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ABSTRACT: The validation of design assumptions, as construction works are being carried out, is a vital component in geotechnical 

engineering.  The feedback can be in terms of either the prescribed quality control tests, instrumentation and monitoring, or other site 

observations.  As most of these can be evaluated through systematic logic, the use of data science methods or machine learning procedures is 

rarely necessary.  There are, however, exceptions especially for cases in which: (i) there are several possible causes to the problems which are 

hard to pinpoint precisely, (ii) the quantum of data is overwhelming, and (iii) there is scatter in the of observed outcomes.  Where these features 

are encountered, it is generally more efficient to process the data using a computer.  This paper presents a possible way of interpreting the 

feedback obtained through observations in construction, via Bayesian programming, which is one of the many methods in machine learning.  

A case history discussing the performance of ground anchors in a deep excavation project is discussed. 
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1. INTRODUCTION 

The observational approach is common vocabulary to geotechnical 

engineers.  Crudely, it suggests that the engineer, through his present 

observations of the ground response, can make an educated judgment 

on the next course of action.  Conventional tools supporting the 

observational approach are (i) quality control tests and (ii) 

instrumentation and monitoring.  In the specific contexts of 

observational approach, quality control tests saves the engineers time 

in ruling out the unknowns (to some extent and not completely), and 

are provisioned in codes of practice and international standards, in 

which typical recommended testing quantities are normally specified 

and may vary with the ground variability or the availability of pre-

existing information within the project vicinity.  An example of a 

quality control test is the on-site acceptance test for ground anchors.  

The performance of a single element is examined at the state after 

installation, to ensure that they are compatible with the engineer’s 

assumptions.  Where there are indications where the performance is 

less than prescribed, corrective measures can be carried out before the 

structure is loaded fully.  On the other hand, instrumentation and 

monitoring provides an additional layer of validation, to capture 

deviations from theoretical expectations, during the actual loading.   

In the discussion here, instrumentation and monitoring includes 

observations made during construction through visual inspection.  

Where the performance is better or worse than predicted, the design 

models may be revised and the required resources for construction 

may be adjusted in a corresponding manner. 

The discussion above bears very close resemblance to the 

definition of Machine Learning provided by Tom Mitchell (1998), 

where a computer is said to learn from experience E with respect to 

some task T and some performance measure A, if its performance on 

T, as measured by A, improves with experience E.  It is possible for 

machine learning to be applied by gathering the experiences from 

many projects.  It is believed, however, that the outcome will fit with 

typical “rules of thumbs” in engineering practice.  As the subject of 

study in this paper is focussed on the observational approach, this 

definition has to be improvised for the case of a single construction 

project, so that “experience E” is replaced with random variables, i.e. 

“observations O”.  However, the duration over which the 

performance is being measured may result in very limited data 

depending on the constructed element of interest.   

Nonetheless, in an environment with large data and a scatter of 

observations, computers are more capable than humans to process the 

information objectively.     

 

2. BACKGROUND OF BAYESIAN ANALYSIS 

In Bayesian statistics, where a prior information on an observation, 

O, is available, the conditional probability of performance A, given 

O, is expressed as: 

𝑃(𝐴|𝑂) =
𝑃(𝐴 ∩ 𝑂)

𝑃(𝑂)
 (1) 

where P( ) denotes probability, and “∩” denotes conjunction.  The 

variables on the right of “|” are variables with known values, and the 

variables on the left of “|” are being probed given the known 

variables. 

Bayesian statistics have been adopted in various contexts in 

geotechnical engineering.  The main distinction in Bayesian statistics 

as against the frequentist approach is that Bayesian statistics uses 

probability theory formally to acknowledge that the probability 

distribution is conditioned on the observed data, which is finite and 

may be potentially affected by noise or other data class which may 

not have been identified for sampling.  For example, Houlsby & 

Houlsby (2009) applied Bayesian statistics to find the best fit of the 

design strength profiles to measured undrained strength data, given 

the random variables consisting of the observed data sets and the 

number of soil layers.  In another example, Bayesian updating was 

used to update the reliability of pile design with load test data (Kay, 

1978; Zhang, 2004; Huang, 2016).  These two examples attempt to 

best-fit observations for design purposes, and incorporate 

observations into design respectively.   

