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ABSTRACT: This paper presents an on-going development of Internet-of-Things (IoT) slope monitoring for landslide early warning system 

in Thailand. The current system employs a variety of sensors, namely MEMs-based tensiometers, piezometers, soil moisture sensor, tiltmeter, 

in-placed inclinometer and tipping bucket raingauge, all connected to Arduino-based microcontroller which relied on Narrowband, NB-IoT, 

protocol for data transmission to the cloud server. A specially designed application platform was developed to convert the sensor readings to 

engineering unit and ultimately geotechnical parameters, such as factor of safety, which enable engineers to readily understand the situation 

and make an informed-decision based on such parameters. A weighted approach was proposed in calculating the overall landslide hazard level 

based various kinds of sensor readings. A case history of Kratu-Patong Road Landslide in Phuket, Southern Thailand, taking place in Year 

2022 was presented to demonstrate how the developed IoT system was used real-time together with geotechnical analysis to aid in traffic 

management during the critical time. The warning event primarily stemmed from spikes in slope movement, spurred by heightened traffic 

intensity. Rapid slope movement during the incident was characterized by a tilting magnitude of -2 to 1.2 degrees and a velocity ranging from 

-1.7 to 1.8 degrees per hour. Notably, the calculation of the warning index based on tilting magnitude provides a continuous warning message, 

in contrast to an intermittent message based on tilting velocity. The tensiometer effectively detected the decrease in suction caused by slope 

movement, while the piezometer only registered changes in pore-water pressure when the groundwater table rose above the measurement point. 

Finally, an Artificial Neural Network (ANN) model was used to predict the pore-water pressure at different depths based on 5 rainfall 

parameters, namely, 5-min, 1-hour, 1-day, 3-day and 7-day antecedent rainfalls. The model demonstrated satisfactory predictive accuracy (R² 

= 0.644, RMSE = 3.637 kPa), offering promising potential for integration with the IoT platform in the future. 
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1. INTRODUCTION 

Instrumentation has been pivotal in the advancement of the 

geotechnical engineering profession from its beginning. By 

employing field observation and monitoring data, geotechnical 

engineers can effectively assess and make informed decisions 

regarding the design, construction, and maintenance of earth 

structures. Should the need arise, adjustments to the design can be 

implemented during the construction phase, under the condition that 

the gathered field information, supplemented by geotechnical 

analysis, substantiates such modifications. This approach is 

commonly referred to as the "learn as you go" method, coined by Karl 

Terzaghi, or the observational method, as proposed by Ralph Peck 

(Ridley, 2022). 

The clarity of objectives is crucial when implementing 

geotechnical instrumentations. As noted by Ralph Peck in Dunnicliff 

and Green (1988), every instrument employed in a project should be 

carefully selected and strategically placed to address a specific 

question. Dunnicliff and Green (1988) identified multiple objectives 

of geotechnical instrumentation, which include: 1) safety (i.e. early 

warning system); 2) observational method; 3) construction control; 4) 

legal protection; 5) public relations; and 6) advancing the State-of-

the-Art.  

Ralph Peck, as highlighted in Ridley (2022), emphasizes the 

significance of promptly presenting field observations in a manner 

that effectively highlights the essential features, regardless of whether 

they are conducted in an elaborate and precise manner or quickly and 

informally. The true value of these observations lies in their 

usefulness, which is dependent on their timely display and clear 

representation. This approach ensures that the information remains up 

to date and readily accessible for decision-making purposes. The 

advent of Internet of Things (IoT) sensor technology enables 

monitoring of various parameters in-situ that can be accessed via 

web-based application in a real-time manner and thus makes this 

approach more economically feasible.  

Rainfall-induced landslides have been increasingly prevalent and 

widespread worldwide, a trend attributable to climate change, 

extreme weather events, and rapid development in hilly areas. As a 

result, geotechnical engineers frequently encounter daunting 

challenges when these natural disasters occur, particularly when road 

networks are affected, leading to road blockages. The situation 

becomes even more complex as rectification efforts become 

necessary precisely when road users rely on the traffic lanes for their 

transportation needs. The convergence of these circumstances places 

geotechnical engineers in a critical position, requiring them to find 

the delicate balance between ensuring the safety and stability of the 

affected slopes and minimizing disruptions to the transportation 

network. In such situation, a slope monitoring system is needed which 

can provide real-time monitoring results, interpreted in such a manner 

that engineers can readily grasp the essence of the slope behaviour 

and use them for well-informed decision making. 

In this study, an Internet of Things (IoT) slope monitoring system 

was presented consisting of a variety of sensors, namely MEMs-based 

tensiometers, piezometers, soil moisture sensor, tiltmeter, in-placed 

inclinometer and tipping bucket raingauge, all connected to Arduino-

based microcontroller which relied on Narrowband, NB-IoT, protocol 

for data transmission to the cloud server. A specially designed 

application platform was developed to convert the sensor readings to 

engineering unit, geotechnical parameters, and a landslide hazard 

index that aid in decision making. A case history of Kratu-Patong 

Road Landslide in Phuket, Southern Thailand, in Year 2022 was then 

presented to demonstrate how the system was used to aid in traffic 

management. 
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2. IOT SLOPE MONITORING SYSTEM 

2.1 Sensors 

The developed IoT slope monitoring system consists of a variety of 

sensors schematically shown in Figure 1 (Jotisankasa et al., 2023). 

