บทที่ 4 ผลการทดลอง และวิจารณ์ผลการทดลอง

4.1 บทนำ

ผลการทคลองการศึกษาอิทธิพลรูปทรงของตัวกวนการเชื่อมเสียคทานแบบกวน และอุณหภูมิ ขณะทำการเชื่อม ซึ่งมีตัวแปรอิสระ เช่น ความเร็วรอบของตัวกวน ,อัตราการป้อน ,และอุณหภูมิ ขณะทำการเชื่อม ฯลฯ สำหรับการทคลองที่ผ่านมา จะใช้เหล็กกล้าไร้สนิม 304 และ อลูมิเนียม 6063 ซึ่งมีความหนา 3 mm ควากว้าง 21 mm ยาว 76 mm การทคลองเชื่อมรูปทรงตัวกวน 3 ชนิค ภายใต้ เงื่อน ใขต่างๆ เมื่อเชื่อมเสร็จแล้วได้นำชิ้นงานเชื่อม ไปทคสอบการคึง ตลอคจนศึกษาลักษณะและ องค์ประกอบของ โครงสร้างจุลภาคที่บริเวณรอยเชื่อม ซึ่งการทคลองและการวิเคราะห์สามารถแบ่ง ออกได้ดังนี้ ผลการทคลองความแข็งแรงแรงคึง (Tensile Strength) ผลการทคลองการวัคอุณหภูมิ (Temperature) ผลการวิเคราะห์โครงสร้างจุลภาค (Micro Structure)

4.2 ผลการทดลองความแข็งแรงแรงดึง (Tensile Strength)

จากผลการทดสอบความแข็งแรงแรงดึง โดยการทดสอบกับเครื่องทดสอบแรงดึง (Tensile Test Machine) ทางทีมผู้จัดทำได้นำชิ้นงานจำนวนหนึ่งเพื่อนำมาทดสอบ โดยแบ่งเป็นกลุ่มตามแบบของ หัวกวน คือหัวกวนแบบเกลียว หัวกวนแบบกรวย 3 มม. และหัวกรวยแบบ 4 มม. ทดสอบภายใต้ เงื่อนไขตัวแปรเดียวกัน และได้นำค่าที่ได้จากการทดสอบมาเปรียบเทียบความแตกต่าง เพื่อให้เห็น แรงที่ต้องใช้ในการดึงของแต่ละตัวแปรที่ใช้ในการทดสอบในครั้งนี้ ซึ่งสามารถดูได้จากตาราง และ กราฟ

4.2.1 การทดสอบแรงดึง เพื่อหาค่าความแข็งแรงดึงสูงสุดของแนวเชื่อมระหว่างอลูมิเนียม (A1
6063) กับเหล็กกล้าไร้สนิม (SUS 304) ในครั้งนี้มีการใช้หัวกวน 2 แบบ คือแบบเกลียว และแบบ
กรวย ดังนั้นการทดสอบจึงแยกออกได้ 2 แบบ ซึ่งจะมีค่าตัวแปรต่างๆ ที่นำมาทดสอบในครั้งนี้

1) การทดสอบแรงดึงของหัวกวนแบบเกลียว

ตารางที่ 4.1 การทดสอบแรงดึงของการเชื่อมหัวกวนแบบเกลียว

จากตารางที่ 3.2 เป็นการทคสอบแรงคึงของการยึดติดระหว่างอลูมิเนียม Al6063 และ เหล็กกล้าไร้สนิม SUS304 โดยผลที่ได้แสดงว่าถ้าความเร็วรอบและอัตราป้อนมากจะทำให้การยึด ติดของวัสดุดีขึ้น การทดสอบแรงดึงของหัวกวนแบบกรวย สำหรับหัวกวนแบบเรียวในการทดสอบครั้ง นี้ได้แบ่งหัวกวนออกเป็นสองขนาด คือขนาด 3 มม. และ 4 มม. ดังแสดงในตารางที่ 3.2 และ 3.3 ตารางที่ 4.2 การทดสอบแรงดึงของการเชื่อมหัวกวนแบบกรวยขนาด 3 มม.

	ตัวแปรใ ทดก	ินการ อง		
ชิ้นที่	ความเร็ว รอบ	อัตรา 1 สักบ	กราฟ	ผลแรง ดึง (N)
	รอบ (รอบ/	(1111 /		
	(รอบ) นาที)	(มม.) นาที)		
	830	67	659 534 538 467 330 284 199 132 066 000 0.002 0.022 0.142 0.212 0.202 0.552 0.423 0.493 0.553 0.513 0.713	5,940
2	580	44	Loss Drov 500	5,040
3	750	102		5,840

	ตัวแปรใ	ในการ		
	ทคลอง			
- - - -	ความเร็ว	อัตรา	25.2%	ผลแรง
וא גע מי	รอบ	ป้อน	TI JI W	คึง (N)
	(รอบ/	(ນນ./		
	นาที)	นาที)		
	830	67	Las Dev 750 515 510 524 536 536 536 537 546 536 537 547 548 548 549 549 549 549 549 549 549 549	6,750
2	580	44		6,280
3	750	102		6,400

ตารางที่ 4.3 การทคสอบแรงคึงของการเชื่อมหัวกวนแบบกรวยขนาค 4 มม.

จากตารางที่ 4.2 และ 4.3 เป็นการทคสอบแรงคึงของการยึดติดระหว่างอลูมิเนียม Al 6063 และ เหล็กกล้าไร้สนิม SUS 304 โดยใช้หัวกวนแบบกรวยทั้งสองขนาด 3 และ 4 มม. จากข้อมูลในการ ทดสอบแสดงให้เห็นว่าแรงคึงที่ได้จากก่าความเร็วรอบ และอัตราการป้อนที่สูงจะทำให้การยึดติด ของวัสดุทั้งสองสูงขึ้นตามด้วย ซึ่งจะเหมือนกันกับในกรณีของการทดสอบแรงคึงที่ใช้หัวกวนแบบ เกลียว

4.2.2 การทคสอบแรงคึง เพื่อหาค่าความแข็งแรงคึงสูงสุดของอลูมิเนียม (A1 6063) ที่เป็นเนื้อ ของชิ้นงานเชื่อม โดยการทคสอบด้วยแรงคึงจำนวน 3 ครั้งพบว่าอลูมิเนียม A1 6063 มีค่าความ แข็งแรงเฉลี่ย 9603.33 นิวตัน