In this paper, Bayesian statistics is being used in a different 

context.  Several variables, which had been identified as potentially 

“important”, were studied to establish whether each variable had a 

strong correlation to the performance outcome.  After that, a 

predictive question is being put forward, by reversing the conditional 

probabilities.  A well-known example used in Bessière et al. (2013) 

is to predict spam e-mails by gathering P(word | spam=true) from 

compiled e-mail records.  The probabilities P(spam=true| word) are 

then established to evaluate whether an incoming e-mail is spam.  

These probabilities are not the same and can be appreciated more 

intuitively via the example that the probability of a geotechnical 

engineer is taller than six feet, i.e. P(height>6ft | geotechnical 

engineer), and the probability that a person, who is six feet tall, is a 

geotechnical engineer, i.e. P(geotechnical engineer | height > 6 ft), 

are different.  The paper shows how Bayesian statistics can have 

practical application in the context of interpreting wide scatter of 

information and decision-making.     

For cases where there are multiple variables (or observations), i.e. 

Oi to ON, the computation of past data is time consuming, and 

methods of simplifications, for instance by assuming that these 

variables are conditionally independent, have been proposed in the 

Bayesian programming literature when handling large data.  The 

mathematical details are not included here in this paper, and 
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interested readers are referred to Bessière et al. (2013).  Where the 

variables are not independent, the joint probabilities need to be 

constructed from the compiled measured data where two variables are 

true concurrently (Bessière et al., 2013).  While the aforementioned 

is the recommended approach, an example is studied in this paper to 

provide further insight into the likely error of assuming independence 

to estimate the performance for non-independent variables. 

     

3. APPLICATION OF BAYESIAN ANALYSES 

A case history involving the troubleshooting of ground anchor 

performance is discussed in this paper.  It is shown how Bayesian 

analysis and Bayesian programming could be adopted to support the 

observational approach. 

The case site is a 28 m deep excavation located in the Kuala 

Lumpur Limestone Formation.  The limestone at the site contains 

cave features, and a high degree of jointing at some areas (see Figure 

1).  The alluvium soil overburden was retained using secant bored 

piles (SBPs) with rock socketing of 2.5-5.5m at the secondary 

reinforced piles (Figure 1), and restrained using ground anchors 

together with a rock bolt at the SBP toe.  The ground anchors are 

designed with rock socketing, and the strands are greased within a 

PVC sleeve, looping around the anchor end forming a U-loop (Figure 

2).  The rockhead varies around the site between approximately 15-

28 m below ground level (bgl).  A bottom-up construction sequence 

was adopted.  The ground anchors were being installed as the 

excavation progressed deeper.  During excavation and installation of 

the 3rd row of ground anchors, there were observations that some of 

the strands in the 1st and 2nd row of ground anchors had loosened.  For 

the loosened anchors which were monitored using load cells, some 

registered load losses (Figure 3 (a) and (b)), whereas some did not 

register significant load losses implying that the loads were 

distributed to the neighbouring strands in the same anchor which had 

not loosened (Figure 3 (c)).   

Following this incident, corrective procedures were 

implemented: 

• To verify if the loosening was due to structural breakage, the 

loosened strand was restrained at one end, while the other 

end from the same loop was pulled.  It was identified that the 

strands were structurally sound and there were no breakages; 

• The past stressing records were re-visited and reviewed.  It 

was found that the original ground anchor on-site acceptance 

tests of the loosened ground anchors had met the prescribed 

requirements (British Standard, 1989).  Re-stressing and 

subsequent lift off tests were carried out on the loosened 

anchors, and these tests also met the performance 

requirements;   

• More load cells and optical prisms were installed;  

• Where load cell readings breached the prescribed working 

loads, lift-off tests were carried out.  Load cells with odd 

number of strain gauges were changed to even number of 

strain gauges to avoid eccentric effects which could affect 

the readings, based on the findings from other project sites 

(Boon et al., 2015); 

• Settlement markers were installed on the secant bored piles 

to measure if there were settlements on the piles which could 

potentially lead to relaxation.  This hypothesis was ruled out 

after a few weeks of monitoring; 

• Regular visual inspection was carried out to spot for 

loosening of wedges. 
 

