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ABSTRACT: Based on the wave function, the stresses and particle displacements on the joint are derived when the incident P-wave and S-

wave are obliquely incident to the jointed complex rock masses. And then, a modified time domain recursive method (MTDRM) is proposed. 

Based on the MTDRM, this paper investigates the P-wave and S-wave propagation crossing the jointed complex rock masses. The effects of 

the wave impedance ratios and the incident angles on the transmission and reflection coefficients are discussed. It is found that the wave 

crossing the jointed complex rock masses is not always attenuated but may be strengthened in some special cases. 
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1. INTRODUCTION 

It is well known that natural rock masses contain many discontinuous 

interfaces, such as joints, pores, and fractures. When a seismic wave 

propagates through the discontinuous interfaces, it suffers energy 

dissipation and waveform changing (Li et al., 2018; Che et al., 2016). 

Finally, the seismic wave acting on the building and infrastructure 

will result in huge losses and damages. If we have deep knowledge 

towards the wave propagation, some suitable parameters can be 

proposed to design the building with better antiseismic properties. 

And the loss can be reduced when the building encounters an 

earthquake. Unfortunately, it is still far from complete for us to 

understand the wave propagation through the jointed rock masses.  

Also, although many novel methods for the underground cavern 

excavation emerge in an endless stream, blasting is still the usual 

method for mineral mining so far (Zeng et al., 2018). A blasting wave 

starts from the explosion source and gradually transfers into a stress 

wave due to the energy attenuation. When the stress wave encounters 

the joint, the complex transmission and reflection take place (Li et al., 

2011). The complex stress fields formed by the superposition of the 

transmitted and reflected waves are easier to cause the surrounding 

rock damage and even the structural collapse (Deng et al., 2014). 

Thus, from the above two engineering contents, it is important to 

study the stress wave propagation crossing the joint.  

In the previous studies, in order to simplify the problem, the stress 

wave is assumed to be perpendicular to the joint  (Li and Wang, 2019; 

Zhu et al., 2011), which avoids the wave mode conversion. The usual 

method for investigating the wave which is normally incident to the 

joint is the characteristic method. Using this method, the wave 

propagation through the linearly elastic joint is studied (Cai and Zhao, 

2000; Zhao et al., 2006). Subsequently, the interactions of the stress 

waves with the nonlinear joint (Zhao and Cai, 2001; Fang and Yong, 

2013) and the viscoelastic joint (Zhao and Cai, 2001) are studied.  

In a word, the characteristic method is effective to study the 

normally incident wave propagation. However, it is very difficult for 

the characteristic method to investigate the obliquely incident wave 

propagation. Many methods have been proposed and applied for 

solving the problem of an obliquely incident stress wave interacting 

with the joint, including the equivalent medium method (Li et al., 

2010; Li and Zhu, 2012), the scattering matrix method (Perino et al., 

2012; Perino et al., 2010), the virtual wave source method (Zhu and 

Zhao, 2013). Li and Ma (2010) also proposed a novel method named 

the time domain recursive method (TDRM). By using TDRM, the 

linearly elastic constitutive relationship is applied in the normal and 

tangential direction. The displacement discontinuity model 

(Schoenberg, 1983; Kitsunezaki, 1983) is introduced as the boundary 

condition, and finally, the particle velocity wave recursive equations 

are established. The relations between the transmission and reflection 

coefficients, wave frequency, and joint stiffness are analyzed. In fact, 

if the wave with a relatively large amplitude leads to the nonlinear 

deformation of the joint, it is not feasible to select the linear 

constitutive relationship for the joint. Some investigators (Song et al., 

2012; Li, 2013) applied the nonlinear constitutive relationship in the 

normal direction of the joint, i.e., BB model (Bandis et al.,1983; 

Bandis et al., 1985), to study the effect of the joint stiffness on the 

wave propagation. However, the above studies do not take into 

account the effect of the joint filling. Usually, the natural joints 

contain many fillings. Just because of the fillings, the displacement 

discontinuity cannot be satisfied any longer (Zhu et al., 2011). And 

the stresses in the two interfaces of the joint are discontinuous. Thus, 

by applying the stress discontinuity model, Zou et al. (2017) 

investigated the effects of the fillings on the transmission and 

reflection coefficients when the incident waves obliquely impinge the 

joints. In order to further discuss the joint viscoelastic deformation 

behavior caused by the filling, a more complex constitutive 

relationship, i.e., the standard linear solid (SLS) model, is used to 

characterize the stress and strain relation of the joint (Wang et al., 

2017). And the wave equations, in this case, were derived.  

The above studies are based on the assumption that the rock 

properties on the left and right interfaces of the joint are the same. As 

a matter of fact, in nature, the rocks on the left and right interfaces of 

the joint have different characteristics. The rock property differences 

cause wave refraction. From Snell’s law, the transmitted angle is not 

equal to the incident angle any longer, and the reflected angle of the 

reflected P-wave is not equal to the reflected angle of the reflected S-

wave neither. Although Fan et al. (2018) investigated the P-wave 

normally incident to the jointed complex rock masses by the 

characteristic method, the problem for the wave obliquely incident to 

the joint is more complicated than that for the normally incident case. 

Therefore, based on the wave function, a modified time domain 

recursive method (MTDRM) is proposed in this paper. And then 

using this method, the P- and S-wave propagations crossing the 

jointed complex rock masses with the arbitrary incident angles are 

investigated.   

 

2. A MODIFIED TIME DOMAIN RECURSIVE METHOD 

2.1 The Stresses and Particle Velocities of the Joint Impinged 

By an Incident P-Wave 

The whole space is separated into two half-spaces by the joint 

interfaces (see Figure 1). The half-space before the joint is zone Ⅰ, and 

the other half-space is zone Ⅱ. When the obliquely incident planar P-

wave or S-wave impinges the jointed complex rock masses, four 

separate waves are generated. i.e., reflected P-wave and S-wave and 

transmitted P-wave and S-wave (Nakagawa et al., 2000). Their 

corresponding emergence angles are α1, β1, α2, β2, respectively. 