The sensors include MEMs-based tensiometers/piezometers, 

(Jotisankasa et al., 2015), soil moisture sensor, tiltmeter, in-placed 

inclinometer (Jotisankasa et al., 2023) and tipping bucket raingauge 

(Figure 2), all connected to Arduino-based microcontroller which 

relied on Narrowband, NB-IoT, protocol for data transmission to the 

cloud server. Both piezometer and tensiometer are based MEMs 

pressure sensor technology, incorporated with low-air entry filter for 

piezometer and high-air entry ceramic for tensiometer. The 

tensiometer’s water reservior are carefully filled with deaired water 

as explained by Jotisankasa et al. (2015) and capable of measuring 

pore-water pressure in the range of -80 kPa to 700 kPa. While the 

tensiometers can measure negative pore-water pressure (i.e. suction) 

in slope, the piezometer can measure only positive pore-water 

pressure and should only be installed at the depth below the 

groundwater table.  

The tiltmeter and in-place inclinometer utilize analog 

accelerometers with a sensitivity of 140 mV/deg and a maximum 

reading range of ±15 degrees. While both instruments serve their 

purpose, there are important distinctions between them. The tiltmeter 

is comparatively easier to install, but its functionality is limited to 

indicating slope surface movement only. The in-place inclinometer 

can measure the slope movement at varying depths and be used to 

estimate the lateral movement and thus determined the slip surface 

location. Though giving more information on slope behaviour, the in-

place inclinometer requires specifically built borehole and is much 

more expensive to install than the tiltmeter. For shallow slide 

application, the tiltmeter, which is attached to a steel pole down to 

about 1m depth, tend to be much more cost-effective and easier to 

install. The primary advantage of both in-place inclinometer and 

tiltmeter in this study lies in its ability to monitor continuous 

movement in real-time, eliminating the need for frequent site visits to 

take measurements, as is the case with conventional inclinometer 

probes. This feature significantly reduces the hassle associated with 

data collection and analysis. 

 

 

Figure 1  Schematic of the IoT sensors 

 

 

Figure 2  Photographs of the sensors; a) tensiometer, b) 

piezometer, c) soil moisture sensor, d) tiltmeter, e) in-place 

inclinometer and f) raingauge and IoT datalogger station 

 

2.1 On-Line Slope Monitoring Platform 

A web-based application was developed on a cloud server in order to 

process the data transmitted via the NBIoT network, specifically for 

slope engineering purposes. The core application is called 

Geotechnical Innovation Laboratory (GIL) platform. The transmitted 

sensor reading in raw unit, e.g. voltage, counts, etc, can then be 

converted to the engineering unit of interests (i.e. kPa, mm, degree, 

etc), by a user-specified conversion linear equation as follows; 

 

𝐘 = (𝐕 − 𝐕𝐢)/𝐬      (1) 

 

where 𝐕 is the sensor reading in raw unit, 𝐘 is the sensor reading in 

engineering unit, 𝐕𝐢  is the initial zero the sensor reading (i.e. the 

reading in raw unit corresponding to the zero value in engineering 

unit, if 𝐘 = 𝟎, 𝐕 = 𝐕𝐢), and 𝐬 is the sensor sensitivity. Typical values 

of sensitivity and initial zero for different sensors are summarized in 

Table 1. Notably, since the tensiometer and piezometer are based on 

absolute pressure sensor, their initial zero readings are dependent on 

the atmospheric pressure and thus on the elevation of the ground at 

the point of installation. The soil moistures sensor’s calibration 

coefficients are also dependent on soil type and thus a separate 

calibration should be performed on the soil collected from the specific 

site where the sensor is installed as also highlighted by Jotisankasa et 

al. (2023). The GIL platform allows the users to specify all the 

calibration coefficients and thus capable of displaying the sensor’s 

reading in engineering units in a real-time manner.  

Accuracy and reliability of these sensors may be affected in long 

term deployment, particularly in adverse environmental conditions. 

Erratic readings, such as significant fluctuations in measurements, are 

indicative of sensor malfunction. It is advisable to conduct periodic 

checks on the sensors' zero readings and sensitivities annually. 

However, this process typically requires sensor removal and 

reinstallation, which can be resource-intensive in terms of both 

budget and time. These checks can be performed on-site for devices 

like the tensiometer and piezometer. One method involves filling the 

casing pipe with water to establish a known pressure head against 

which the sensor's reading can be compared. 
 