ตารางที่ 4.4 ค่าความแข็งแรงของของอลูมิเนียม

4.2.3 การทคสอบแรงคึง เพื่อหาค่าความแข็งแรงคึงสูงสุดของเหล็กกล้าไร้สนิม (SUS 304) ที่ เป็นเนื้อของชิ้นงานเชื่อม (Base Metal: BM) โดยการคึงทคสอบจำนวน 3 ครั้ง พบว่าเหล็กกล้าไร้ สนิม SS304 มีค่าความต้านทานแรงคึงเฉลี่ย 45,090 นิวตัน

ตารางที่ 4.5 ค่าความแข็งแรงของเหล็กกล้าไร้สนิม SUS 304

4.3 การทดสอบวัดอุณหภูมิที่เกิดขึ้นขณะทำการเชื่อมชิ้นงาน

เพื่อหาอุณหภูมิที่เกิดขึ้นขณะหัวกวนหมุนและเกลื่อนที่ตามแนวเส้นตรงเพื่อเชื่อมวัสดุสองชิ้น ระหว่างอลูมิเนียม (Al 6063) กับเหล็กกล้าไร้สนิม (SUS 304) โดยติดตั้งหัวตรวจสอบอุณหภูมิ (Temperature Sensor) ไว้ที่ด้านอลูมิเนียม (Al6063) การทดสอบในครั้งนี้มีการใช้หัวกวน 2 แบบ เช่นเดียวกันกับการทดสอบแรงดึง คือแบบเกลียว และแบบกรวย รายละเอียดในการทดสอบจะ แสดงในรูปแบบของกราฟ

4.3.1 การทดสอบการวัดอุณหภูมิขณะทำการเชื่อมโดยการใช้หัวกวนแบบเกลียว

รูปที่ 4.1 อุณหภูมิที่ความเร็วรอบ 830 รอบ/นาที อัตราป้อน 67 มม./นาที

จากรูปที่ 4.1 ในการตรวจสอบอุณหภูมิขณะเครื่องกัดกำลังทำงานที่ความเร็วรอบ 830 รอบ/ นาที และอัตราป้อนที่ 67 มม./นาที แสดงให้เห็นว่าระยะทางยิ่งเพิ่มมากขึ้นจะทำให้อุณหภูมิลดลง จาการทดสอบด้วยหัวกวนแบบเกลียวจะทำให้ได้ค่าอุณหภูมิสูงสุด 560 องศาเซลเซียสที่ระยะห่าง จากบริเวณผิวสัมผัสของชิ้นงานทั้งสองที่ระยะ 5 มิลลิเมตร หรือ 2 มิลลิเมตรจากขอบ หรือผิวของ หัวกวน จึงทำให้บริเวณดังกล่าวเกิดความร้อนสูงจากการเสียดสีของหัวกวนกับชิ้นงานทำให้เกิด การแพร่รวมตัวกันของเหล็กกับอลูมิเนียมเป็นสารประกอบ α-Fe + Fe3A1 ที่มีความแข็งแรงสูง

รูปที่ 4.2 อุณหภูมิที่กวามเร็วรอบ 750 รอบ/นาที อัตราป้อน 102 มม./นาที

จากรูปที่ 4.2 ในการตรวจสอบอุณหภูมิขณะเครื่องกัดกำลังทำงานที่ความเร็วรอบ 750 รอบ/ นาที และอัตราป้อนที่ 102 มม./นาที แสดงให้เห็นว่าระยะทางยิ่งเพิ่มมากขึ้นจะทำให้อุณหภูมิลดลง

รูปที่ 4.3 อุณหภูมิที่ความเร็วรอบ 580 รอบ/นาที อัตราป้อน 44 มม./นาที

จากรูปที่ 4.3 ในการตรวจสอบอุณหภูมิขณะเครื่องกัดกำลังทำงานที่ความเร็วรอบ 580 รอบ/ นาที และอัตราป้อนที่ 44 มม./นาที แสดงให้เห็นว่าระยะทางยิ่งเพิ่มมากขึ้นจะทำให้อุณหภูมิลดลง จะเห็นได้ว่าการเชื่อมด้วยหัวกวนแบบเกลียวที่ความเร็วรอบต่าง ๆ เชื่อมชิ้นงานเหล็กกล้าไร้สนิม ss304กับอลูมิเนียมผสม A1 6063 จะทำให้เกิดความร้อนสูงบริเวณอินเทอร์เฟส และบริเวณใกล้เคียง จนสามารถทำให้เกิดการแพร่ได้สารประกอบเชิงโลหะที่มีความแข็งแรงสูง

4.3.2 การทดสอบการวัดอุณหภูมิขณะทำการเชื่อมโดยการใช้หัวกวนแบบเรียว ในการ ทดสอบครั้งนี้จะแบ่งขนาดของหัวกวนออกเป็น 2 ขนาด คือ 3 และ 4 มม.

- หัวกวนแบบกรวยขนาด 3 มม.

รูปที่ 4.4 อุณหภูมิที่ความเร็วรอบ 830 รอบ/นาที อัตราป้อน 67 มม./นาที

จากรูปที่ 4.4 ในการตรวจสอบอุณหภูมิขณะเครื่องกัดกำลังทำงานที่ความเร็วรอบ 830 รอบ/ นาที และอัตราป้อนที่ 67 มม./นาที แสดงให้เห็นว่าระยะทางยิ่งเพิ่มมากขึ้นจะทำให้อุณหภูมิลดลง

รูปที่ 4.5 อุณหภูมิที่ความเร็วรอบ 580 รอบ/นาที อัตราป้อน 44 มม./นาที

จากรูปที่ 4.5 ในการตรวจสอบอุณหภูมิขณะเครื่องกัดกำลังทำงานที่ความเร็วรอบ 580 รอบ/ นาที และอัตราป้อนที่ 44 มม./นาที แสดงให้เห็นว่าระยะทางยิ่งเพิ่มมากขึ้นจะทำให้อุณหภูมิลดลง

รูปที่ 4.6 อุณหภูมิที่ความเร็วรอบ 750 รอบ/นาที อัตราป้อน 102 มม./นาที

จากรูปที่ 4.6 ในการตรวจสอบอุณหภูมิขณะเครื่องกัดกำลังทำงานที่กวามเร็วรอบ 750 รอบ/ นาที และอัตราป้อนที่ 102 มม./นาที แสดงให้เห็นว่าระยะทางยิ่งเพิ่มมากขึ้นจะทำให้อุณหภูมิลดลง - หัวกวนแบบกรวยขนาด 4 มม.