Usually, the rock properties on the left and right interfaces of the joint 

are different. Thus, from Snell’s law, the four angles are not equal to 

each other. The incident wave propagation direction is assumed to be 
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in the x-y plane and the joint interfaces to be in the y-z plane. In the 

coordinate system, the five stress wave functions can be uniformly 

expressed as: 

u(i)=A
(i)exp⁡[j(kx

(i)
x+ky

(i)
y-ωt)]                                                  (1) 

 
Figure 1  Schematic of reflected and transmitted P-wave and S-wave 

caused by incident P-wave or S-wave 

 

where A is the amplitude; u is the displacement; j is the Imaginary 

unit; k is the wave vector; ω is the angular frequency;  superscript i is 

equal to 0~5, and each value from 0 to 5 corresponds to the incident 

S-wave, the incident P-wave, the reflected P-wave and S-wave, the 

transmitted P-wave and S-wave, respectively. The components of the 

wave vector in the x, y directions are: 

kx
(1)
=

ω

CP1
cosα1  ky

(1)
=

ω

CP1
sinα1 

kx
(2)
=-

ω

CP1
cosα1  ky

(2)
=

ω

CP1
sinα1 

kx
(3)
=-

ω

CS1
cosβ

1
  ky

(3)
=

ω

CS1
sinβ

1
                                                      (2) 

kx
(4)
=

ω

CP2
cosα2  ky

(4)
=

ω

CP2
sinα2 

kx
(5)
=

ω

CS2
cosβ

2
  ky

(5)
=

ω

CS2
sinβ

2
 

where CP1, CS1, CP2, CS2 are the P-wave and S-wave velocities in the 

rocks before and after the joint, respectively. The displacements are 

discomposed along the x, y directions, and then the following 

equations can be obtained: 

ux
(1)
=u(1)cosα1  uy

(1)
=u(1)sinα1 

ux
(2)
=-u(2)cosα1  uy

(2)
=u(2)sinα1 

ux
(3)
=u(3)sinβ

1
  uy

(3)
=u(3)cosβ

1
                                                      (3) 

ux
(4)
=u(4)cosα2  uy

(4)
=u(4)sinα2 

ux
(5)
=u(5)sinβ

2
  uy

(5)
=-u(5)cosβ

2
 

The rock is assumed to be linearly elastic. The constitutive 

relationship of the rock can be expressed as: 

σxx=(λ+2μ)
∂ux

∂x
+λ

∂uy

∂y
                                                                     (4) 

σxy=μ (
∂ux

∂y
+
∂uy

∂x
)                                                                            (5) 

where 𝜆, 𝜇 are Lame constants. Let φ(i)=kx
(i)
x+ky

(i)
y-ωt. In the left 

interface of the joint the normal and shear stresses triggered by the 

incident P-wave are:  

σxx
(1)
=(λ+2μ)

∂ux
(1)

∂x
+λ
∂uy

(1)

∂y
 

=(λ+2μ)cosα1A
(1)
exp⁡[jφ(1)]jk

x

(1)
+λsinα1A

(1)
exp⁡[jφ(1)]jk

y

(1)
 

=(λ+2μ)cosα1A
(1)
exp⁡[jφ(1)]j

ω

CP1
cosα1 

    +λsinα1A
(1)
exp⁡[jφ(1)]j

ω

CP1
sinα1 

=A
(1)
exp[jφ(1)] jω [(λ+2μ)cosα1

cosα1

CP1
+λsinα1

sinα1

CP1
] 

=
v(1)

CP1
(λ+2μcosα1)                                                                         (6) 

Substituting the material parameters λ+2μ=ρCP
2 and μ=ρCS

2 

into Eq. (6), and then one can obtain: 

σxx
(1)
=ρCPv(1-2sin2α1 (

CS1
2

CP1
2))                                                       (7) 

According to the conservation of momentum on the wave front, 

there is 𝜎 = 𝜌𝐶𝑣. Also, from Snell’s law, there is: 

⁡sinβ
1

sinα1
=
CS1

CP1
=√

1-2ν

2(1-ν)
                                                                         (8) 

From Eq. (8), Eq.(7) can be rewritten as: 

σxx
(1)
=σ(1)cos2β

1
                                                                            (9) 

Furthermore, in the tangential direction the shear stresses are:  

σxy
(1)
=μ(

∂ux
(1)

∂y
+
∂uy

(1)

∂x
) 

=μ [

cosα1A
(1)
exp⁡[jφ(1)]j

ω

CP1
sinα1

+sinα1A
(1)
exp⁡[jφ(1)]j

ω

CP1
cosα1

] 

=
𝑣(1)

𝐶𝑃1
𝜇𝑠𝑖𝑛2𝛼1 =σ(1)2𝑠𝑖𝑛2𝛽1𝑐𝑜𝑡𝛼1                                          (10) 

Similarly, on the left and right interfaces of the joint, the normal 

and tangential stresses triggered by the other waves can be expressed 

as: 

σxx
(2)
=σ(2)cos2β

1
  σxy

(2)
=-σ(2)2sin2β

1
cosα1 

σxx
(3)
=-σ(3)sin2β

1
  σxy

(3)
=-σ(3)cos2β

1
 

 σxx
(4)
=σ(4)cos2β

2
  σxy

(4)
=σ(4)2sin2β

2
cotα2                                      (11) 

σxx
(5)
=σ(5)sin2β

2
    σxy

(5)
=-σ(5)cos2β

2
 

The rock is assumed to be linearly elastic. The stress satisfies the 

superposition principle. After the stress components on the two 

interfaces of the joint are added, respectively, the stresses on the left 

interface of the joint can be expressed as: 

σ-=σxx
(1)
+σxx

(2)
+σxx

(3)
 