Table 1  Typical calibration coefficients for different sensors 

Sensor type 
Sensitivity, s 

Initial zero 

reading, 𝐕𝐢 

Tensiometer/Piezometer 6.6 mV/kPa 780 to 850 mV 

Tiltmeter/Inclinometer -140 mV/Degree 2200-2600 mV 

Soil moisture sensor -105 mV/% ~4700 mV 

Raingauge 1 0 
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2.1.1 Factor of Safety 

For slope stability application, the factor of safety represents the main 

index that engineers readily understand as a measure of safety and 

stability of the slope. It is well known (e.g. Buscarnera, & di Prisco, 

2011, Cascini et al., 2010, Jotisankasa et al., 2015) that for rainfall-

induced landslide, it is the pore-water pressure that controls the 

effective stress, shear strength and ultimately the slope stability. The 

developed platform was thus designed so that the factor of safety can 

be processed and displayed in a real-time manner, based on the pore-

water pressure measurement. As a first step, the infinite slope model 

was used to calculate the factor of safety, 𝐹, as shown in Equation (2) 

below.  

𝐹 =
𝑐′+𝑐𝑟+𝛾𝑧∙cos2𝛽 tan𝜙′−𝑢𝑤tan𝜙′′

𝛾𝑧 sin𝛽 cos𝛽
   (2) 

where 𝛾 is the total unit weight of soil, 𝑧 is the depth of failure plane, 

𝛽 is slope angle, 𝑐′ is effective cohesion intercept, 𝑐𝑟 is root cohesion 

which is related to plant root reinforcement and root area ratio (e.g. 

Mahannopkul and Jotisankasa, 2019). The root cohesion can be 

assumed either as constant or as functions of depth. 𝜙′  is effective 

angle of shearing resistance, 𝑢𝑤  is pore water pressure, and 𝜙′′ is the 

angle of shearing resistance due to pore-water pressure (positive or 

negative). For the case that 𝑢𝑤>0 (saturated soil), 𝜙′′equals 𝜙′. For 

unsaturated soils, 𝑢𝑤<0 and 𝜙′′equals 𝜙𝑏~ 𝑡𝑎𝑛−1(𝑆𝑟𝑡𝑎𝑛𝜙′). These 

parameters can be defined by users in the platform. It is however 

important to note that the infinite slope mode is used only as an initial 

estimate of the factor of safety. In reality, the slip surface may be slip 

circle or of irregular shape and the detailed slope stability analysis 

should be conducted to find the variations of 𝐹  with pore-water 

pressure and used as input in the platform.  

 

2.1.2 Critical Pore Water Pressure and Soil Moisture 

It is noted that the threshold value of pore-water pressure at different 

values of factor of safety, 𝐹, can be calculated by rearranging the 

Equation (2) as follows. 

𝑢𝑤,𝑐𝑟 =
𝑐′+𝑐𝑟+𝛾𝑧∙cos2𝛽 tan𝜙′−𝐹×𝛾𝑧 sin𝛽 cos𝛽

tan𝜙′′   (3) 

This critical values of pore-water pressure at failure, 𝑢𝑤,𝑐𝑟 , can 

then be estimated by setting the factor of safety equal to 1 as shown 

in Equation (3). Additional margin of safety can be added by inserting 

different values of 𝐹. Once the critical values of 𝑢𝑤 is determined, 

the corresponding soil moisture at critical condition can then be 

estimated using the relevant soil-water retention curve (e.g.  

Kankanamge et al., 2018). It is interesting to note that an increase in 

root cohesion, 𝑐𝑟 , due to slope vegetation can cause the critical pore-

water pressure to rise, thus increasing the threshold for landslide 

warning. The effect of land cover on the landslide warning threshold 

can be specified in this manner. 

 

2.1.3 Critical Rainfall Envelope 

The rain pattern, plotted as daily rainfall versus antecedent rainfall 

(accumulated rain in previous few days), can provide a useful tool for 

roughly estimating when slope failure is likely to occur, as suggested 

by many previous researchers (e.g., Lumb, 1975, Crozier & Eyles, 

1980, Mairaing et al., 2012). An example of such plot for a case 

history of Kratu-Patong road landslide in phuket, presented thereafter, 

is shown in Figure 3. The failure critical rainfall envelope demarcates 

the rainfall patterns that induced major landslide from the others that 

do not. The warning rainfall envelope sets the boundary of rain 

pattern that induce minor landslide. 

 
Figure 3  Critical rainfall envelope for Kratu-Patong road 2022 

landslide in Phuket 

 

2.1.4 Critical Slope Movement 

Soil movement is commonly used as an index for indicating slope 

instability (e.g. Sheikh et al., 2021, Soralump et al., 2021, Jotisankasa 

et al., 2023). Tiltmeter attached to a rod driven onto slope surface 

(down to about 0.7 to 1 m deep) can be used to monitor the shallow 

slope movement, while inclinometer is traditionally used for 

detecting horizontal slope movement at greater depths.  Either the 

movement magnitude (degree or mm) or movement rate (deg/h or 

mm/h) can be used to classify severity of movement. Based on Sheikh 

et al. (2021) the movement type is classified as very slow (<0.004 

degree/h), slow (0.004-0.04 degree/h), moderate (0.04-0.4 degree/h) 

or rapid (>0.4 degree/h) (Sheikh et al., 2021). Alternatively, slope 

deformation analysis (e.g. FEM) can be used to estimate the 

magnitude of threshold movement (mm or degree) as warning 

criteria. In the developed platform in this study, users have the 

flexibility to configure either a critical threshold for slope movement 

(in degrees or millimeters) or a slope movement rate (in degrees per 

hour or millimeters per hour), as per their specific needs. 