The initial prevailing hypothesis was that the root cause of the 

problem was the lack of fit between the wedges and the holes in the 

anchor block.  The existing wedges were replaced immediately with 

larger and better fitting wedges, but loosening of some anchors 

occurred again, while the installation of the deeper 5th row of anchors 

commenced.  It was then hypothesised that there was a possibility that 

the anchor block and wedges were again not fully compatible as there 

were differences of 1-2° between the tapering of the wedges and the 

inclinations of the holes in the anchor blocks. 

(a) 

 

(b) 

 
Figure 1  Ground anchors in the limestone formation: (a) karst 

features with caves, (b) localised area which are heavily jointed 

 

(a) 

 

(b) 

 

(c) 

 
Figure 2  Ground anchor system adopted at the site: (a) image of 

anchor block and wedges, (b) U-loop system with U-turn end, (c) 

load cell monitoring where slack could be visually observed in one 

of the strands due to loosening 
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(a) 

 

(b) 

 

(c) 

 
Figure 3  Loosened anchors with load cell measurements: (a) first 

measurement since lock-off showed loss of loads, (b) abrupt load 

loss measured, (c) no obvious signs of load loss, even though wedge 

has loosened.  Spikes are noise in the data 

 

At the same time, there were parallel views that the bonding at the 

rock socket was compromised, and that the slippage of the wedges 

would unlikely lead to full relaxation of the tensioned strands.   

The strategy based on elimination of hypothesis one-at-a-time 

was difficult to implement, because the ground had to be excavated 

for the anchors to provide feedback as to whether or not the remedial 

measure was the correct one.  It was obvious that several remedial 

proposals had to be explored concurrently, as it would be more 

onerous for the anchors with deeper excavation.   

The study discussed in this paper was motivated by the need to 

identify what was the root cause quickly. 

 

3.1. Identification of important parameters through learning 

and checking for independence 

It was perceived that if the ground anchors had loosened solely due to 

the mechanical compatibility of wedges and anchor blocks, the 

outcome of loosening would be independent of other reasons.  This 

was an important basis for the subsequent interpretation. 

In a full machine learning environment, a wealth of variables may 

be provided to the computer, so that the statistically significant 

variables which are common among the observations could be 

identified.  For the observation of anchor loosening, the following 

variables were pre-determined, namely: 

• the grout wastage during installation; 

• whether or not any large cavities were encountered during 

drilling which could potentially lead to grout loss; 

• length of strands affecting the magnitude of loss in 

tensioning due to wedge slippage; and 

• rockhead depth which may give an indication of past karst 

action. 

From the site records, we compiled the probability of the variables 

above given that the anchors had loosened, namely:  

i. P(grout_wastage|loosened)  

ii. P(cavitiy_size_encountered|loosened) 

iii. P(length|loosened) 

iv. P(rockhead in relation to benchmark|loosened) 

The results are shown in Figure 4.  While there are certain trends 

in the data, it is important to caution that a high conditional 

probability does not immediately suggest that there is a high causal 

link to loosening.  Instead, the results have to be studied holistically 

in terms of the overall probability.  The performance A is said to be 

independent of the variable (or observation) O if: 

𝑃(𝐴|𝑂) = 𝑃(𝐴) (2) 

The overall probability and conditional probability are overlaid 

for grout wastage and cavity size in Figure 5.  The results show that 

the relative weight of anchors with higher grout wastage increased 

when considering only the anchors which had loosened, by 

comparison to the case in which all the ground anchors were 

considered (Figure 5 (a)).  This is likewise for anchors with large 

cavities encountered (Figure 5 (b)).  The results suggest that the 

outcome of loosening is statistically not independent of grout wastage 

and the presence of cavities. 