=σ(1)cos2β
1
+σ(2)cos2β

1
-σ(3)sin2β

1
                                             (12) 

τ-=σxy
(1)
+σxy

(2)
+σxy

(3)
 

=σ(1)2sin2β
1
cotα1-σ

(2)2sin2β
1
cosα1-σ

(3)cos2β
1
                          (13) 

The stresses on the right interface of the joint can be expressed as: 

σ+=σxx
(4)
+σxx

(5)
=σ(4)cos2β

2
+σ(5)sin2β

2
                                         (14) 

τ+=σxy
(4)
+σxy

(5)
=σ(4)2sin2β

2
cotα2-σ

(5)cos2β
2
                                 (15) 

u
(5)
 

𝛽1 

u
(0)
 

u
(2)
 

u
(3)
 u

(4)
 

𝛼2 

𝛽1 𝛼1 

u
(1)
 

𝛽2 

𝛼1 

  

Zone Ⅰ Zone Ⅱ 

x 

y 
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The normal and tangential components of the particle 

displacements on the left interface of the joint can be expressed as: 

un
-=u(1)cosα1-u

(2)cosα1+u
(3)sinβ

1
                                              (16) 

uτ
-=u(1)sinα1+u

(2)sinα1+u
(3)cosβ

1
                                              (17) 

The normal and tangential components of the particle 

displacements on the right interface of the joint can be expressed as: 

un
+=u(4)cosα2+u

(5)sinβ
2
                                                              (18) 

uτ
+=u(4)sinα2-u

(5)cosβ
2
                                                               (19) 

2.2 The Stresses and Particle Velocities of the Joint Impinged 

by an Incident S-Wave 

When an S-wave impinges the joint, there are four waves emitted 

from the joint. They are the transmitted P- and S-wave and the 

reflected P- and S-wave, respectively. Similarly, the stresses on the 

two interfaces of the joint can be solved analogous to the solution 

method for the incident P-wave. The incident S-wave wave function 

can be written as: 

u(0)=A
(0)
exp⁡[j(kx

(0)
x+ky

(0)
y-ωt)]                                                (20) 

where kx
(0)
=

ω

CS1
cosβ

1
  ky

(0)
=

ω

CS1
sinβ

1
 

The displacement components along the x and y directions are:  

ux
(0)
=u(0)sinβ

1
  uy

(0)
=-u(0)cosβ

1
                                                   (21) 

Thus, on the interfaces of the joint the normal stresses triggered by 

the incident S-wave can be written as: 

σxx
(0)
=(λ+2μ)

∂ux
(0)

∂x
+λ
∂uy

(0)

∂y
 

=(λ+2μ)sinβ
1
A

(0)
exp⁡[jφ(0)]j

ω

CS1
cosβ

1
 

   +λ(-cosβ
1
)A(0)

exp⁡[jφ(0)]j
ω

CS1
sinβ

1
 

=
v(0)

CS1
μ(in2β

1
)=σ(0)sin2β

1
                                                            (22) 

On the interfaces of the joint the tangential stresses triggered by 

the incident S-wave can be written as: 

σxy
(0)
=μ(

∂ux
(0)

∂y
+
∂uy

(0)

∂x
) 

=μ [

sinβ
1
A

(0)
exp⁡[jφ(0)]j

ω

CS1
sinβ

1

+(-cosβ
1
)A(0)

exp⁡[jφ(0)]j
ω

CS1
cosβ

1

] 

=
𝑣(0)

𝐶𝑆1
𝜇(−𝑐𝑜𝑠2𝛽1) = −𝜎(0)𝑐𝑜𝑠2𝛽1                                             (23) 

The other stresses triggered by the incident S-wave are the same 

as those in Eq.(11). The stress components in the left and right 

interfaces of the joint are superposed to obtain the corresponding 

normal and tangential stresses. Therefore, the normal and tangential 

stresses in the left interface of the joint are: 

σ-=σxx
(0)
+σxx

(2)
+σxx

(3)
=σ(0)sin2β

1
+σ(2)cos2β

1
-σ(3)sin2β

1
                 (24) 

τ-=σxy
(0)
+σxy

(2)
+σxy

(3)
=-σ(0)cos2β

1
-σ(2)2sin2β

1
cotα1-σ

(3)cos2β
1
       (25)                               

The stresses on the right interface of the joint can be expressed as: 

σ+=σxx
(4)
+σxx

(5)
=σ(4)cos2β

2
+σ(5)sin2β

2
                                           (26) 

τ+=σxy
(4)
+σxy

(5)
=σ(4)2sin2β

2
cotα2-σ

(5)cos2β
2
                                   (27) 

Moreover, when the incident S-wave impinges the joint, other 

displacement components of the transmitted wave and the reflected 

wave are the same as those for the incident P-wave. The particle 

displacement components are added to obtain the normal and 

tangential displacements in the x and y directions. Thus, the 

displacements in the left interface of the joint can be expressed as: 

un
-=u(0)sinβ

1
-u(2)cosα1+u

(3)sinβ
1
                                                 (28) 

uτ
-=-u(0)cosβ

1
+u(2)sinα1+u

(3)cosβ
1
                                              (29) 

The normal and tangential particle displacements on the right 

interface of the joint can be expressed as: 

un
+=u(4)cosα2+u

(5)sinβ
2
                                                                (30) 

uτ
+=u(4)sinα2-u

(5)cosβ
2
                                                                 (31) 

2.3 Time Domain Recursive Equations for the Incident P-

Wave and S-Wave 

In this study, the displacement discontinuity model is selected as the 

boundary condition. Thus, the stress satisfies σ− =σ+ =σ and 

𝜏− = 𝜏+ = 𝜏, and the displacement satisfies 𝑢𝑛
− − 𝑢𝑛

+ =σ 𝐾𝑛⁄  and 

𝑢𝜏
− − 𝑢𝜏

+ =σ 𝐾𝑠⁄ . The linear constitutive relationship is applied in 

the tangential direction, while the nonlinear constitutive relationship, 

i.e., BB model, is applied in the normal direction. Therefore, 

according to Eqs. (9)-(11), for an incident P-wave the stresses at the 

two interfaces of the joint satisfy:  