รูปที่ 4.7 อุณหภูมิที่ความเร็วรอบ 830 รอบ/นาที อัตราป้อน 67 มม./นาที จากรูปที่ 4.7 ในการตรวจสอบอุณหภูมิขณะเครื่องกัดกำลังทำงานที่ความเร็วรอบ 830 รอบ/ นาที และอัตราป้อนที่ 67 มม./นาที แสดงให้เห็นว่าระยะทางยิ่งเพิ่มมากขึ้นจะทำให้อุณหภูมิลดลง

รูปที่ 4.8 อุณหภูมิที่ความเร็วรอบ 580 รอบ/นาที อัตราป้อน 44 มม./นาที

จากรูปที่ 4.8 ในการตรวจสอบอุณหภูมิขณะเครื่องกัดกำลังทำงานที่ความเร็วรอบ 580 รอบ/นาที และอัตราป้อนที่ 44 มม./นาที แสดงให้เห็นว่าระยะทางยิ่งเพิ่มมากขึ้นจะทำให้อุณหภูมิลดลง

รูปที่ 4.9 อุณหภูมิที่ความเร็วรอบ 750 รอบ/นาที อัตราป้อน 102 มม./นาที

จากรูปที่ 4.9 ในการตรวจสอบอุณหภูมิขณะเครื่องกัดกำลังทำงานที่กวามเร็วรอบ 750 รอบ/ นาที และอัตราป้อนที่ 102 มม./นาที แสดงให้เห็นว่าระยะทางยิ่งเพิ่มมากขึ้นจะทำให้อุณหภูมิลดลง

ตารางที่ 4.6 เปรียบเทียบแรงคึงที่ความเร็วรอบ 830 รอบ/นาที และอัตราป้อน 67 มม./นาที

ชนิคหัวกวน ความเร็วรอบ (รอบ/นาที)		อัตราป้อน (มม./นาที)	แรงคึง (N)
แบบเกลียว	830	67	9,170
ແบบกรวย 3 มม.	830	67	5,940
ແบบกรวย 4 มม.	830	67	6,750

รูปที่ 4.10 เปรียบเทียบแรงดึงที่ความเร็วรอบ 830 รอบ/นาที และอัตราป้อน 67 มม./นาที

จากตารางที่ 4.6 และรูปที่ 4.10 แสดงให้เห็นว่าภายใต้เงื่อนไขตัวแปรเดียวกันทั้งความเร็วรอบ 830 รอบ/นาที และอัตราป้อน 67 มม./นาที แนวเชื่อมหัวกวนแบบเกลียวสามารถต้านแรงดึงได้ มากกว่าแบบกรวย 3 มม. และ 4 มม. โดยก่าที่วัดได้เท่ากับ 9,170 N.

ตารางที่ 4.2 เปรียบเทียบแรงคึงที่ความเร็วรอบ 580 รอบ/นาที และอัตราป้อน 44 มม./นาที

ชนิคหัวกวน	ความเร็วรอบ (รอบ/นาที)	อัตราป้อน (มม./นาที)	แรงคึง (N)
แบบเกลียว	580	44	8,050
ແบบกรวย 3 มม.	580	44	5,040
แบบกรวย 4 มม.	580	44	6,280

รูปที่ 4.11 เปรียบเทียบแรงคึงที่ความเร็วรอบ 580 รอบ/นาที และอัตราป้อน 67 มม./นาที

จากตารางที่ 4.2 และรูปที่ 4.11 แสดงให้เห็นว่าภายใต้เงื่อนไขตัวแปรเดียวกันทั้งความเร็วรอบ 580 รอบ/นาที และอัตราป้อน 44 มม./นาที แนวเชื่อมหัวกวนแบบเกลียวสามารถต้านแรงดึงได้ มากกว่าแบบกรวย 3 มม. และ 4 มม. โดยก่าที่วัดได้เท่ากับ 8,050 N.

ชนิคหัวกวน	ความเร็วรอบ (รอบ/นาที)	อัตราป้อน (มม./นาที)	แรงคึง (N/mm)
แบบเกลียว 750		102	8,270
แบบกรวย 3 มม.	750	102	5,840
แบบกรวย 4 มม.	750	102	6,400

ตารางที่ 4.3 เปรียบเทียบแรงคึงที่ความเร็วรอบ 750 รอบ/นาที และอัตราป้อน 102 มม./นาที

รูปที่ 4.12 เปรียบเทียบแรงคึงที่ความเร็วรอบ 750 รอบ/นาที และอัตราป้อน 102 มม./นาที

จากตารางที่ 4.3 และรูปที่ 4.12 แสดงให้เห็นว่าภายใต้เงื่อนไขตัวแปรเดียวกันทั้งความเร็วรอบ 750 รอบ/นาที และอัตราป้อน 102 มม./นาที หัวกวนแบบเกลียว แนวเชื่อมสามารถต้านแรงดึงได้ มากกว่าแบบกรวย 3 มม. และ 4 มม. โดยก่าที่วัดได้เท่ากับ 8,270 N.