 

(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4  Statistics of (a) grout wastage, (b) cavity size, (c) anchor 

length, (d) rockhead (using 15 m bgl as the benchmark depth), given 

that the anchor had loosened 
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(a) 

 

(b) 

 
Figure 5  Comparison between overall probability and conditional 

probability to check for independence 

 

3.2. Bayesian analyses of ground anchor loosening 

Once the important variables are identified, the conditional 

probabilities have to be converted for the use of future prediction: 

i. P(loosen|grout_wastage)  

ii. P(loosen|cavitiy_size_encountered) 

iii. P(loosen|length) 

iv. P(loosen|rockhead) 

This step is necessary because the latter indirectly takes into 

account the statistics contributed by the anchors which did not 

experience loosening.  An example is provided to explain the 

significance of this step:  Anchors which had loosened are all shorter 

than 50 m.  Therefore, P(anchor_length<50m|loosened) = 100%. 

However, P(loosen|anchor_length<50m) is not 100%, because there 

were some anchors shorter than 50m which did not loosen.   

The probabilities of P(loosen|grout_wastage) and other 

observations can be calculated directly from the compiled data using 

rigorous definitions of conventional Bayesian analyses, or through 

standard procedures set out in Bayesian programming (Bessière et al., 

2013).  The results are shown in Figure 6.  The latter is commonly 

used in the artificial intelligence because answers to complex 

questions can be computed easily from known probabilities derived 

from existing observations, e.g. P(A|Oi∩Oii∩Oiii), for example by 

simplifications which can be exploited where variables are known to 

be conditionally independent. 

Based on the results in Figure 6, anchors encountering a cavity 

size of greater than 1 m have the highest chance of loosening, i.e. 

approximately 50%.  The other important parameter is grout wastage 

where there is approximately 40% chance of loosening if the grout 

wastage is greater than 200%.   

The influence of ground anchor length and rockhead depth may 

appear to be important, but they are believed to be affected by the 

small sample size for long ground anchors or deep rockhead.  Where 

sample sizes are limited, the predictions are dominated by the limited 

data, and the problem of overfitting may occur (Domingos, 2015; Ng, 

2018).  The accuracy of the predictions can be examined by running 

cross-validation tests, i.e. using a sizable fraction of the samples for 

training, and the remaining samples for testing (Ng, 2018).  Another 

way of overcoming the problem of limited data with Bayesian 

statistics is by exploiting the use of prior distributions. 

 The joint probabilities of varying grout wastage and cavity size 

> 1m on the likelihood of loosening were studied.  It was found that 

for anchors with both cavity size greater than 1m and grout wastage 

greater than 200%, the probability of loosening is 57% (Figure 6 (e)).  

It is considered here in this study that a probability of greater than 

50% is a strong sign that it was likely one of the causes leading to 

loosening.  It is noted that while using Bayesian programming, one 

needs to be careful of considering whether the observations are 

independent or non-independent, because it may lead to discrepancies 

(Figure 6 (e)).  Where the variables are non-independent, the variables 

have to be checked for data instances in which they are fulfilled 

simultaneously, i.e. P(A|Oi∩Oii∩Oiii), in which case Oi, Oii and Oiii 

are true. 

  

(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
Figure 6  Predictive statistics of ground anchor loosening, given  (a) 

grout wastage, (b) cavity size, (c) anchor length, (d) rock head 

(using 15 m bgl as th benchmark depth), (e) grout wastage and 

cavity size > 1 m encountered 
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3.3. Decision-making based on findings from Bayesian analyses 

The data suggests that the loosened anchors were correlated to the 

grout wastage and whether or not large cavities were intersected.  It 

is noted that, for this site, the rock socketing length was re-established 

from zero once a cavity was intersected.  Despite this, the 

observations suggest that the anchor resistance was compromised at 

these localised areas.   

It was observed that not all of the loops of the problematic anchor 

had loosened, and that some loops of the same anchor did not lose 

tensioning.  Based on this observation, pull-out tests on the pair of 

strands originating from the same loosened loop were commissioned 

in the subsequent incident of loosening.   