σ(1)cos2β
1
+σ(2)cos2β

1
-σ(3)sin2β

1
 

=σ(4)cos2β
2
+σ(5)sin2β

2
                                                                (32) 

⁡σ(1)2sin2β
1
cotα1-σ

(2)2sin2β
1
cotα1-σ

(3)cos2β
1
 

=σ(4)2sin2β
2
cotα2-σ

(5)cos2β
2
                                                       (33) 

As the rocks on the left and right of the joint have different 

properties, the wave impedances of the rock before and after the joint 

are different, i.e., 

ZP1=ρ1CP1,⁡ZP2=ρ2CP2,⁡ZS1=ρ1CS1,⁡ZS2=ρ2CS2,                         (34) 

where 𝑍𝑃1  and 𝑍𝑆1  are the P-wave and S-wave impedances of the 

rock before the joint, respectively; 𝑍𝑃2 and 𝑍𝑆2 are the P-wave and S-

wave impedances of the rock after the joint, respectively; 𝜌 and 𝐶 are 

the corresponding density and wave speed, respectively. From the 

conservation of the momentum, there is:  

σ=ρCv                                                                                           (35) 

Substituting Eqs.(34) and (35) into Eqs.(32) and (33), and rewriting 

Eqs.(32) and (33) in matrix forms, there is 

[
v(i)

(2)

v(i)
(3)

] =-B-1Av(i)
(1)
+B-1C [

v(i)
(4)

v(i)
(5)

]                                                       (36) 
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where, 

A = [
ZP1cos2β1

ZP1(2sin2β
1
cotα1)

]                                                             (37) 

B= [
ZP1cos2β1 -ZS1sin2β1

-ZP1(2sin2β
1
cotα1) -ZS1cos2β1

]                                        (38) 

C= [
ZP2cos2β2 ZS2sin2β2

ZP2(2sin2β
2
cotα2) -ZS2cos2β2

]                                         (39) 

The difference of the displacement on the left and right interfaces 

of the joint is just the deformation of the joint. Thus, there is:    

u(1)cosα1-u
(2)cosα1+u

(3)sinβ
1
-u(4)cosα2-u

(5)sinβ
2
=dn              (40)                                                                                                 

Substituting the BB model into Eq. (40) gives, 

u(1)cosα1-u
(2)cosα1+u

(3)sinβ
1
-u(4)cosα2-u

(5)sinβ
2
=

σ

kni+
σ
dma

⁄
     (41)                                                                                      

When Eq. (41) is differentiated to time t, there is:  

v(1)cosα1-v
(2)cosα1+v

(3)sinβ
1
-v(4)cosα2-v

(5)sinβ
2
=
∂σ

∂t

kni

(kni+
σ
dma

⁄ )
2 (42)                                                                             

Defining the normal joint stiffness Kn= (kni+
σ
dma⁄ )

2

kni⁄ , where 

𝑘𝑛𝑖  and 𝑑𝑚𝑎  is the initial joint stiffness and the joint maximum 

closure. Replacing the derivative with the differential expression: 

v(1)cosα1-v
(2)cosα1+v

(3)sinβ
1
-v(4)cosα2-v

(5)sinβ
2
=
σ(i+1)-σ(i)

Δt

1

Kn
   (43)                                                                                 

Due to continuous stress boundary condition, it is feasible that 

either σ− or σ+  is substituted into Eq. (43). However, for 

simplifying the calculation, Eq. (26) is substituted into Eq. (43). After 

combination and reduction, there is: 

ZP2cos2β2v(i+1)
(4)

+ZS2sin2β2v(i+1)
(5)

 

=ZP2cos2β2v(i)
(4)
+ZS2sin2β2v(i)

(5)
+KnΔtcosα1v(i)

(1)
-KnΔtcosα1v(i)

(2)
 

+KnΔtsinβ1v(i)
(3)
-KnΔtcosα2v(i)

(4)
-⁡KnΔtsinβ2v(i)

(5)
                            (44) 

In the tangential direction, there is similar relationship between 

the displacement and the shear stress, that is,  

u(1)sinα1+u
(2)sinα1+u

(3)cosβ
1
-u(4)sinα2+u

(5)cosβ
2
=

τ

Ks
            (45) 

Eq. (45) is differential to time t. And then Eq. (27) is substituted 

into Eq. (45). After combination and reduction, there is, 

ZP2(2sin2β
2
cotα2)v(i+1)

(4)
-ZS2cos2β2v(i+1)

(5)
 

=ZP2(2sin2β
2
cotα2)v(i)

(4)
-ZS2cos2β2v(i)

(5)
+KsΔtv(i)

(1)
sinα1+KsΔtv(i)

(2)
sinα1 

+KsΔtv(i)
(3)
cosβ

1
-KsΔtv(i)

(4)
sinα2+KsΔtv(i)

(5)
cosβ

2
                            (46)  

Eqs. (44) and (46) can be expressed in matrix forms as: 

[
v(i+1)

(4)

v(i+1)
(5)

] =C-1H(Kn)Dv(i)
(1)
+ 

C-1H(Kn)E [
v(i)

(2)

v(i)
(3)

] +(C-1H(Kn)F+I) [
v(i)

(4)

v(i)
(5)

]                                 (47) 

D= [
Δtcosα1
KsΔtsinα1

]                                                                            (48) 

E= [
-Δtcosα1 Δtsinβ

1

KsΔtsinα1 KsΔtcosβ1
]                                                        (49) 

F= [
-Δtcosα2 -Δtsinβ

2

-KsΔtsinα2 KsΔtcosβ2
]                                                       (50) 