 

2.1.5 Weighted Hazard Index 

In order to provide early warning  based on an overall hazard index, 

that take into account all measurement results from different types of 

sensors (i.e. rainfall, pore-water pressure, soil moisture and 

deformation), a simplified weighting approach is proposed in this 

study. A normalization method was used to calculate the hazard 

warning index, 𝑊𝑖, for each sensor  𝑖 as follows, 

𝑊𝑖 = 100 ×
(𝑌𝑖−𝑇𝑚𝑖𝑛,𝑖)

(𝑇𝑚𝑎𝑥,𝑖−𝑇𝑚𝑖𝑛,𝑖)
   (4) 

where 𝑊𝑖 is the %warning, 𝑇𝑚𝑖𝑛,𝑖 is the minimum reading of sensor 𝑖  

𝑇𝑚𝑎𝑥,𝑖 is the maximum reading of sensor 𝑖 and 𝑌𝑖 is the current sensor 

reading at any given time (see Figure 4). By normalizing the sensor 

reading, the 𝑊𝑖  varies between 0 and 100% corresponding to the 

prescribed minimum and maximum value of each sensor. The 𝑊𝑖 

value close to 100% indicates that the sensor reading is reaching the 

maximum value which corresponds to the critical value (e.g. the pore-

water pressure at which factor of safety equal to 1 or critical rainfall 

intensity) set earlier in the platform. It should be noted that for 

tiltmeter or soil movement, both positive and negative sign can be 

equally critical. Hence the absolute value is used when calculating the 

warning index for soil movement as follows. 

𝑊𝑖 = 100 × |
(𝑌𝑖−𝑇𝑚𝑖𝑛,𝑖)

(𝑇𝑚𝑎𝑥,𝑖−𝑇𝑚𝑖𝑛,𝑖)
|   (5) 

The overall warning index, OW, is then subsequently calculated 

by combining all the %warning, 𝑊𝑖 ,  for each sensor from 𝑖 to 𝑛, 

based on the significance weight  𝑥𝑖  for each sensor as in the 

following.  

 

OW =
∑ 𝑊𝑖×𝑥𝑖

𝑛
𝑖=1

∑ 𝑥𝑖
𝑛
𝑖=1

    (6) 
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Figure 4  Normalization approach for sensor reading (Y) to the 

warning index W 

 

The significance weight for each sensor, 𝑥𝑖, could be determined 

based on the level of confidence that each sensor holds, its accuracy, 

relative position on slope, the proximity of the sensor to critical zone, 

etc. The significance weight (𝑥𝑖) assigned to each sensor is dynamic 

and can be fine-tuned within the platform. This flexibility enables 

adjustments to be made as needed. For instance, if a sensor were to 

experience a malfunction subsequently, its significance weight could 

be promptly adjusted to zero. This adjustment would result in the 

sensor's readings being excluded from the warning calculation. Any 

dynamic adjustment of the weight factors within the platform has to 

be done manually by experts. An illustrative example of this approach 

is provided in the following section. 

 

3. KRATU-PATONG ROAD 2022 LANDSLIDE 

3.1 Background 

The Kratu-Patong Road landslide occurred on October 16, 2022, 

triggered by prolonged and heavy rainfall. The rainfall data from the 

closest weather station revealed a daily rainfall exceeding 150 mm, 

with a 3-day cumulative total surpassing 200 mm, as illustrated in 

Figure 3. This intense precipitation led to a slope failure, resulting in 

the complete collapse of one of the road lanes, as depicted in Figure 

5. 

Although the remaining road lanes were deemed precarious for 

commuters, substantial pressure emerged from both local authorities 

and private entities to reopen these lanes to the public. This urgency 

arose due to the fact that this road represented the sole accessible 

route to Patong Beach—an immensely popular beach resort town that 

attracts a high volume of tourists.  
 

 

Figure 5  Road damage due to Kratu-Patong 2022 landslide in 

Phuket 

 

Recognizing the immediate requirement, the Internet of Things (IoT) 

slope monitoring system, previously pioneered by the Geotechnical 

Innovation Laboratory at Kasetsart University, was swiftly deployed 

on-site as an interim solution. Its purpose was to furnish a reliable 

gauge for both local authorities and the Department of Highways. 

This data-driven insight would aid in making informed judgments 

regarding traffic management along the road during the ongoing slope 

stabilization endeavors. 

 

3.2 Field Investigation and Sensor Installation 

A rapid site investigation revealed that the depth to bedrock extended 

to approximately 6 meters, with the groundwater table positioned at a 

depth of 1.5 meters (as illustrated in Figure 6). The upper layer of soil 

was derived from biotite-muscovite granite and classified as 

brownish-to-whitish grey clayey sand. Previous study (Jotisankasa & 

Vathananukij, 2008) showed this granitic residual soil was prone to 

landslide and typically contained 3% gravel, 39% sand, 21% silt, and 

37% clay. Our subsequent actions included the deployment of a 

piezometer at the 6-meter depth, a tensiometer at 2.67 meters, and two 

soil moisture sensors at depths of 0.1 meters and 0.5 meters. 