เมื่อนำผลของแรงดึงเฉลี่ยสูงสุดของการเชื่อมแบบเสียดทาน โดยการใช้หัวกวนแบบเกลียว นำมาเปรียบเทียบกับความแข็งแรงแรงดึงเฉลี่ยสูงสุดของอลูมิเนียม และสแตนเลส ได้ผลดังแสดง ในตารางที่ 4.4

ตารางที่ 4.4 เปรียบเทียบแรงคึงเฉลี่ยสูงสุดของ Al 6063 AISI 304 และการชิ้นงานเชื่อมแบบเสียด ทานระหว่าง Al 6063 และ AISI 304

วัสคุ	ค่าความแข็งแรงคึงสูงสุด (N)
อลูมิเนียม (A1 6063)	9,603
เหล็กกล้าไร้สนิม (AISI 304)	45,090
เชื่อมแบบเสียดทานระหว่าง A1 6063 และ AISI 304	9,170

เปรียบเทียบแรงคึงเฉลี่ยสูงสุด

รูปที่ 4.13 กราฟเปรียบเทียบแรงคึงของ Al 6063 AISI 304 และการชิ้นงานเชื่อมแบบเสียดทาน ระหว่าง Al 6063 และ AISI 304 รูปที่ 4.13 แสดงการเปรียบเทียบแรงดึงที่ได้จากการทดสอบแรงดึงระหว่างอลูมิเนียม (Al 6063) เหล็กกล้าไร้สนิม (AISI 304) และการเชื่อมวัสดุทั้งสองชนิดเข้าด้วยกันด้วยวิธีการ เชื่อมเสียดทานโดยใช้หัวกวนแบบเกลียว จากผลการทดสอบแสดงให้เห็นว่าวัสดุที่เป็นเนื้อ เดียวกันจะมีกวามต้านแรงดึงดีกว่าการยึดติดของวัสดุสองชนิด

4.3.3 สรุปผลการทดลองการวัดอุณหภูมิ (Temperature)

จากผลการตรวจวัดอุณหภูมิระหว่างการทดสอบการเชื่อมแรงเสียดทานในครั้งนี้ได้ติดตั้งตัว ตรวจวัดอุณหภูมิเข้ากับชิ้นงานอลูมิเนียม A1 6063 ในตำแหน่งระยะ 5 10 และ 15 มม. เพื่อ ตรวจสอบอุณหภูมิที่เกิดขึ้นระหว่างหัวกวนหมุนเชื่อม โดยแบ่งเป็นกลุ่มตามแบบของหัวกวน คือ หัวกวนแบบเกลียว หัวกวนแบบกรวย 3 มม. และหัวกรวยแบบ 4 มม. ทดสอบภายใต้ เงื่อนไขตัว แปรต่าง ๆ กันพบว่าเมื่อเชื่อมด้วยแรงเสียดทานแบบกวนชิ้นงานเหล็กกล้าไร้สนิม SS304 และ อลูมิเนียมผสม A16063 หัวกวนแบบเกลียวจะทำให้เกิดอุณหภูมิสูงสุดในการเชื่อมคือ 560 องศา เซลเซียส ซึ่งเป็นอุณหภูมิที่สามารถกระตุ้นทำให้เกิดการแพร่รวมตัวกันระหว่างเหล็กกับอลูมิเนียม ได้เป็นสารประกอบที่มีความแข็งแรงสูง และมีความหนาของชั้นสารประกอบประมาณ 19 ใมกรอน กาดว่าน่าจะเป็นสาเหตุที่ทำให้บริเวณอินเทอร์เฟสมีความแข็งแรงสามารถต้านทานแรงดึง ได้เป็นอย่างดี

ระยะทาง ชนิดหัวกวน	5 มม.	10 มม.	15 มม.
แบบเกลียว	560 °C	280 °C	194 °C
แบบกรวย 3 มม.	412 °C	244 °C	194 °C
แบบกรวย 4 มม.	411 °C	297 °C	196 °C

ตารางที่ 4.5 เปรียบเทียบอุณหภูมิที่ความเร็ว 830 รอบ/นาที และอัตราป้อน 67 มม./นาที

รูปที่ 4.14 เปรียบเทียบแรงดึงที่ความเร็วรอบ 830 รอบ/นาที และอัตราป้อน 67มม./นาที จากตารางและรูปที่ 4.14 แสดงให้เห็นว่าภายใต้เงื่อนไขตัวแปรเดียวกันทั้งความเร็วรอบ และ อัตราป้อน หัวกวนแบบเกลียวจะเกิดความร้อนมากกว่าแบบกรวยขนาด 3 มม. และ 4 มม. ซึ่งความ ร้อนที่เกิดจะน้อยลงเรื่อยๆ เมื่อระยะทางห่างออกจากหัวกวนเนื่องจากสมบัติของการแผ่ความร้อน ของวัสดุ จากการวัดค่าความร้อนที่ได้สูงสุดทำให้เกิดการแพร่ได้เร็วกว่าหัวเชื่อมแบบกรวยและ ทรงกระบอก จึงทำให้เกิดการสร้างสารประกอบบริเวณอินเตอร์เฟสของชิ้นงานทำให้ความแข็งแรง เพิ่มมากขึ้นในบริเวณดังกล่าว

ระยะทาง ชนิดหัวกวน	5 มม.	10 มม.	15 มม.
แบบเกลียว	540 °C	482 °C	214 °C
ແบบกรวย 3 มม.	540 °C	340 °C	174 °C
แบบกรวย 4 มม.	433 °C	211 °C	192 °C

ตารางที่ 4.6 เปรียบเทียบอุณหภูมิที่ความเร็ว 580 รอบ/นาที และอัตราป้อน 44 มม./นาที

82

เปรียบเทียบอุณหภูมิที่ความเร็วรอบ 580 รอบ/นาที และอัตราป้อน 44 มม./นาที

รูปที่ 4.15 เปรียบเทียบอุณหภูมิที่ความเร็วรอบ 580 รอบ/นาที และอัตราป้อน 44 มม./นาที

จากตารางที่ 4.6 และรูปที่ 4.15 แสดงให้เห็นว่าถ้าหากความเร็วรอบ และอัตราป้อนต่ำจะทำให้ เกิดความร้อนสะสมมากจะเห็นได้จากระยะวัดที่ 10 มม. และ15 มม. ตามลำดับภายใต้เงื่อนไขตัว แปรเดียวกันทั้งความเร็วรอบ และอัตราป้อน หัวกวนแบบเกลียวจะเกิดความร้อนมากกว่าแบบ กรวยขนาด 3 มม. และ 4 มม. ซึ่งความร้อนที่เกิดจะน้อยลงเรื่อยๆ เมื่อระยะทางห่างออกจากหัวกวน เนื่องจากสมบัติของการแผ่ความร้อนของวัสดุ

ตารางที่ 4.7 เปรียบเทียบอุณหภูมิที่ความเร็ว 750 รอบ/นาที และอัตราป้อน 102 มม./นาที