H(Kn)= [
Kn 0

0 1
]                                                                          (51) 

I= [
1 0

0 1
]                                                                                     (52) 

For the incident S-wave, the analysis similar to that for the 

incident P-wave is performed to obtain the recursive equations. The 

recursive equations in matrix forms are the same as those for the 

incident P-wave, while matrix A and matrix D for the incident S-wave 

are different with those for the incident P-wave. The matrix A and 

matrix D for the incident S-wave are:  

A= [
ZS1sin2β1
-ZS1cos2β1

]                                                                           (53) 

D= [
Δtsinβ

1

-KsΔtcosβ1
]                                                                           (54) 

3. SPCICAL CASES  

When the incident P-wave is perpendicular to the joint, there is 𝛼1 =
0. From Snell’s law, other emitted angles are zero, i.e., 𝛽1 = 𝛼2 =
𝛽2 = 0. Substituting the expression into the matrices from A to F 

yields, 

A= [
ZP1
0

]                                                                                       (55) 

 B= [
ZP1 0

0 -ZS1
]                                                                           (56) 

C= [
ZP2 0

0 -ZS2
]                                                                            (57) 

D= [
Δt

0
]                                                                                        (58) 

E= [
-Δt 0

0 KsΔt
]                                                                            (59) 

F= [
-Δt 0

0 KsΔt
]                                                                            (60) 

It should be noted that in the expressions “2sin2β
1
cotα1” and 

“2sin2β
1
cotα1” cotangent values of α1  or α2  are nonexistent when 

α1=α2=0. In fact, their transitory expressions are “( CS CP⁄ )
2
sin2α”, 

i.e., ⁡( CS CP⁄ )
2
sin2α=2sin2βcotβ . Thus, when 𝛼  is equal to 0, the 

expression “ ( CS CP⁄ )
2
sin2α ” is used to calculate the matrices. 

Substituting the simplified matrices from A to C into Eq. (36), there 

is: 

[
ZP1v(i)

(2)

-ZS1v(i)
(3)

] =- [ZP1v(i)
(1)

0
] + [

ZP2v(i)
(4)

-ZS2v(i)
(5)

]                                              (61) 

After the simplification, there are, 
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ZP1 (v(i)
(2)
+v(i)

(1)
)=ZP2v(i)

(4)
                                                            (62) 

v(i)
(3)
=v(i)

(5)
=0                                                                                (63) 

Eq. (62) indicates that the stresses on the left and right interfaces 

of the joint are continuous. When the rock properties on the two 

interfaces of the joint are the same, i.e., ZP1=ZP2, there is, 

v(i)
(2)
+v(i)

(1)
=v(i)

(4)
.                                                                          (64) 

Eqs. (63) and (64) are the same form as previously derived 

equations by Zhu and Zhao (2013). Also, the simplified matrices from 

D to F are substituted into Eq. (47), and the equations in matrix form 

can be rewritten as: 

[
ZP2v(i+1)

(4)

-ZS2v(i+1)
(5)

] = [
-KnΔtv(i)

(2)

KsΔtv(i)
(3)

] + [
(-KnΔt+ZP2)v(i)

(4)

(KsΔt-ZS2)v(i)
(5)

] + [KnΔtv(i)
(1)

0
]     (65)                                                                              

Substituting Eq. (62) into Eq. (65) and simplifying them gives: 

v(i+1)
(4)

=-KnΔt (
1

ZP1
+

1

ZP2
) v(i)

(4)
+v(i)

(4)
+
2KnΔt

ZP2
v(i)

(1)
                             (66) 

where Kn=(kni+
ZP2v(i)

(4)

dma
⁄ )

2

kni⁄  

Eqs. (62) and (66) are similar to the previously derived equations 

by Fan et al. (2018). In the equation derived by L.F.Fan, the joint 

stiffness is constant. Thus, the equation is the special case when the 

stress wave is perpendicular to the linearly elastic joint. When the 

rock properties before and after the joint are the same, i.e., ZP1=ZP2, 

Eq.(66) can be simplified as:  

v(i+1)
(4)

=v(i)
(4)
+
2KnΔt

ZP
(v(i)

(1)
-v(i)

(4)
)                                                     (67) 

Eq.(67) is also the same as the equation derived by Li and Ma 

(2010). Similarly, for the normal incident S-wave, matrix A and 

matrix D are simplified as:  

A= [
0

-ZS1
]                                                                                  (68) 

D= [
0

-KsΔt
]                                                                                (69) 

In order to obtain the S-wave recursive equations for the special 

case, what needed to do is to replace Eqs. (55) and (58) with Eqs. (68) 

and (69) for all the P-wave recursive equations, and to replace v(i)
(1)

 

with v(i)
(0)

, respectively. Thus, there are, 

ZS1 (v(i)
(3)
+v(i)

(0)
)=ZS2v(i)

(5)
                                                             (70) 

v(i)
(2)
=v(i)

(4)
=0                                                                                 (71) 

v(i+1)
(5)

=-KsΔt (
1

ZS1
+

1

ZS2
) v(i)

(5)
+v(i)

(5)
+
2KsΔt

ZS2
v(i)

(0)
                                (72) 

When the rock properties before and after the joint are the same, 

i.e., ZS1=ZS2=ZS, Eq.(72) can be simplified as:  

v(i+1)
(5)

=v(i)
(5)
+
2KsΔt

Zs
(v(i)

(0)
-v(i)

(5)
)                                                       (73) 

Eq.(73) is also the same as the equation derived by Li and Ma (2010). 

 

4. COMPARISON AND VERIFICATION  

4.1 A Comparison with the Results by Zhao J  

In order to verify the derived wave equations, a comparison with the 

conclusion given by Zhao and Cai (2001) is conducted. The same 

parameters are selected from the reference (Zhao and Cai, 2001). The 

parameters are listed in Table 1. 