Additionally, three tiltmeters were strategically positioned on the 

back slope and along the water channel further upslope, along with 

the installation of a tipping bucket raingauge. It's worth noting that 

although the most suitable location for sensor installation would have 

been on the lower side of the slope, closer to the failed soil mass, 

operational constraints compelled us to install the sensor arrays on the 

upper side of the road, as visualized in Figure 7. 

 

 

Figure 6  Soil investigation 

 

 

Figure 7  Location of installed sensors; 1: Piezometer (6 m), 2: 

Tensiometer (2.67 m), 3: Tiltmeter (back slope), 4: Tiltmeter 

(upper channel), 5: Tiltmeter (water channel), 6: Soil moisture 

(0.1 m), 7: Soil moisture (0.5 m) and 8: Rain gauge 

 

3.3 Stability Analysis and Warning Criteria 

An unmanned aerial vehicle (UAV) survey was conducted with the 

objective of creating a three-dimensional model of the slope, 

employing the photogrammetry method. The resulting 3D model, as 

depicted in Figure 8, highlights the critical cross section that was then 

utilized for subsequent slope stability analysis. A uniform soil profile 

was specified based on in-situ SPT tests, with the strength parameters 

set as follows, effective cohesion, 𝑐′ = 10 𝑘𝑃𝑎,  angle of shearing 

resistance, 𝜙′ = 28𝑜 and unit weight, 𝛾 = 18 
𝑘𝑁

𝑚3. Figure 9 presents 

the findings of the slope stability analysis, incorporating data from the 

monitored pore-water pressure profile alongside the assumed pore-

water pressure values. 
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Figure 8  3D-model of the slope based on UAV survey 

 

 
Figure 9  Stability analysis results 

 

Significantly, we utilized monitored pore-water pressures, 

gathered from both piezometers and tensiometers, along with the 

spring line's emergence point on the lower slope to establish the pore-

water pressure profile and phreatic line, as illustrated in Figure 10. 

Subsequent to this data compilation, a sequence of analyses was 

performed to derive the factor of safety variations in relation to pore-

water pressure at the monitoring station's location. These findings are 

graphically depicted in Figure 11. 

 

 

Figure 10  Pore-water pressure profile from monitoring results 

 

Evidently, there exists a nearly linear relationship between the 

increase in pore-water pressure and the subsequent decrease in the 

factor of safety. To ensure a comprehensive analysis that considers 

the influence of road traffic, surcharge pressures of 10 or 20 kN/m2 

were incorporated. As an initial safety measure, we designated a 

pivotal indicator for slope instability warning: a threshold pore-water 

pressure of 30 kPa, specifically at a depth of 6 meters. This threshold 

is based on the slope stability analysis using the failed slope profile 

and a surcharge ranging between 10 and 20 kPa (Figure 11), 

corresponding to a factor of safety of approximately 1.15, providing 

a 15% margin of safety. Such threshold is related to such factors as 

soil strength parameters, unit weight, slope geometry and surcharge. 

It's worth noting that additional factors such as soil cover and rainfall 

contribute to the spatial and temporal variation of pore-water pressure 

within the slope, consequently influencing slope stability. While a 

detailed coupled rainfall stability analysis could shed light on this 

aspect, such an investigation lies beyond the scope of this study. The 

plant roots would also affect the shear strength and subsequently the 

threshold pore-water pressure. However, at 6 m depth the presence of 

plant roots is expected to be minimal and therefore the root cohesion 

is not considered in the calculation. 

Furthermore, it's important to highlight that any increase in 

surcharge load significantly reduces the critical pore-water pressure 

threshold. This underscores the critical importance of restricting 

heavy traffic on the road while stabilization efforts were ongoing. To 

address this, a well-compacted earth berm was implemented by local 

authorities for stabilizing the collapsed slope. During construction, 

some traffic was permitted on the upper road due to pressure from the 

local community. 

 

 

Figure 11  Variation between factor of safety and pore-water 

pressure from 6 m depth at the monitoring station 

 

Notably, there was an approximately 45-day interim period 

between the slope collapse incident (16/10/2022) and the completion 

of stabilization berm (30/11/2022). During this time, continuous 

monitoring and daily reporting of the ongoing stability status were 

provided to the authorities to facilitate informed decisions regarding 

traffic management. It is worth mentioning that due to the ongoing 

alterations in the slope profile during the stabilization work, 

adjustments were made to increase the threshold of pore-water 

pressure. This adjustment was made to accommodate the additional 

safety margin offered by the presence of the berm using stability 

analysis of stabilized profile. Figure 12 depicts the variation in factor 

of safety with pore-water pressure between two slope geometries: the 

failed profile and the stabilized profile as of Date 19-11-22. By this 

date, approximately half of the buttress berm had been completed (as 

shown in Figures 12b and c), resulting in an increase in factor of 

safety and a partial relaxation of the threshold for critical pore-water 

pressure. 