ระยะทาง ชนิดหัวกวน	5 มม.	10 มม.	15 มม.
แบบเกลี่ยว	550 °C	300 °C	212 °C
ແบบกรวย 3 มม.	570 [°] C	290 °C	170 °C
ແบบกรวย 4 มม.	506 °C	270 °C	196 °C

เปรียบเทียบอุณหภูมิที่ความเร็วรอบ 750 รอบ/นาที และอัตราป้อน 102 มม./นาที

รูปที่ 4.16 เปรียบเทียบแรงดึงที่ความเร็วรอบ 750 รอบ/นาที และอัตราป้อน 102 มม./นาที

จากตารางที่ 4.7 และรูปที่ 4.16 แสดงให้เห็นว่าภายใต้เงื่อนไขตัวแปรเดียวกันทั้งความเร็วรอบ และอัตราป้อน หัวกวนแบบกรวยขนาด 3 มม. จะเกิดความร้อนมากกว่าแบบเกลียว และ 4 มม. ซึ่ง ความร้อนที่เกิดจะน้อยลงเรื่อยๆ เมื่อระยะทางห่างออกจากหัวกวนเนื่องจากสมบัติของการแผ่ความ ร้อนของวัสดุ

4.4 ผลการวิเคราะห์โครงสร้างจุลภาคของการเชื่อม

4.4.1 โครงสร้างจุลภาคของการเชื่อมแรงเสียดทานขนาดเส้นผ่านศูนย์กลางของตัวกวนแบบ เกลียว จากรูปที่ 4.17 แสดงโครงสร้างจุลภาคของรอยต่อการเชื่อมที่แสดงความแข็งแรงดึงเฉลี่ย สูงสุด 9,170 N ซึ่งเป็นการเชื่อมขนาดเส้นผ่าศูนย์กลางของตัวกวนมีเกลียว 4 มิลลิเมตร ระยะสอด 0.1 มิลลิเมตร ความเร็วรอบ 830 รอบต่อนาที และความเร็วเดินแนวเชื่อม 67 มิลลิเมตรต่อวินาที เมื่อ พิจารณาแล้วพบว่า โครงสร้างของวัสดุทั้งสองชนิดผสานติดกันอย่างสมบูรณ์ และเกิดการเสียรูป ของเนื้อเหลีกกล้าไร้สนิมจากการเสียดสีของหัวกวนแบบเกลียวทำให้ได้ลักษณะผิวหน้าของบริเวณ รอยต่อด้านเหล็กกล้าไร้สนิมมีลักษณะคล้ายฟันเลื่อย คาดว่าน่าจะเป็นสาเหตุหนึ่งที่ทำให้เกิดการยึด ติดกันทางกล (mechanical locking) ของบริเวณอินเทอร์เฟส

รูปที่ 4.17 โครงสร้างจุลภาคของรอยต่อของการเชื่อมหัวกวนแบบเกลียว ที่ค่าความแข็งแรงคึงเฉลี่ยสูงสุด 9,170 N

จากรูปที่ 4.17 โครงสร้างจุลภาคของรอยต่อของการเชื่อมของตัวกวนมีเกลียว 4 มิลลิเมตร ระยะ สอด 0.1 มม.ความเร็วรอบ 830 รอบต่อนาที และอัตราป้อน 67 มิลลิเมตรต่อนาที ด้วยกล้อง จุลทรรศน์ขยาย 100X จากรูปที่ 4.8 เมื่อพิจารณาแล้วพบว่า โครงสร้างของวัสดุทั้งสองชนิดผสาน ติดกันอย่างสมบูรณ์กาดว่าเป็นเพราะผิวหน้าของเหล็กกล้าไร้สนิมหลุดไปอยู่ในโครงสร้างของ อลูมิเนียมและจากตำแหน่งการฉีกของแนวเชื่อมที่เกิดขึ้นบริเวณอลูมิเนียม ทำให้เกิดความมั่นใจได้ ระดับหนึ่งว่า หากทำการเชื่อมแล้วจะได้ผิวหน้าที่มีความสมบูรณ์ และเกิดการฉีกขาดในตำแหน่งที่ ไม่ใช่รอยต่อของแนวเชื่อม จะทำให้ได้แนวเชื่อมที่มีความแข็งแรง และสามารถยืนยันให้ทราบว่า การเชื่อมเสียดทานแบบกวนสามารถทำให้เกิดแนวเชื่อมระหว่างเหล็กกล้าไร้สนิมเกรด 304 กับ อลูมิเนียมเกรด 6063 ได้อย่างสมบูรณ์ อย่างไรก็ตามจำเป็นต้องมีการตรวจสอบต่อไปโดยเครื่องมือ วิเคราะห์ที่มีความแม่นยำ 4.4.2 โครงสร้างจุลภาคของการเชื่อมแรงเสียดทานขนาดเส้นผ่านศูนย์กลางของตัวกวนแบบ กรวยขนาด 3 มม. จากรูปที่ 4.9 แสดงโครงสร้างจุลภาคของรอยต่อการเชื่อมที่แสดงความแข็งแรง ดึงเฉลี่ยสูงสุด 5,940 N. ซึ่งเป็นการเชื่อมของตัวกวนแบบกรวย 3 มม. ระยะสอด 0.1 มิลลิเมตร ความเร็วรอบ 830 รอบต่อนาที และอัตราป้อน 67 มม.ต่อนาที เมื่อพิจารณาแล้วพบว่า โครงสร้าง ของวัสดุทั้งสองชนิดผสานติดกันแต่ไม่มีลักษณะการจับยึดทางกล (Mechanical Bonding) จะให้ ลักษณะการจับยึดเป็นแนวเรียบ ๆ เกือบจะเป็นเส้นตรง คาดว่าน่าจะเป็นสาเหตุทำให้ก่าความ แข็งแรงดึงของวัสดุลดลง และเกิดการขาดที่บริเวณอินเทอร์เฟสของชิ้นงานอลูมิเนียม และ เหล็กกล้าไร้สนิมเมื่อพิจารณาที่รอยขาดของชิ้นงานทดสอบ

รูปที่ 4.18 โครงสร้างจุลภาคของรอยต่อของการเชื่อมหัวกวนแบบกรวย ที่ค่าความแข็งแรงคึงเฉลี่ยสูงสุด 5,940 N