 

Table 1  Rock parameters 

Rock density (kg/m3) 2400 

P-wave speed(m/s) 4500 

Particle velocity amplitude(m/s) 0.1,0.02 

Wave frequency(Hz) 50 

Initial normal joint stiffness (GPa/m) 1.25 

Maximum allowable closure(mm) 0.61 

 

The calculated results are shown in Figure 2. Figure 2(a) and 

Figure 2(b) illustrate a half-cycle sinusoidal incident wave and the 

corresponding transmitted wave, respectively. From them, when the 

joints are impinged by the incident wave with the amplitude of 

0.1 m/s and 0.02 m/s, the transmitted waves derived in the present 

study are both close to those given by Zhao and Cai (2001). 

 

 
(a) when the incident wave peak equals 0.1 m/s 

 
  (b) when the incident wave peak equals 0.02 m/s 

Figure 2  A comparison of the results given by Zhao with the 

calculated data 

 

4.2 A Comparison with the Results by Fan L F 

Fan et al. (2018) investigated the wave propagation through the 

jointed complex rock masses when the P-wave is perpendicular to the 

joint. The present study attempts to study the wave across the jointed 

complex rock masses with arbitrary incident angles. In order to verify 
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the wave equations derived in the present study, another comparison 

between the results derived in the present study and those by Fan et 

al. (2018) is conducted. The parameters adopted here are the same as 

those in the reference (Zou et al., 2016). Figure 3 illustrates the 

particle velocity transmission waves when the incident wave 

propagates through the joint from the “soft” rock to the “hard” rock, 

i.e., the wave impedance ratios n = 0.306 and 0.408. Figure 4 shows 

the particle velocity transmission waves when the incident wave 

propagates through the “hard-to-soft” rock masses, i.e., the wave 

impedance ratios n = 1.275 and 1.581. From the two figures, the 

particle velocities of transmission waves calculated in the present 

study agree with those in the reference (Fan et al., 2018). 

 
(a) wave impedance ratios less than 1 

 
        (b) wave impedance ratios greater than 1 

Figure 3  A comparison of the particle velocity waves derived by 

Fan.L.F with the calculated results 

 

Therefore, the wave equations derived in the present study are 

correct and effective. And the MTDRM is effective and feasible to 

investigate the wave across the jointed complex rock masses. The 

effect of the wave impedance ratios on the transmission and reflection 

coefficients of the particle velocity wave with the different incident 

angles will be discussed in the following sections.  

 

5. WAVE PROPAGATION ACROSS THE JOINTED 

COMPLEX ROCK MASSESS WITH ARBITRARY INCIDENT 

ANGELES 

5.1 The Rock Mass Parameters and the Boundary Conditions  

In the present study, the parameters same as those in reference (Fan 

et al., 2018) are applied. A half-cycle sinusoidal is assumed to be 

incident on the jointed complex rock masses with arbitrary angles. 

The wave amplitude is 1.0 m/s, and the frequency is set to be 

316.2 Hz, and the initial normal and tangential joint stiffness are both 

8.0 GPa/m. Poisson’s ratio of the intact rock is 0.2. BB model and the 

linearly elastic model are chosen as the normal and tangential joint 

constitutive relationship, respectively. For the rocks at the left and 

right of the joint, their Young’s moduli and volume densities are listed 

in Table 2. To discuss the wave propagation across the “soft-to-hard” 

rock masses, Rock III from Table 2 is selected for the rock at the right 

of the joint, while Rock I and Rock II are selected for the rock at the 

left of the joint. Thus, the wave impedance ratios are 0.306 and 0.408, 

respectively. In addition, to discuss the wave propagation through the 

“hard-to-soft” rock masses, Rock III from Table 2 is selected for the 

rock at the right of the joint, while Rock IV and Rock V are selected 

for the rock at the left of the joint. Thus, the wave impedance ratios 

are 1.275 and 1.581, respectively. For the rock before and after the 

joint which has the same property, the parameters of Rock III are 

selected for the rock before and after the joint. Thus, the wave 

impedance ratio is 1. In this case the jointed complex rock masses are 

degenerated into the jointed simple rock masses discussed in the 

previous study. 

 

Table 2  Parameters of the intact rocks 

 Rock  

I 

Rock  

II 

Rock  

III 

Rock  

IV 

Rock  

V 

E(GPa) 5 10 40 60 80 

ρ(kg/m3) 1800 2100 2400 2600 3000 

 

5.2 Wave Propagation Through the Jointed Complex Rock 

Masses 

When the effects of the wave impedance ratios on the wave 

propagation are investigated, in order to reduce the disturbance from 

the incident angle, it is the most appropriate way that the incident 

angle is set to 0. However, the normal incident P-wave cannot trigger 

the reflected and transmitted S-wave and the normal incident S-wave 

cannot trigger the reflected and transmitted P-wave. Thus, a relatively 

small incident angle α = 2° is selected for P-wave and S-wave. From 

Eqs. (36) and (47), when the P-wave and S-wave with the incident 

angle of 2° interact with the joint, the corresponding transmitted and 

reflected P-wave and S-wave are calculated. The results are shown in 

Figure 4 and Figure 5. In the figures the numbers in parentheses are 

the transmitted or reflected coefficients.  

Figure 4(a) illustrates the wave propagation when the incident P-

wave propagates crossing the joint from the “soft” rock to the “hard” 

rock. Figure 4(b) shows the wave propagation when the incident P-

wave impinges the joint from the “hard” rock to the “soft” rock. In 

Figure 4(a) and Figure 4(b), the transmitted and reflected coefficients 

of the transmitted S-wave and reflected S-wave are 0.030, 0.043 and 

0.014, 0.024, respectively. The coefficients are very small. It is 

because that the P-wave incident angle is selected to be 2° and the 

angle is tiny. Thus, the little incident P-wave energy converts into the 

transmitted and reflected S-wave energy by the wave mode 

conversion. In Figure 4(b), when the wave impedance ratio is 1.581, 

the transmission coefficient of the transmitted P-wave is 1.224. The 

transmitted coefficients surpass 1. Obviously the transmitted P-wave 

has larger amplitude than the incident P-wave. It shows that the 

incident P-wave crossing the joint from the “hard” rock to the “soft” 

rock is enlarged. 