 

3.4 Warning Events 

While the berm construction was in progress, there was mounting 

pressure to reopen the road lane for regular four-wheel vehicles. 
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Initially, only motorcycles were permitted on the road above the 

failed slope. On November 5, 2022, the road was gradually reopened 

for regular vehicles. However, this decision revealed signs of 

movement, as demonstrated by tiltmeter readings (Figure 13). These 

readings indicated initial backward movements (towards backslope) 

followed by downhill movement between November 10th and 11th, 

2022.   
 

 
a) 

 
b) 

 
c) 

Figure 12  Increase in factor of safety due to stabilization work 

a) variation of factor of safety with pore-water pressure, b) UAV 

photos used to determine new slope geometry and c) slope 

profile as of Date 19-11-22 and stability analysis result  

 

Notably, two out of three tiltmeters demonstrated a consistent 

response, suggesting the initiation of slope movement. The velocity 

of this movement was also computed on an hourly basis, expressed in 

degrees per hour, utilizing linear regression, as depicted in Figure 

13b. Negative values signify movement towards the hill (backwards), 

whereas positive values denote downhill movement. Distinct spikes 

in movement were observed, with peak values ranging from -1.7 to 

1.8 degrees per hour, notably triggered by increased traffic intensity. 

Such velocity exceeded the “rapid slope movement” threshold (>0.4 

degree/hour) as suggested by Sheikh et al. (2021). This finding was 

further corroborated by an increase in pore-water pressure (or a 

decrease in suction) as recorded by the tensiometer (Figure 14). It is 

also interesting to note that the tensiometer could capture the increase 

in pore-water pressure in a negative range (in other words, the 

reduction in suction) due to the traffic-induced slope movement. In 

contrast, the piezometer failed to register any alteration in pore-water 

pressure unless the groundwater table ascended above the filter point. 

The consistent data from both types of sensors, namely, tensiometer 

and tiltmeter, served as a significant alarm, prompting us to initiate 

further discussions with local authorities. It should be noted that there 

was an increase in pore-water pressure due to rainfall earlier during 7 

to 8/11/2022, though there was no sign of slope movement as no 

heavy traffic was still not allowed at the time.  

While piezometers are valuable for monitoring pore-water 

pressure, relying solely on them has limitations. They may miss 

localized variations and rapid changes in pore-water pressure in the 

negative range especially at shallow depths, which can be crucial for 

detecting early signs of slope instability. Additionally, piezometers 

only capture one aspect of slope behavior, neglecting factors like 

excessive surcharge load, displacement, or runoff. To address this, 

our study proposes an IoT-based monitoring system integrating 

multiple sensors to provide a more comprehensive understanding of 

slope behavior, enabling better-informed decisions by geotechnical 

engineers. 

 

 

 
Figure 13  Tiltmeter readings and rainfall during the warning 

event 

 

In light of these findings, the decision to reopen the road for four-

wheel vehicles was swiftly reversed, and traffic control was 

reinstated, allowing only motorcycle users on the road. While this 

policy shift may have initially raised concerns among the public, it 

was grounded in engineering evidence, and the results from the 

instrumentation provided the public with greater confidence and 

understanding of the situation. Following the reinstatement of traffic 

control measures, the tiltmeter readings revealed no indications of 

further movement. This outcome bolstered our confidence in the 

decision that had been taken. The focus was then shifted to 

accelerating the berm construction to finish the stabilization work. 

Figure 15 provides a visual representation of the slope condition as it 

approached completion and afterward. It's important to note that the 
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slope monitoring instruments continued to operate, ensuring ongoing 

safety by detecting any movement on the backslope side. 

 

 
Figure 14  Pore-water pressure readings and rainfall during the 

warning event 

 

The lessons learned from this incident have motivated our 

research team to develop a universal warning index derived from 

sensor data for automated hazard level indication. The weighted 

hazard index as explained earlier is one of such approaches. Figure 

16 showed the calculated overall warning index, OW, based on 

parameters shown in Table 2. It is noted that the normalization and 

weight factors and threshold levels were re-adjusted in hindsight, 

after the warning event was over, to reflect the decision reached 

previously by expert panel during the incident. Regarding the soil 

movement measured using tiltmeters, there were two ways to 

calculate the warning index, namely Method 1 which used the 

absolute tilting (in degree) and Method 2 which utilized the absolute 

tilting rate (in degree per hour). The absolute values of tilting were 

used in calculating the warning index, 𝑊𝑖, for tiltmeter reading, since 

both toward-hill and down-hill directions could equally be a precursor 

to slope failure depending on the mechanism of the movement.  
 

 
a) 

 
b) 

Figure 15  Slope condition in a) 28th November 2022; b) 

February 2023 

Table 2  Normalization parameter and significance weight 

assumed for warning index calculation 

Sensor, i Unit 
𝑻𝒎𝒊𝒏 𝑻𝒎𝒂𝒙 

significance 

weight  𝒙𝒊 

1:Piezometer  

(6 m) 

kPa 0 30 2 

2:Tensiometer 

(2.7 m) 

kPa -15 10 3 

3: Tiltmeter 1 

(Back slope) 

Degree* 0 1 3 

Degree/hr

** 

0 0.4 3 

4: Tiltmeter 2 

(Upper water 

channel) 

Degree* 0 1 3 

Degree/hr

** 

0 0.4 3 

5: Tiltmeter 3 

(Water channel) 

Degree* 0 1 3 

Degree/hr

** 

0 0.4 3 

6: Soil moisture 

(0.1 m) 