จากรูปโครงสร้างจุลภาคของรอยต่อของการเชื่อมของตัวกวนทรงกรวยปลาย 3 มิลลิเมตร ระยะ สอด 0.1 มม.ความเร็วรอบ 830 รอบต่อนาที และอัตราป้อน 67 มิลลิเมตรต่อนาที ด้วยกล้อง จุลทรรศน์ขยาย 100X เมื่อพิจารณาแล้วพบว่าโครงสร้างของวัสดุทั้งสองชนิดผสานติดกันอย่างไม่ ก่อยสมบูรณ์นัก กาดว่าเป็นเพราะลักษณะตัวกวนที่เป็นทรงกรวยนั้นหมุนกวนและเสียดทานไม่เต็ม ผิวหน้าของเหล็กกล้าไร้สนิมจึงทำให้ผิวหน้าของเหล็กกล้าไร้สนิมหลุดไปอยู่ในโครงสร้างของ อลูมิเนียมน้อย และจากตำแหน่งการฉีกของแนวเชื่อมที่เกิดขึ้นบริเวณรอยต่อของแนวเชื่อม จะพบ จุดบกพร่องของแนวเชื่อม ทำให้ได้แนวเชื่อมที่มีความแข็งแรงน้อย อย่างไรก็ตามจำเป็นต้องมีการ ตรวจสอบต่อไปโดยเกรื่องมือวิเคราะห์ที่มีความแม่นยำ

4.4.3 โครงสร้างจุลภาคของการเชื่อมแรงเสียดทานขนาดเส้นผ่านศูนย์กลางของตัวกวนแบบ กรวยขนาดปลาย 4 มม. จากรูปที่ 4.19 แสดงโครงสร้างจุลภาคของรอยต่อการเชื่อมที่แสดงความ แข็งแรงดึงเฉลี่ยสูงสุด 6,750 N ซึ่งเป็นการเชื่อมขนาดเส้นผ่าศูนย์กลางของตัวกวนแบบกรวย ระยะ สอด 0.1 มิลลิเมตร ความเร็วรอบ 830 รอบต่อนาที และอัตราป้อน 67 มม.ต่อนาที เมื่อพิจารณาแล้ว พบว่า โครงสร้างของวัสดุทั้งสองชนิดผสานติดกันอย่างไม่สมบูรณ์นักเนื่องจากผิวหน้าของ เหล็กกล้าไร้สนิมหลุดออกไปติดอยู่โครงสร้างของอลูมิเนียม คาดว่าเกิดจากผิวสัมผัสการหมุนกวน เสียดสีเพื่อเปิดผิวหน้าของเหล็กกล้าไร้สนิมไม่สม่ำเสมอจึงทำให้เกิดจุดบกพร่อง และการฉีกของ แนวเชื่อมที่เกิดขึ้น

รูปที่ 4.19 โครงสร้างจุลภาคของรอยต่อของการเชื่อมหัวกวนแบบกรวย ที่ค่าความแข็งแรงคึงเฉลี่ยสูงสุด 6,750 N

จากรูปที่ 4.19 โครงสร้างจุลภาคของรอยต่อของการเชื่อมของตัวกวนแบบกรวย 4 มิลลิเมตร ระยะ

สอด 0.1 มม.ความเร็วรอบ 830 รอบต่อนาที และอัตราป้อน 67 มิลลิเมตรต่อนาที ด้วยกล้อง จุลทรรศน์ขยาย 100X จากรูปที่ 4.19 เมื่อพิจารณาแล้วพบว่าโครงสร้างของวัสอุทั้งสองชนิดผสาน ติดกันอย่าง ไม่สมบูรณ์นัก เนื่องจากผิวหน้าของเหล็กกล้าไร้สนิมหลุด ไปติดอยู่ในเนื้อของ อลูมิเนียม และจากตำแหน่งการฉีกของแนวเชื่อมที่เกิดขึ้นบริเวณรอยต่อของแนวเชื่อม จะพบ จุดบกพร่องของแนวเชื่อม ทำให้ได้แนวเชื่อมที่มีความแข็งแรงน้อย คาดว่าเกิดจากผิวสัมผัสการ หมุนกวน เสียดสีเพื่อเปิดผิวหน้าของเหล็กกล้าไร้สนิมไม่สม่ำเสมอจึงทำให้เกิดจุดบกพร่อง และ การฉีกของแนวเชื่อม โครงสร้างของวัสดุทั้งสองชนิดผสานติดกันอย่าง ไม่สมบูรณ์ ดังแสดงก่า ความแข็งแรงดึงของทุกสภาวะการเชื่อม ตารางที่ 4.8 จากการทดลองตัวกวนมีเกลียวขนาด 4 มิลลิเมตร ระยะสอด 0.1 มม.ความเร็วรอบ 830 รอบต่อนาที และอัตราป้อน 67 มิลลิเมตรต่อนาที อุณหภูมิที่ระยะ 5 mm 560 °C มีก่ากวามเก้นดึงเฉลี่ยสูงสุดอยู่ที่ 146 เมกะปาสกาล ซึ่งมีก่าประมาณ 96 % เมื่อเทียบกับก่าความเก้นดึงของเนื้ออลูมิเนียม (A1 6063) 152 เมกะปาสกาล ซึ่งมีก่าความ แข็งแรงดึงเฉลี่ยใกล้เคียงกัน

หบิดหัากาบ	ความเร็ว/อัตราป้อน	อุณหภูมิ (°C)	แรงอึง (N)	ความเค้น (เม
אנוויווזאת	(รอบ/นาที) (มม/นาที)	(ที่ระยะ 5 มม)	883 NPIN (1N)	กะปาสคาล)
	830/67	560	9170	146
แบบเกลียว	580/44	540	8050	128
	750/102	550	8270	131
	830/67	412	5940	94
แบบกรวย 3 มม.	580/44	540	5040	80
	750/102	570	5840	93
	830/67	411	6750	107
ແบบกรวย4มม.	580/44	433	6280	100
	750/102	506	6400	102
หมายเหตุ เ	ความเก้นแรงดึงของ AISI 304 715 เมกะปาสกาล (จากการทดลอง)			
f	ความเก้นแรงคึงของ A1 6360 152 เมกะปาสกาล (จากการทคลอง)			