Figure 5(a) and Figure 5(b) show the particle velocity wave 

propagations when the incident S-wave passes through the “soft-to-

hard” and “hard-to-soft” rock masses, respectively. In Figure 5, the 

coefficients of the transmitted and reflected P-wave are 0.030, 0.044 

and 0.011, 0.033. The transmission and reflection coefficients of the 

corresponding P-wave are small compared to those of the other 

velocity waves. Similar to the case for the incident P-wave, for the 

incident S-wave the smaller incident angle also results in less wave 

mode conversion. Moreover, when the wave impedance ratio 

n = 1.581, the transmission coefficient of the transmitted S-wave for 

the incident S-wave is 1.175. The coefficient is greater than 1. It 

indicates that the transmitted S-wave is enhanced when S-wave 

propagates through the jointed rock with the large wave impedance 
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ratio. For the case that wave propagates through the “hard-to-soft” 

jointed rock masses, when P-wave is selected as the incident wave, 

the transmitted P-wave is enlarged, and when S-wave is selected as 

the incident wave, the transmitted S-wave is enlarged. Thus, the 

enlarged transmitted wave is usually the wave whose wave type is the 

same as that of the incident wave.   

  

 
(a) when wave impedance n = 0.306 

 
             (b) when wave impedance n = 1.581 

Figure 4  Transmission and reflection wave for an incident P-wave 

 

 
(a) when the wave impedance ratio n = 0.306 

  
       (b) when the wave impedance ratio n = 1.581 

Figure 5  The transmission and reflection wave for an incident S-

wave 

 

6. PARAMETRIC STUDIES AND DISCUSSION 

6.1 The Effect of the Wave Impedance Ratios on the 

Transmission and Reflection Coefficients 

In order to fully understand the incident P-wave and S-wave with the 

different angles propagation through the jointed complex rock 

masses, seven angles, i.e., 0°, 2°, 4°, 6° ,8°, 10°, and 12°, are selected 

as the incident angles, and five wave impedance ratios, i.e., 0.306, 

1.468, 1.0, 1.275, and 1.581, are applied. 

  

6.1.1 The Case for the Incident P-Wave  

To characterize three kinds of rock masses, that is, the “soft-to-hard” 

rock masses, the “hard-to-soft” rock masses and the conventional 

simple rock masses, and then the effects of the angles and wave 

impedance ratios on the transmission and reflection coefficients are 

discussed. 

Figure 6 illustrates the relation between the wave impedance 

ratios and particle velocity transmission and reflection coefficients 

with the different P-wave incident angles. From Figure 6(a), it can be 

seen that the reflected P-wave coefficients decrease firstly and then 

increase with the increasing of wave impedance ratios. When the 

wave impedance ratio is 1, the reflected P-wave coefficients reach the 

minimum. Moreover, with the increase of the incident angles of P-

wave, the P-wave reflection coefficients decrease gradually. 

In Figure 6(b), there is not the reflected S-wave when P-wave is 

perpendicular to the joint. Thus, the corresponding reflected 

coefficient can be considered to be 0. It can be seen from Figure 6(b) 

that the changing trends of the S-wave reflection coefficients with the 

variation of the wave impedance ratios are not monotonous. Similar 

to Figure 6(a), the trends decease firstly and then increase. The 

reflection coefficients reach peak when the wave impedance ratio is 

1. That the wave impedance ratio equals 1 means that the rock before 

and after the joint has the same property. The rock masses are 

degenerated into the jointed simple rock masses discussed in the 

previous study. In other word, the reflection coefficients of the reflect 

S-wave get minimum when the incident P-wave interacts with jointed 

simple rock masses. In addition, when the incident angles increase 

from 0° to 12°, the reflected coefficients of the reflected S-wave 

increase gradually. 

From Figure 7(a), no matter what value the incident angles are, 

the particle velocity transmission coefficients of the transmitted P-

wave increase with the increasing of the wave impedance ratios, and 

the relation between two parameters is monotonous. In this figure, 

seven curved lines charactering the relations between the transmitted 

coefficients and the wave impedance ratios with the different incident 

angles intersect, which indicates that for the case the effects of the 
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incident angles on the transmission coefficients are relatively small. 

Also, it is interesting that the transmission coefficients of the 

transmitted P-wave is greater than 1 when the wave impedance ratio 

is larger than 1. It indicates that the amplitude of the transmitted P-

wave surpasses that of the incident wave when P-wave propagates 

across the “hard-to-soft” jointed rock masses with the incident angles 

from 0° to 12°.  

 

 
(a) for the reflected P-wave 

 
                     (b) for the reflected S-wave 

Figure 6  The effect of the wave impedance ratios on the reflection 

coefficients for an incident P-wave 

 

Figure 7(b) shows the effect of the wave impedance ratios on the 

transmission coefficients of the transmitted S-wave with the various 

incident angles. When the wave impedance ratios change from 0.306 

to 1.581, i.e., the rock medium changing from the “soft-to-hard” rock 

masses to the “hard-to-soft” rock masses, the transmission 

coefficients reach the trough firstly and then grow up. Also, the effect 

of the incident angles on the transmission coefficients of transmitted 

S-wave is greater than those of the transmitted P-wave illustrated in 

Figure 7(a). 

In Figures 6(a) and 7(a), when P-wave interacts with the joint , 

the coefficients of transmitted P-wave and reflected P-wave change 

less with the changing of the incident angles; on the contrary, the 

coefficients of transmitted P-wave and reflected P-wave change 

sharply with the increasing of the wave impedance ratios., it seems 

that for the case of P-wave incident on the joint wave impedance 

ratios have greater influence on the coefficients of transmitted P-wave 

and reflected P-wave than the incident angles. 

