steel plate blocks drainage at the PVD’s end, 

which creates an impermeable boundary condition. Nevertheless, 

extensive past studies mainly consider this region as a permeable or 

pervious drain’s end (Tang and Onitsuka (1998 and 2001) , Indraratna 

et al..(2000, 2005 and 2008), Chai et al. (2001), Indraratna and 

Rujikiatkamjorn (2008), Ong et al. (2012), Zeng and Xie (2013) 

Voottipruex et al. (2014), Bergado et al. (2020)  and Lam et al. 

(2015)). Various analyzing methods have been adopted such as 

analytical methods, semi-analytical methods, and finite element 

methods. 

 
Figure 1  Mandrel and steel anchor plate. 

 

Studies accounting for the impermeable boundary condition are 

relatively limited. For example, Nghia et al. (2018) considered the 

impermeable boundary condition into semi-analytical solution with 

Fourier series approximation technique  and was verified by Finite 

element method (FEM). This research pointed out that the analytical 

solution by Fourier series approximation technique was inaccurate at 

the early stage of consolidation because of its fluctuations in 

estimating excess pore pressure. Hence, this paper presents a solution 

addressing the impermeable boundary condition at the PVD’s end 

incorporated with Laplace transform technique for governing 

equations. Laplace transform technique can extend applications of 

analytical solutions to multi-ramp loading, multi-soil layers or even 

applied vacuum pressures (Geng et al. (2011, 2012) and Liu et al. 

(2014) Nghia-Nguyen et al. (2019)). Moreover, this technique could 

show less fluctuation in excess pore pressure estimation than the 

current analytical solution by Fourier series approximation technique 

(Geng et al. (2011)). 

This paper presents a solution for penetrated vertical drain 

applying the Laplace transform technique in combination with the 

new impermeable drain’s end boundary condition. Variation of the 

excess pore pressure during the consolidation process is further 

investigated. Past studies and a case history are employed to verify 

the application of the proposed solution. The general model for 

partially penetrated vertical drains is shown in Figure 2 ( H = whole 

thickness of soil; 1h = PVD length ; 2h = length of soil without PVD; 

wr = PVD radius; sr = radius of smeared zone; er = equivalent radius 

of the influence zone; hk = soil coefficient of horizontal permeability; 

1vk = coefficient of vertical permeability of the soil with PVD; 1vm = 

coefficient of volume compressibility of the soil with PVD; sk = 

coefficient of horizontal permeability of smeared zone;  wk =  PVD 

coefficient of permeability; 2vk = coefficient of vertical permeability 

of soil without PVD; 2vm = coefficient of volume compressibility of 

the soil without PVD). There are two conditions of drainage 

boundaries including Pervious Top and Impervious Bottom (PTIB) 

and Pervious Top and Pervious Bottom (PTPB).  

 

 
Figure 2  Analysis scheme of  partially penetrated PVD 



Geotechnical Engineering Journal of the SEAGS & AGSSEA Vol. 51 No. 4 December 2020 ISSN 0046-5828 

 

 

90 

2. BASIC EQUATIONS 

Govern equations used in this study are based on basic equations and 

assumptions by Tang and Onitsuka (1998 and 2001). For the section 

with vertical drains, 10 z h  , the governing partially differential 

equations for pore pressure dissipation are: 

 

+ Smear zone, w sr r r   
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For the section without vertical drains, 1h z H  , the basic 

equation is: 
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where r = radial coordinate; z = vertical coordinate; t = time; 

w = unit weight of water;  1( , , )su r z t excess pore water pressure in 

the smeared zone; 1( , , )nu r z t = excess pore water pressure at any 

point in the natural soil zone of the section with vertical drains; 

1( , )u z t = average excess pore water pressure of the section with 

vertical drains; and.  2( , )u z t = excess pore water pressure of the 

section without vertical drains at any depth. 