ตารางที่ 4.8 สรุปผลการทคลอง

4.5 การวิจารณ์ผลการทดลอง

จากการการดำเนินการทดลองการเชื่อมแรงเสียดทานแบบกวนรอยต่อชนอลูมิเนียม AA6063 และเหล็กกล้าไร้สนิม AISI 304 ด้วยตัวแปรรูปทรงของตัวกวนแบบเกลียวขนาด 4 มม. และทรง กรวยขนาด 3, 4 มม. ที่ระยะสอดตัวกวน 0.1 มม. ที่ความเร็วรอบ 580-830 รอบต่อนาที ความเร็ว เดินแนวเชื่อมมีค่าเท่ากับ 22-114 มม.ต่อนาที ผลที่ได้จากการเชื่อมแสดงตามรูปที่ 3 แสดงให้เห็นถึง ความสมบูรณ์ของผิวหน้าแนวเชื่อมจากตัวกวนทั้งสองรูปทรง คือหัวกวนแบบกรวยแสดงในรูปที่ 3 (ก) และ(ข) ให้แนวเชื่อมที่มีจุดบกพร่องบริเวณตรงกลางแนวเชื่อม ระหว่างรอยต่อของชิ้นงาน อลูมิเนียม และเหล็ก ส่วนชิ้นงานที่ผ่านการเชื่อมด้วยหัวกวนแบบเกลียวให้ลักษณะทางกายภาพ ของรอยเชื่อม โดยมีพื้นผิวหน้าของชิ้นงานสมบูรณ์ การไหลตัวของวัสดุเป็นไปอย่างสม่ำเสมอ ตลอดแนวเชื่อม มีเพียงจุดบกพร่องบริเวณปลายแนวเชื่อมเท่านั้นซึ่งถือได้ว่าเป็นจุดบกพร่องปกติ ของการเชื่อมแบบแรงเสียดทานแบบกวน ดังรูปที่ 4.20

รูปที่ 4.20 แสดงลักษณะของรอยเชื่อมด้วยแรงเสียดทานแบบกวน

สำหรับความสัมพันธ์ของรูปทรงตัวกวนต่อค่าความแข็งแรงคึงสูงสุดของแนวเชื่อมจะแสดง ดังรูปที่ 4.21 ค่าความต้านทานแรงคึงสูงสุดของชิ้นงานเชื่อมรอยต่อชนอลูมิเนียม 6063 กับ เหล็กกล้าไร้สนิม 304 จากรูปที่ 4.20 พบว่าค่าความต้านทานแรงคึงสูงสุดคือ 9170 นิวตัน หรือ ประมาณ 146 เมกะปาสกาล

รูปที่ 4.21 แสดงความสัมพันธ์ระหว่างค่าแรงดึงกับรูปทรง ของตัวกวน

ใด้จากการเชื่อมชิ้นงานด้วยหัวกวนที่มีรูปทรงเกลียวขนาด 5 มม. ที่ความเร็วรอบในการเชื่อม 830 รอบต่อนาที และที่อัตราการเดินแนวเชื่อม 67 มม.นาที สอดกล้องกับลักษณะทางกายภาพของ ชิ้นงานเชื่อมในรูปที่ 4.20(ค) ที่มีความสมบูรณ์ของรอยเชื่อมมากที่สุด สำหรับชิ้นงานเชื่อมที่มีค่า ความต้านทานแรงดึงต่ำสุดได้เพียง 5940 นิวตัน หรือ 94 เมกะปาสกาล เป็นชิ้นงานที่เชื่อมด้วยหัว กวนแบบกรวยขนาด 3 มม. ที่ความเร็วรอบในการเชื่อม 830 รอบต่อนาที และที่อัตราการเดินแนว เชื่อม 67 มม.นาที ซึ่งให้ลักษณะทางกายภาพของรอยเชื่อมที่มีจุดบกพร่องของแนวเชื่อมระหว่าง อลูมิเนียมกับเหล็ก ในขณะที่ทำการทดลองได้เก็บข้อมูลเกี่ยวกับอุณหภูมิที่เกิดจากการเชื่อมชิ้นงาน ที่จุดห่างจากรอยต่อของชิ้นงานทั้งสองที่ระยะ 5, 10 และ 15 มม. ด้านชิ้นงานอลูมิเนียมตามลำดับ โดยได้ก่าอุณหภูมิที่เกิดจากการเชื่อมแสดงดังรูปที่ 4.23

รูปที่ 4.23 แสดงกวามสัมพันธ์ของอุณหภูมิกับชนิดหัวกวน

จากการทดลองเชื่อมชิ้นงานอลูมิเนียมกับเหล็กกล้าไร้สนิมผลของอุณหภูมิที่วัดได้ด้านชิ้นงาน อลูมิเนียมที่ระยะ 5 มม.จากรอยต่อได้อุณหภูมิสูงสุด 560 องศาเซลเซียสซึ่งเป็นอุณหภูมิที่วัสดุ อลูมิเนียม 6063 ไม่เกิดการหลอมละลาย แต่เป็นอุณหภูมิที่คาดว่าสามารถทำให้เกิดการแพร่เพื่อ รวมตัวเป็นสารประกอบได้ดีระหว่างเหล็กกับอลูมิเนียม ณ บริเวณที่เป็นแนวเชื่อมแบบกวน(Stir Zone) จึงทำให้สามารถด้านทานแรงดึงได้สูงที่บริเวณอินเทอร์เฟสของชิ้นงานทั้งสอง ดังจะเห็นได้ จากการแตกหักของชิ้นงานแสดงดังรูปที่ 4.23