   
(a) for the transmitted P-wave 

 
              (b) for the transmitted S-wave 

Figure 7  The effect of the wave impedance ratios on the 

transmission coefficients for an incident P-wave 

   

6.1.2 The Case for the Incident S-Wave 

Figures 8(a) and 8(b) illustrate the relations between the reflection 

coefficients of the reflected P- and S-wave and the wave impedance 

ratios. With the wave impedance ratios increasing from 0.306 to 

1.581, the reflection coefficients of the reflected P- and S-wave 

increase firstly and then decrease except that the changing trend has 

slight difference when the incident angle = 12°. When the wave 

impedance ratio is 1, the reflected coefficients of P-wave and S-wave 

reach the minimum. However, compared with the coefficients of the 

reflected P-wave, the coefficients of the reflected S-wave decrease in 

relatively high speed when the wave impedance ratios increase from 

0.306 to 1, and also rise more rapidly when the wave impedance ratios 

vary from 1 to 1.581. It indicates that for a same incident angle the 

effects of the wave impedance ratios on the reflection coefficients of 

the reflected S-wave are greater than those of the reflected P-wave. 

Furthermore, Figure 8(b) shows that for the same wave impedance 

ratios, the effects of the incident angles on the reflected coefficients 

are larger and larger when the incident angles increase from 0° to 12°.  

Figure 9(a) illustrates the changing trends that the transmission 

coefficients of the transmitted P-wave increase with the wave 

impedance ratio increasing. With the wave impedance ratio 

increasing from 0.306 to 1, the transmission coefficients decrease 

sharply, and then increase in a slight speed when impedance ratios 

increase from 1 to 1.581. The coefficient increments are very small 
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and nearly negligible when impedance ratios increase from 1 to 1.581. 

It shows that the wave impedance ratios have a slight influence on the 

transmission coefficients of the transmitted P-wave when S-wave 

propagates through the “hard-to-soft” rock masses.   

 

 
(a) for the reflected P-wave 

    

 
               (b) for the reflected S-wave 

Figure 8  The effect of the wave impedance ratios on the reflection 

coefficients for an incident S-wave 

 

Figure 9(b) shows how the transmission coefficients of the 

transmitted S-wave are influenced by the wave impedance ratios 

when the different incident angles are selected. In this figure, the 

changing trends of the transmitted coefficients are very similar for the 

different incident angles. It seems that the changings of the incident 

angles have a negligible influence on the transmission coefficients. 

However, the transmission coefficients of the transmitted S-wave fast 

monotonously increase with the increasing of the wave impedance 

ratios. The wave impedance ratios have larger effect on the 

transmission coefficients than the incident angles.  

In all, whether the jointed rock masses is “soft-to-hard” or “hard 

-to- soft” rock masses has obvious influence on the transmission 

wave. Especially, the transmission wave induced by the incident 

wave of the same type, i.e., the transmission P-wave triggered by the 

incident P-wave and the transmission S-wave triggered by the 

incident S-wave, has sensitive response on the changing wave 

impedance ratio. And the transmission wave induced by the incident 

wave crossing the “hard -to- soft” jointed rock masses is 

strengthened.   

 
(a) for the transmitted P-wave 

 
(b) for the transmitted S-wave 

Figure 9  The effect of the wave impedance ratios on the 

transmission coefficients for an incident S-wave 

 

7. CONCLUSIONS 

In the present study, a modified time domain recursive method 

(MTDRM) is presented. The stresses and particle velocities caused 

by interaction of the P-wave and S-wave at an arbitrary incident angle 

with the jointed complex rock masses are analyzed. The wave 

equations across a jointed complex rock masses joint are established 

by introducing BB model and the displacement discontinuity model. 

After the equations are degenerated, it is found that the wave 

propagation across the conventional jointed rock masses is a special 

case when the wave impedance ratios of the equations in the present 

study are set to 1.0 and the incident angle is equal to 0. A comparison 

with the previous research shows that the MTDRM is effective and 

feasible to investigate the transmission and reflection of P-wave and 

S-wave crossing the joint at an arbitrary incident angle.  

The two cases, i.e., wave propagation across the “soft-to-hard” 

rock masses and the “hard -to- soft” rock masses, are analyzed. And 

the special case that the wave propagates through the joint, before and 

after which the rock properties are the same, is also investigated.  

For the incident P-wave, the effects of the wave impedance ratios 

on the coefficients of reflected P-wave, S-wave and transmitted S-

wave are not monotonous. The coefficients have a minimum trough 

in the process of the wave impedance ratio increasing. However, the 

transmission coefficients of the transmitted P-wave triggered by the 

incident P-wave monotonously increase with the increasing of the 
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wave impedance ratios. Also, it is interesting that when the wave 

impedance ratios equal 1.275 and 1.581. i.e., wave propagation 

through the joint from the “hard” rock to the “soft” rock, the 

transmission coefficients of the transmitted P-wave is greater than 1.  

When the S-wave is incident on the joint, the changing trends of 

the coefficients of the transmitted P-wave and the reflected P- and S-

wave with the increasing of the wave impedance ratios usually have 

the troughs except for the transmitted S-wave. The wave impedance 

ratio the trough corresponds to is 1. The effects of the incident angles 

on the reflection coefficients of the reflected S-wave are larger and 

larger with the angle increasing from 0° to 12°. Also, the effects of 

the incident angles on the transmission coefficients of the transmitted 

S-wave are nearly negligible. However, the influences of wave 

impedance ratios on the transmission coefficients of the transmitted 

S-wave are obvious. 

Nevertheless, it should be noted that the present study assumes 

that the wave is planar. The assumption is based on the precondition 

that the wave has propagated to the far field. If the wave propagates 

in the near field, the wave is spherical. Thus, that the spherical wave 

impinges the jointed complex rock masses will be investigated in the 

future. 
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