These tests are referred as pair tests subsequently here. It 

transpired that, of the eight tests which were carried out, none of the 

loosened loop was able to resist the design load and showed signs of 

creep at 50%-70% of the loop’s working load.  Seven out of the eight 

anchors had the shortest loop loosened.  In fact, five out of the eight 

anchors had grout wastage greater than 200% and cavity size greater 

than 1 m. During the assessment, the installed ground anchors 

satisfying these two criteria were found to be around 7% (Figure 7), 

of which approximately one-fifth of these anchors were downgraded 

due to pair testing.  As the loosening only happened to some of the 

strands, it was noted that the capacity of the ground anchor was not 

lost completely.  The original factor of safety for the design rock bond 

strength in relation to the design mobilised resistance was also much 

larger than required.  It was also thought that by pulling the rock bond 

past its peak strength may have counterproductive effects leading to 

unrecoverable post peak strengths.  Based on these observations and 

considerations, further pair testing was not pursued further. 

The following corrective measures were implemented: 

i. Change of anchor block suiting the wedges, and with a 

higher Rockwell hardness.  This is notwithstanding the fact 

that the existing anchor block and wedges performed 

satisfactorily when used as a restraint in a laboratory tensile 

test, as the strand failed at the desired tensile yield strength; 

ii. Anchors where the pair tests had failed were downgraded; 

iii. The required rock socket was set back by 1.5 m from the 

rockhead, due to the site specific observations made in the 

pair tests that the shortest loop was affected.  The reason for 

this was not known, but could be potentially due to (i) the 

overstressing of the shortest loop as a result of possible initial 

adoption of incorrect stressing procedures for multi-loop 

anchors, compounded by unloading and reloading, (ii) grout 

loss at the limestone interface specific to the site conditions; 

iv. More stringent casing of the soil overburden was 

implemented, ensuring that the casing was socketed into 

competent rock, to avoid grout loss and collapse of borehole 

near the interface; 

v. Some anchors were lengthened beyond the active wedge, as 

the rockhead was undulating based on the drilling records for 

the upper anchors. 

After the measures above were implemented, the outcome was that 

only another seven number anchors had loosened when the site first 

reached final excavation level (partial extent).  Two of these loosened 

anchors had both grout wastage greater than 200% and cavity size 

greater than 1 m.  These seven anchors were from the initial first and 

second row anchors, before the risk mitigation measures above were 

undertaken.  One of the anchors had both the anchor block and 

wedges originating from the same manufacturer, supporting the 

findings obtained from this Bayesian analysis that the loosening of 

anchors could also be due to reasons other than the incompatibility 

between the anchor block and wedges.  Finally, when the entire site 

was excavated fully to the final excavation level, further ten numbers 

of anchors had loosened, of which six numbers were the anchors 

which had loosened previously. 

It was observed that some of the ground anchors which had 

loosened were spatially from the same vicinity, i.e. from the topmost 

row to the lower rows.  An exposed rock face, where a few of the 

ground anchors above it had loosened, is shown in Figure 8.  This 

geological feature could have contributed to the observations of 

clustered cavities and high grout consumption in the ground anchor 

installation records, which in turn correlate well with the likelihood 

of ground anchor loosening.  While not all locations had resulted in 

similar rock exposures, it is possible that there was a reduction in rock 

uplift resistance around areas with large, persistent and unfilled 

cavities, especially as more anchors were being installed and stressed.   

 

 
Figure 7  Probability of varying grout wastage and cavity size > 1m 

encountered in relation to the installed ground anchors 

 

 
Figure 8  Figure of exposed rock face around which some of the 

anchors had experienced loosening  

 

4. CONCLUSION 

In situations where there are several likely causes to the problem, and 

with overwhelming data, it is formidable to process the information 

without the aid of a computer.  Where computers are used, it is natural 

and straightforward to include some statistical techniques in the 

processing of information.   

This paper shows how Bayesian statistics or Bayesian 

programming could be used to the engineer’s advantage to interpret 

the existing observations while troubleshooting ground anchors.  The 

study was not able to quantify the random effects of installation 

quality or perceived anchor block-wedge compatibility performance, 

but was able to identify the increased likelihood of anchor loosening 

for anchors with higher grout wastage and with cavities encountered.  