% 0 42 1 

7: Soil moisture 

(0.5 m) 

% 0 42 1 

Rain gauge  mm/5min 0 8 2 

* Method 1; ** Method 2 

 

 

 
 

Figure 16  Overall warning index calculated using a) Method 1 

and b) Method 2 

 

Upon comparing the warning indices derived from Methods 1 and 

2, it becomes evident that Method 1, relying on tilting magnitude, 

offers a continuous warning message. In contrast, Method 2, based on 

tilting velocity, issues a brief warning pulse lasting 1-2 hours, 

activated only when the velocity surpasses the predetermined 

threshold. The transient nature of Method 2's warning could 
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potentially be overlooked if not promptly addressed. Based on the 

warning event in this study using Method 1, the first alarm threshold 

for over warning could be set at 50% as indicated in Figure 16a.  

In the context of Method 1, the warning message persists even 

after the slope has apparently returned to a safe condition, as observed 

from 12/12/22 onwards. This continuous alert will endure unless the 

tiltmeter's zero reading is manually reset, necessitating human 

intervention. It is clear that expert oversight in data presentation and 

reporting remains essential for ensuring the accurate representation of 

slope safety. The automated warning system is useful when no 

personnel could remain at their post all the times. To issue warning, 

panel discussion and expert judgement are still needed.   
 

3.5 On-Going Monitoring Results 

After the slope stabilization completion, the monitoring system has 

still been in operation until September 2023 and the results over the 

entire monitoring period are shown in Figures 17 to 20. During drying 

period spanning from January until May 2023, the pore-water 

pressure from the piezometer installed at 6 m depth (Figure 18) 

indicated only zero reading during the dry season due to the inherent 

limitation of the device as discussed earlier. A considerable rise in 

ground water table and positive pore water pressure could be 

observed on 19/08/2023 after the 1 day, 3 day and 7 day accumulated 

rainfalls reached the values of 14.8 mm, 42.6 mm and 262.6 mm 

respectively. However, the pore-water pressure at 2.67 m depth 

measured using the tensiometer (Figure 18) became more negative 

and reached the lowest value of about -50 kPa. The volumetric water 

content, as illustrated in Figure 19, peaked at approximately 42%, 

signifying saturation, and maintained a relatively stable level during 

the crucial period in December 2022. Following stabilization efforts, 

the soil surface was paved with concrete, expected to contribute to a 

reduction in infiltration. Subsequently, during the dry season, the 

water content decreased, reaching its lowest point at 30-35%. As the 

rainy season returned in 2023, the volumetric water content 

experienced a smaller peak at 39%, indicative of a less permeable 

surface. 

 

 

Figure 17  Daily rainfall and accumulated rainfall from Oct 

2022 to Sep 2023 

 

 

Figure 18  Pore-water pressure readings and 5 min rainfall from 

Oct 2022 to Sep 2023 

 

 

Figure 19  Volumetric water content and 5 min rainfall from 

Oct 2022 to Sep 2023 

 

The slope movement throughout the entire monitoring period is 

illustrated in Figure 20, indicating a cessation of movement in the 

water channel at the crest of the stabilized slope (Sensor 5: Tiltmeter 

3). This cessation persists despite heavy rainfall observed in the year 

2023, underscoring the effectiveness of the stabilization efforts. 

However, noticeable movement is evident in the upper back slope, 

which remains unstabilized. By the end of September 2023, the tilting 

degree reached approximately 0.9 degrees. The average movement 

rate for the back slope was calculated at 0.126 degrees per month, 

equivalent to 0.000175 degrees per hour, categorizing it as a very 

slow movement according to Sheikh et al. (2021). 

 

Figure 20  Slope movement and 5 min rainfall from Oct 2022 to 

Sep 2023 



Geotechnical Engineering Journal of the SEAGS & AGSSEA Vol. 55 No. 1 March 2024 ISSN 0046-5828 

82 

4. MODELLING OF SLOPE RESPONSE 

In this section, a machine learning (ML) model, namely Artificial 

Neural Network (ANN), was used to predict the pore-water pressure 

at different depths based on various meteorological measurements, 

namely 5-min, 1-hour, 1-day, 3-day and 7-day antecedent rainfalls. 

The model was trained using the monitoring data from 4 November 

2022 until 9 January 2023, 20% of which were used for testing, and 

the remaining 80% for training. The objective is to demonstrate 

correlation between rainfall parameters and pore-water pressure and 

to suggest ways to modelling them for cases in which any of the 

measuring equipment may not be available due to economical 

constraint. For instance, there are many slopes in Phuket where only 

rainfall data is available, yet none of the geotechnical measurement, 

such as pore-water pressure or slope movement, exists in those sites. 

Such ML models will be useful to provide a baseline prediction of 

pore-water pressure response for sites of similar condition. Only ML 

models were demonstrated in this section while the traditional 

seepage finite element modelling (e.g. Jotisankasa et al., 2015) was 

not included. This is because of the simplicity of the ML models and 

their readiness to be included with the existing IoT platform.  