Average excess water pressure on horizontal plane is determined 

as: 
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The continuity conditions and boundary conditions are: 
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 The new impermeable boundary condition at the PVD’s end 

1z h=   leads to the boundary and continuity conditions at this zone 

as:  
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3. ANALYTICAL SOLUTION 

Substitute (5) into (1) to obtain the partially differential equation for 

only ( , )wu z t  (Tang and Onitsuka(2001)) 
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Excess pore pressure in the drain and average excess pore 

pressure in soil is defined as. 
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Further, Laplace transform technique is applied to equation (15) 

yield. 
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where 

( , )wLu z s  is the Laplace transform of ( , )wu z t  

( ,0)w ou z u=  is the initial pore pressure distribution in soil 

( )s  is the Laplace transform of surcharge load ( )t  

 

Solution of the equation (19) is 
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In addition, Laplace transform technique is also applied to 

equation (16) yield. 
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where 1( , )Lu z s  is Laplace transform of 1( , )u z s  

 

Substitute equation (20) into (21) to obtain the Laplace transform 

of average excess pore pressure distribution in the soil with PVD.  
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Using Laplace transform technique for equation (4) to obtain to 

excess pore pressure in the soil without PVD    
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where 2( , )Lu z s  is the Laplace transform of 2( , )u z t  

 

Partially derivative equation (23) can be derived as: 
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Solutions for the average excess pore water pressure and the 

average degree of consolidation are presented in Appendix A. The 

average excess pore water pressures in the soil with PVD and without 

PVD can be determined in equations (A4) and (A5), respectively. 

Moreover, the average degree of consolidation can be obtained by 

equation (A6).  

 

4. VALIDATION AND DISCUSSION 

The proposed solution is validated for the excess pore pressure and 

degree of consolidation. Pore pressure dissipation estimated by the 

proposed method are compared with results obtained by two previous 

works of Nghia et al. (2018) and Tang and Onitsuka (1998). Figures 

3(a) and 3(b) show the comparison of the excess pore water pressures 

at degree of consolidation of 50% (U=50%) obtained by the three 

solutions. Tang and Onitsuka’s approach shows the excess pore 

pressure) reduces rapidly at the PVD’s end (z = 0.8H) while it 

continuously increases at this boundary in other two solutions. The 

unrealistic situation may come from Tang and Onitsuka (1998)’s 

assumption that the pore pressure of the drain at the PVD’s end is 

equal to the pore pressure of the soil without PVD ( 1 2, wz h u u= = ). 

Meanwhile, other two solutions consider the new impermeable region 

boundary ( 1, 0wu
z h

z


= =


). In addition, Figure 3(a) and 3(b) also 

indicate the excess pore pressure by Nghia’solution (2018)  is more 

fluctuated than that obtained by the proposed solution. In other words, 

the current approach can predict a smooth excess pore pressure 

distribution with depth.  

 

 

 
Figure 3  (a) Comparison pore pressure in case impervious bottom 

(PTIB), (b) Comparison pore pressure in case pervious bottom 

(PTPB)  
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Figure 4 shows comparisons in terms of  three different 

consolidation degrees at U=30%, 50%, and 80% of the proposed 

solution  and Nghia’s solution (2018) for two boundary condition 

cases of PTIB and PTPB. Apparently, the pore pressures determined 

by the two techniques are in close agreement especially in large 

consolidation degree such as U=80%. While at the early stage of 

consolidation of U=30%, the pore pressure by Nghia’s solution 

(2018) scatter significantly in comparison with pore pressure solved 

by the proposed solution. 

 

 

 
Figure 4  (a) Pore pressure with depth by present solution in case 

impervious bottom (PTIB), (b) Pore pressure with depth by present 

solution in case pervious bottom (PTPB)  

Moreover, in order to investigate dissipation process of the excess 

pore pressure with depth and time, the pore pressure variation 

obtained by the proposed solution for two cases of PTIB and PTPB  

is mapped with the 10% interval of consolidation degree from 10% to 

95% (Figure 5). It can be seen that the soil with PVD consolidates 

considerably faster than the soil without PVD. For example, under 

PTIB condition from early stage of consolidation to U=70% the 

excess pressure in PVD dissipates significantly meanwhile the water 

pressure without PVD does not experience any change. On the other 

hand, from U=70% to U=95% the soil without PVD starts dissipating 

at higher speed and at U=95% the remaining excess pore pressure is 

about 30% of the original value. As a result, one can visually 

understand the consolidation process along the depth in the soil with 

and without PVD and can determine the necessary depth of the PVD 

for a particular soil improvement project. It is noted that former 

analytical solutions such as Nghia’s solution (2018) are hard to create 

the excess pore pressure contour because of their fluctuations.      