At certain locations, it was found that this could be possibly related 

to geological features based on the rock exposures.  The findings in 

this paper are unique to the geological conditions at this site.   

Nonetheless, it is believed that a Bayesian analysis approach could be 

adopted in engineering practice, and extended to other elements of 

geotechnical works, where required.  Similar procedures could be 

developed further for decision-making problems with conditional 

dependence using Bayesian networks founded on graphical tree 

approaches. 

While these tools are useful, there is a need to further interpret the 
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results and subsequently strategise on the next course of action using 

one’s experience and judgement. It is qualified that, even with these 

statistical techniques or machine learning implemented, it may not be 

possible to obtain a firm predictive answer, as with the case history 

discussed here.   This may be inevitable where there is a scatter of 

variables associated with the observation of interest. Nonetheless, 

studying the likelihood of the observation given a few pre-determined 

variables has found to been a good risk mitigation measure, especially 

when the method of logical elimination may be limited to one to two 

iterations in a practical deep excavation timeframe.  More often than 

not, a few variables have to be studied and several mitigation 

measures targeting at different variables have to be carried out 

concurrently.   

Finally, it is demonstrated here that the main challenge in 

geotechnical works may not always relate to analyses and 

calculations, but the evaluation of multiple pieces of information at 

the same time.  There were several prevailing hypotheses which were 

present in this case history.  It was important to be able to examine 

these hypotheses and question the reliability of the basis or 

assumptions leading to the hypotheses.  The exercise of intellectual 

caution on the information and assumptions equally lead to the safety 

of geotechnical works.  This has been termed as Type II Factor of 

Safety in Boon & Ooi (2016) to echo the wisdom from the late Ralph 

Peck: “until you know what goes on in the field, how people do things 

and how the movements that occur are related to the loads that you 

measure, quality of the workmanship and so on, you don’t really 

understand how soil is behaving”. 

 

5.  ACKNOWLEDGEMENT 

The discussions undertaken here do not indicate a preference among 

the different types of analyses by the authors and the institution to 

which the authors are affiliated.  

6. REFERENCES 

Bessière, P., Mazer, E., Ahuactzin, J.-M., Mekhnacha, K. (2013) 

“Bayesian Programming”, CRC Press, p380. 

Boon, C.W., Ooi, L.H., and Low, Y.Y. (2015) “Performance of 

ground anchors in a Mass Rapid Transit project in Malaysia”, 

9th International Symposium on Field Measurements in 

Geomechanics (FMGM), 9-11 September, Dight, P. (Eds.), 

Sydney, Australia, Australian Centre for Geomechanics, 

pp621-630. 

Boon, C.W., and Ooi, L.H. (2016) “Type II Factor of Safety: 

Reliability of Information from Instrumentation, Numerical 

Analysis, Site Investigation and Design”, 19th Southeast Asian 

Geotechnical Conference & 2nd AGSSEA Conference 

(19SEAGC & 2AGSSEA) Young Geotechnical Engineers 

Conference, Kuala Lumpur, 30 May 2016, pp40-45. 

British Standard. (1989) BS 8081:1989: Code of practice for ground 

anchorage, BSI. 

Domingos, P. (2015) “The Master Algorithm: How the Quest for the 

Ultimate Learning Machine Will Remake Our World”, Basic 

Books, p352. 

Houlsby, N.M.T., and Houlsby, G.T. (2013) “Statistical fitting of 

undrained strength data”, Géotechnique, 63(14), pp1253-1263. 

Huang, J., Kelly, R., Li, D., Zhou, C., Sloan, S. (2016) “Updating 

reliability of single piles and pile groups by load tests”,  

Computers and Geotechnics, 73, pp221-230. 

Kay, J.N. (1978) “Safety factor evaluation for single piles in sand”, J. 

Geotech Eng Div-ASCE, 104(1), pp148-149. 

Ng, A. (2018) “Machine Learning Yearning”, Deep Learning. AI. 

Zhang, L. (2004) “Reliability verification using proof pile load tests”, 

J. Geotech Geoenviron Eng, 130(11), pp1203-1213. 

Mitchell, T. M. (1997) “Machine learning”, McGraw-Hill, p432. 

 