The neural network model architecture employed in this study 

was defined using the TensorFlow and Keras framework with Python 

code in Google Colab. The model was designed an input 

dimensionality of 5 and a 2-dimensional output as shown in Figure 

21. The input nodes comprised of 5-min, 1-hour, 1-day, 3-day and 7-

day antecedent rainfalls in mm, while the output nodes were pore-

water pressure in kPa at depths of 6 and 2.67 m. The choice of specific 

antecedent rainfall intervals (5-min, 1-hour, 1-day, 3-day, 7-day) as 

input features for pore-water pressure prediction was based on the 

established research on critical rainfall envelopes (e.g., Lumb, 1975, 

Crozier & Eyles, 1980, Mairaing et al., 2012) as discussed in Section 

2.1.3. The pore-water pressure is expected to be mainly influenced by 

both short-term and long-term antecedent rainfalls. 

The neural network was constructed using the Sequential API, a 

straightforward way to build a linear stack of layers. This architecture 

is a type of feedforward neural network, where information flows 

unidirectionally from the input layer through the hidden layers to the 

output layer. The model comprises two dense (fully connected) 

layers. The first dense layer processed the input data using the 

rectified linear unit (ReLU) activation function. The first layer had 10 

nodes, and each node was connected to the 5 input nodes. The second 

dense layer with a linear activation refined the representation 

obtained from the previous layer. This layer had 2 nodes, suitable for 

tasks requiring a 2-dimensional output. The model addresses the 

varying influences of rainfall on pore-water pressure at different 

depths by incorporating two separate output nodes for depths of 6 and 

2.67 meters. This approach recognizes that the travel distance of the 

wetting front differs for each depth, impacting the response of pore-

water pressure. To accommodate these differences, distinct weight 

factors and activation functions were utilized for each depth. The 

choice of ReLU activation in the first layer and a linear activation in 

the second layer aligned with common practices for regression tasks. 

The model was configured for training using the Adam optimizer with 

a custom learning rate of 0.01. The mean squared error loss function 

was employed for optimization.  

 

 

Figure 21  ANN model architecture used in this study 

The predictive accuracy of the model is visualized in Figure 22. 

Key evaluation metrics, including the coefficient of determination 

(R²) and root-mean-squared error (RMSE), were derived as 0.644 and 

3.637 kPa, respectively. This level of fitting is deemed satisfactory 

for an initial phase, laying the foundation for future advancements in 

Artificial Neural Network (ANN) modeling within the Internet of 

Things (IoT) framework. 

It is essential to note that the current ANN model's applicability 

and robustness is limited to sites with conditions resembling those 

present in the training dataset. Other site conditions of different 

geological settings and climates beyond the training dataset could 

affect the robustness of the model. As the dataset expands to 

encompass a more diverse range of slope types, geometries, and 

geological settings through extensive field monitoring, the ANN 

model can undergo refinement. This refinement process aims to 

enhance the model's reliability and accuracy, making it more robust 

for general application across varying conditions. This underlines the 

potential for ongoing developments in ANN modeling, fostering its 

integration into broader IoT platforms. 

 

 

Figure 22  Comparison between the ML predictions and true 

values of pore-water pressure (in kPa) from two measurements 

at depths of 6 and 2.67 m 

 

5. CONCLUSIONS 

This paper explores the use of IoT sensor technology in geotechnical 

engineering, focusing on an ongoing IoT slope monitoring system in 

Thailand. The system employs various sensors like MEMs-based 

tensiometers, piezometers, and tiltmeters, all connected to an 

Arduino-based microcontroller using NB-IoT for data transmission to 

the cloud server. An application platform converts sensor readings 

into geotechnical parameters, aiding engineers in making informed 

decisions. The paper also introduces a weighted approach for 

calculating landslide hazard levels based on sensor data. 

The Kratu-Patong Road landslide, triggered by heavy rainfall in 

October 2022, led to a road lane collapse and the implementation of 

an IoT slope monitoring system. Pressure to reopen the remaining 

lanes as the primary access route emerged, despite their riskiness. The 

warning event primarily arose from spikes in slope movement 

triggered by increased traffic intensity. Rapid slope movement during 

the incident involved a tilting magnitude of -2 to 1.2 degrees and a 

velocity ranging from -1.7 to 1.8 degrees per hour. Importantly, the 

continuous warning message derived from the calculation of the 

warning index based on tilting magnitude contrasts with an 

intermittent message based on tilting velocity. The tensiometer 

effectively identified the decrease in suction caused by slope 

movement, while the piezometer registered changes in pore-water 

pressure only when the groundwater table ascended above the 

measurement point. Ensuring the accurate portrayal of slope safety 

requires expert supervision in data presentation and reporting. The 

automated warning system proves valuable in situations where 

personnel cannot be present at all times. However, issuing warnings 

still necessitates panel discussions and expert judgment. 

Additionally, an Artificial Neural Network (ANN) model was 

employed to predict pore-water pressure at various depths using 5 
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rainfall parameters (5-min, 1-hour, 1-day, 3-day, and 7-day 

antecedent rainfalls). The model exhibited satisfactory predictive 

accuracy (R² = 0.644, RMSE = 3.637 kPa), showing promising 

potential for future integration with the IoT platform. 
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