In addition to excess pore pressure, an estimated solution 

proposed by Zeng and Xie (1989) for the overall average 

consolidation degree is employed to compare with the present 

solution and Tang and Onitsuka’s solution (1998). The overall 

average degree of consolidation for the whole thickness of soil of 

Zeng and Xie (1989) is derived as: 

 

(1 )p rz zU U U = + −     (25) 

 
where,   

rzU = average degree of consolidation for the section with vertical 

drains. 

zU  = average degree of consolidation for the section without vertical 

drains. 

1h

H
 =  the penetration fraction. 

 

The average consolidation for the section with vertical drains 
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The average consolidation for the section without vertical drains 
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Figure 5  (a) Pore pressure with depth with various consolidation 

degree by the proposed solution  for  PTIB, (b) Pore pressure with 

depth with varied consolidation degree  by the proposed solution   

for PTPB 
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G  is well resistance factor 

 

The above expressions are used for the impervious bottom (PTIB) 

condition. For the pervious bottom (PTPB), the drainage distance, H , 

in the above expressions should be changed to 
2

H
. 

Zeng and Xia’s solution (1989) is presented in two scenarios of 

without well resistance (Figure 6a) and with well resistance (Figure 

6b). The input parameters are also included in these figures. In 

general, the consolidation degree of the current approach is slower 

than that from previous solutions of Tang and Onitsuka (1998) and 

Zeng and Xia (1989). This may come from the assumption of the 

impermeable boundary at the PVD’s end. In contrast, discrepancy 

between the proposed method and Nghia et al. (2018) is negligible. It 

is because both methods are derived from the same partially 

differential equations, the same boundaries and initial conditions. The 

pore pressure dissipation from Nghia et al. (2018) by the Fourier 

series approximation technique could be fluctuated; nevertheless, the 

proposed method and Nghia et al. (2018) lead to the same the total 

excess pore pressure.  

 

5. A CASE STUDY 

A road project as shown in Figure 7 namely R3 Project in District 2, 

Ho Chi Minh City, Vietnam locating on the soft soil of Sai Gon-Dong 

Nai River  Delta (SDRD) where have been extensively studied with 

PVD treatment method by Long et al. (2006, 2013 and 2016). R3 

project utilized PVD under vacuum consolidation in combination 

with surcharge preloading to treat the soft soil layer. The PVD was 

installed with steel anchor plate. The general soil profile including a 

22m-thick soft clay layer underlayed by the silty sand layer. At the

  

  
Figure 6  (a) Comparison of average degree of consolidation without 

well resistance,  (b) Comparison of average degree of consolidation 

with well resistance  

 

section km+2.470 (middle of the road R3 project), the thickness of 

soft clay layer is 20m; PVD length is only 18m to protect PVD from 

pressure leaking to silty sand layer as illustrated in Figure 8. PVD was 

installed in a triangle pattern with spacing of 0.9S = (m); therefore, 

the influence diameter is 1.05 0.945eD S= =  (m). Soil/drain’s 

properties are summarized in Table 1. The coefficient of vertical 

consolidation of the soft clay layer 
21.68 (m / year)vc =  is taken 

from oedometer tests. The coefficient of  horizontal consolidation is 

assumed as double as that value in the vertical consolidation 
22 3.36 (m / year)h vc c= = . Ratio of permeabilities in the natural 

zone and the smear zone is assumed to be 5h sk k = .  

The current section is studied by the proposed solution and a study 

of Geng et al. (2011). It is because Geng et al. (2011) also applied 

Laplace transform technique for solution of partially PVD under 

vacuum consolidation. It is noted that Geng et al. (2011) considered 

the region around the drain’s end as pervious while the proposed 

solution assumes it as impervious. Further, the non PVD zone was 

assumed by a virtual drain by Geng et al. (2011). Subsequently, 

solution from Geng et al. (2011) contains 8 unknown variables; while 

current solution contains only 6 unknown variables denoted as matrix 
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X  in equations (A1) and (A2). Obviously, the more unknown 

variables are incorporated into the solution the more computation 

time is required. Therefore, the proposed solution may save more 

computation time than Geng et al. (2011).  

Earth surcharge and vacuum pressure sequence is presented in 

Figure 9. Surcharge loading started with a small loading of about 9 

kPa which is considered as the existing backfill layer for PVD 

platform. The next stage of the surcharge increased to 26 kPa at day 

35 days after the vacuum pump operation which is the time for 

vacuum leaking check. Subsequently, the surcharge continuously 

increased to maximum loading of 81 kPa at 146 days. The maximum 

load was maintained until the final construction stage. The vacuum 

pressuremeter was recorded immediately after vacuum pumps were 

operated. The minimum vacuum pressure under membrane was 

quickly obtained with -75 (kPa) at 5 days. This minimum vacuum 

pressure was, then, maintained during the treatment process.   

 

 

Figure 7  R3 project location 

 

Computational time for determining excess pore pressure 1( , )u z t

at one specific depth and time ( 1(1,1)u for instance)  by the proposed 

solution and Geng et al. (2011) is respectively 31.52 seconds and 

2025.23 seconds with the same computer and the same Laplace 

inverse technique. Apparently, the new approach is definitely faster 

about 62 times than the solution of Geng et al. (2011). As a 

consequence, the new approach can be time-saving to obtain all 

output data. 

 
Figure 8  Section of km +2.470 

Table 1  Soil/drain’s properties 

Parameters of soft clay and drain Values 

cv (m2/year) 1.68 

ch (m2/year) 3.36 

dw (m) 0.033 

De (m) 0.945 

ds (m) 0.24 

kh/ks 5.0 

kw/kh 100000 

mv (m2/kN) 1/1200 

γw (kN/m3) 9.81 

 

 
Figure 9  Loading sequence at km+2.470 

 

The excess pore pressure monitored by piezometers at elevation -

1m, -7m, and -13m (equivalent with the depth of 2m, 8m and 14m 

below the ground level, respectively) are compared with solutions 

obtained by the proposed approach and Geng et al. (2011) (Figure 10). 

In general, the predicted pore pressure by the proposed method can 

approximate well the in-situ measurements at various depths 

especially from early consolidation stage up to 180 days. Nonetheless, 

after 180 days to the end of the treatment process the discrepancy 

between predicted pore pressure and field data become more obvious. 

It may attribute to blocking sediment or equipment problems. 

Moreover, it is observed that the predicted excess pore pressure by 

the proposed method is closer to the field data than by Geng et al. 

(2011). Plus, Geng et al. (2011) shows faster dissipation than that 

from the proposed approach and faster than the in-situ measurement. 

It may be due to different assumption of drainage condition at the 

drain’s end by two methods. Thus, the field data implies that 

considering the impervious boundary at the drain’s end is more 

reasonable in the design than pervious boundary. 

 
Figure 10  Comparison excess pore pressures 
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Complete excess pore pressure dissipation along the depth after 

the maximum surcharge loading at 146 days is presented in Figure 11. 

It can be seen that the pore pressure on the top boundary quickly 

dissipate and reach the vacuum pressure of -75 kPa at the top 

membrane. The pore pressure becomes constant after the depth of 2.0 

m to the PVD’s end. Moreover, the soil below the PVD’s end 

indicates a slower water dissipation than the soil with PVD. At 450 

days, almost the excess pore pressure in the zone with PVD reached 

to value of -75 kPa meanwhile the zone without PVD excess pore 

pressure shows a smooth transition from -75 kPa  to  0 kPa. This curve 

is derived based on an approach of Chai et al. (2005). 

In addition, degree of consolidation was determined by effective 

pressure which is defined as a subtraction of surcharge loading and 

excess pore pressure in soil. 

 

 
1 1

2 1

'( , ) ( ) ( , ),  

'( , ) ( ) ( , ),  

z t t u z t z h

z t t u z t z h

 

 

= − 


= − 
   (28) 

 
The degree of consolidation is then computed as 

 

0

1 2

'( , )

( )
( ) ( 2)

z H

z

u av u av

z t dz

U t
h q P h q P



=

==
+ + +


   (29) 

 
where  

uq  is the maximum surcharge loading 

avP  is the minimum vacuum pressure 

1h  is the depth of zone with PVD 

2h  is the depth of zone without PVD 

 

Figure 12 shows the comparison of degree of consolidation by the 

proposed solution, Geng et al. (2011), and the field data in which the 

degree of consolidation of field data is derived from settlement 

measurement. At early stage, the field data show slightly faster 

consolidation than the proposed solution. Nevertheless, after 120 days 

the predicted consolidation degree properly approximate the field 

monitoring. On the other hand, solution by Geng et al. (2011) matches 

the field measurement before 120 days and shows faster consolidation 

degree afterward. Nonetheless, the discrepancy between predicted 

solutions and in-situ measurements are relatively small. Thus, the 

proposed solution is applicable to be adopted in actual soil treatment 

projects with PVD and even the vacuum pressure.  

 
Figure 11  Dissipation of excess pore pressures 

 

Figure 12  Comparison of degree of consolidation 
 

 

6. SUMMARY AND CONCLUSION 

The paper proposed a new solution adopting a new boundary 

approach and the Laplace transform technique to solve the 

consolidation problem of partially penetrated prefabricated vertical 

drains. The following conclusions can be drawn:  

 

1. The new solution with Laplace transform technique including 

the new impermeable boundary region at the PVD’s end due to 

the anchor plate appeared to be more accurate than the solution 

with Fourier series approximation technique in estimating the 

excess pore pressure with depth and time. The excess pore 

pressures by Fourier series approximation technique was 

fluctuated at the early stage of consolidation process while 

those obtained with Laplace transform technique is a smooth 

curve during the consolidation process. 

2. The new solution lead to a lower degree of consolidation than 

previous solutions of Tang and Onitsuka (1998) and Zeng and 

Xia’s solution (1989) due to the consideration of the new 

impermeable region at the PVD’s end. Further, the average 

consolidation degrees obtained by Laplace technique (LTT) and 

Fourier series approximation technique (FT) converged at the 

same line because both solutions are derived from the same 

partially differential equations and the same boundary 

conditions.  

3. In a case study of R3 road project in Ho Chi Minh City, 

Vietnam, the proposed solution is faster than the solution by 

Geng et al. (2011) about 62 times with the same computer 

configuration and the same Laplace inverse technique. It can 

save more calculation time for engineers. The in-situ excess 

pore pressure dissipated slower than predicted values. 

Moreover, the solution from Geng et al. (2011) showed faster 

dissipation than the proposed solution. It suggested that 

considering impervious boundary condition at the PVD’s end is 

reasonable to have accurate prediction in the consolidation 

process. Plus, the current approach shows very good agreement 

with field data in term of degree of consolidation. Excess pore 

pressure by current solution can be explained both with time 

and depth in which one can easily observe the consolidation 

process that is also a strong point of the present solution. 
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8. APPENDIX 

The appendix is derived solutions to determine excess pore pressure 

and average degree of consolidation with different boundary 

conditions.  

8.1 For Pervious Top and Impervious Bottom boundary 

conditions (PTIB) 

The six boundary conditions (10), (11), (12), (14), and (15) and the 

three Laplace equations (20), (22), and (24) are combined to obtain 

the (6, 6) matrix equation.  

 

  . T
PTIB PTIBS X Q=     (A1) 

 
where 

21 22 23 24

35 36

41 42 43 44

51 52 53 54 55 56

61 62 63 64 65 66
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In case of vacuum pressure 
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8.2 For Pervious Top and Pervious Bottom boundary 

conditions  (PTPB) 

Apply six boundary conditions of equations (10), (11), (13), (14), and 

(15) to three Laplace equations (20), (22), and (24) to obtain the 

matrix (6, 6) system of equations  
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The unknown X which is obtained by the above matrix equation 

is substituted to the Laplace equations (20), (22) and (24).  An inverse 

Laplace transform technique using the approximate numerical 

method of Weeks (1966) has applied to get excess pore pressure. 

 
 ( , )  ( , )w wLu z s Inverse Laplace byWeeks Method u z t→ →

      (A3) 

 

1 1( , )  ( , )Lu z s Inverse Laplace byWeeks Method u z t→ →       (A4) 

 

2 2( , )  ( , )Lu z s Inverse Laplace by Weeks Method u z t→ →       (A5) 

 

The average consolidation degree of whole soil is first integrated 

in Laplace form. 
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Then applying inverse Laplace technique by Weeks method 

(1966) for (30) to obtain the average consolidation degree

( )  ( )LU s Inverse Laplace byWeeks Method U t→ →  
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