เมื่อตรวจสอบโครงสร้างจุลภาคบริเวณอินเทอร์เฟสด้วยกล้องจุลทรรศน์แบบใช้แสงของ ชิ้นงานเชื่อมเหล็กกล้าไร้สนิม(SS304) และอลูมิเนียม(Al60630) ที่มีค่าความต้านทานแรงคึงสูงสุด เมื่อเชื่อมด้วยตัวแปรการเชื่อมดังนี้ หัวกวนแบบเกลียว, ความเร็วรอบ 830 รอบต่อนาที, ความเร็ว เชื่อม 67 มิลลิเมตรต่อนาที สามารถให้ค่าต้านทานแรงคึงสูงสุด 9,170 นิวตัน หรือค่าความเล้น สูงสุด 146 เมกะปาสกาล โดยมีตำแหน่งการฉีกขาดของชิ้นงานอยู่ห่างจากบริเวณอินเทอร์เฟส หรือ บริเวณรอยเชื่อม ประมาณ 10 มิลลิเมตร แสดงว่ารอยเชื่อมที่ได้จากการเชื่อมชิ้นงานที่ตัวแปร ดังกล่าว สามารถเชื่อมให้ชิ้นงานเหล็กกล้าไร้สนิมเกรดออสเตนนิติก 304 ประสานติดกันได้เป็น อย่างดีกับอลูมิเนียมเกรด 6063 โดยหัวกวนแบบเกลียวสามารถสร้างรอยหยักลักษณะคล้ายฟันปลา ให้เกิดขึ้นที่บริเวณผิวหน้าเหล็กกล้าไร้สนิมจนทำให้เกิดลักษณะการล๊อคยึดเนื้ออลูมิเนียมเข้าไว้ใน ร่องรอยหยักของเหล็กกล้าไร้สนิมซึ่งคาดว่าน่าจะเป็นสาเหตุหนึ่งที่ทำให้การเกิดยึดเกาะกันได้เป็น อย่างดีในแง่ของการเกิดการยึดเกาะทางกล (Mechanical Interlocking) ดังแสดงในรูป 2.24

รูปที่ 4.24 แสดงโครสร้างจุลภาคบริเวณอินเทอร์เฟสของเหล็ก แลอลูมิเนียม

จากโครงสร้างจุลภาคจะเห็นได้ว่าหัวกวนแบบเกลียวได้หมุนกวนจนทำให้เกิดรอยฟันปลาที่ บริเวณผิวหน้าของเหล็กกล้าจนเป็นรอยหยักขนาดเล็ก และขณะเดียวกันหัวกวนหมุนเสียดสีทำให้ เกิดความร้อนจนกระทั่งเนื้ออลูมิเนียมเกิดการอ่อนตัวคล้ายของเหลวถูกอัดให้ไหลตัวเข้าไปใน ร่องรอยหยักดังกล่าวด้วยแรงอัดจากบ่าเครื่องมือ (Shoulder) จนเกิดเป็นลักษณะการยึดเกาะทางกล (Mechanical Interlocking) นำไปสู่กวามแข็งแรงของอินเทอร์เฟสจนสามารถต้านทานแรงดึงได้สูง กว่าการเชื่อมเสียคทานแบบกวนเหล็กกล้าไร้สนิม(304) กับอลูมิเนียม(Al6063) ค้วยตัวแปรการ เชื่อมอื่น ๆ

รูปที่ 4.25 แสดงการขาดของชิ้นงานเชื่อม

จากรูปที่ 4.25 แสดงให้เห็นบริเวณรอยขาดที่เกิดขึ้นถัดออกมาจากรอยต่อ(อินเทอร์เฟส) ของ แนวเชื่อมประมาณ 10 มม. แสดงว่ารอยต่อประสานที่เกิดขึ้นระหว่างอลูมิเนียม A1 6063 และ เหล็กกล้าไร้สนิม SS 304 สามารถเชื่อมประสานกันได้เป็นอย่างคีด้วยวิธีการเชื่อมด้วยแรงเสียดทาน แบบกวน โดยใช้หัวกวนแบบเกลียวที่ให้ความร้อนที่เหมาะสมเพียงพอ เพื่อให้เกิดการแพร่ในการ สร้างชั้นความหนาของสารประกอบเชิงโลหะที่มีความแข็งแรงสูง

แต่อย่างไรก็ตามนอกเหนือจากลักษณะโครงสร้างจุลภาคที่แสดงลักษณะการเกาะยึดผิวกัน บริเวณอินเทอร์เฟสที่มีลักษณะเป็นแบบการยึดเกาะทางกลแล้ว ก็ควรจะต้องวิเคราะห์ผลของ โครงสร้างจุลภาค และการเกิดการแพร่กระจายของธาตุที่ตำแหน่งอินเทอร์เฟสด้วย เพื่อเป็นการ สร้างความเข้าใจเกี่ยวกับตัวแปรของกระบวนการเชื่อมที่มีผลต่อการเปลี่ยนแปลงโครงสร้างและ องค์ประกอบของรอยเชื่อม จนนำไปสู่คุณสมบัติทางกลที่ดีขึ้นของงานเชื่อมด้วยแรงเสียดทานแบบ กวนเหล็กกล้าไร้สนิมออสเตนนิติก เกรด 304 กับอลูมิเนียม เกรด Al6063 จากการวิเคราะห์บริเวณ อินเทอร์เฟสของงานเชื่อม 3 ตำแหน่ง ได้แก่ตำแหน่งด้านบนของรอยเชื่อ(ตำแหน่งที่ I), ตำแหน่ง ตรงกลางรอยเชื่อม(ตำแหน่งที่ II) และตำแหน่งด้านอ่างแนวเชื่อม(ตำแหน่งที่ III) พบการ เปลี่ยนแปลงที่เกิดขึ้นทั้งสามตำแหน่งคือ ตำแหน่งที่ I ด้านบนสุดของแนวเชื่อมจะเป็นด้านที่ ผิวหน้างานเชื่อมสัมผัสกับบ่าของเครื่องมือเชื่อมมากที่สุดจนทำให้เกิดอุณหภูมิสูงมากในตำแหน่งนี้

รูปที่ 4.26 แสดงลักษณะ โครงสร้างจุลภาคของรอยเชื่อมเหล็กและอลูมิเนียม

จะเห็นได้จากรูปที่ 4.26 (ก) แสดงให้เห็นถึงอิทธิพลของความร้อนที่เกิดขึ้น ทำให้การเกิด การแพร่(Diffusion) ของธาตุต่าง ๆ จนกลายเป็นสารประกอบระหว่างเหล็กกับอลูมิเนียม(Inter Metallic Compound: IMC) เป็นบริเวณกว้างโดยสามารถวัดชั้นความหนาของสารประกอบที่เกิดขึ้นได้ ประมาณ 19.9 ไมครอน และที่ตำแหน่งนี้ยังสามารถสังเกตเห็นการเสียรูปทำให้เนื้อเหล็กกล้าไร้ สนิมเกิดการไหลตัวจากการเสียดสีของฟันเกลียวจนมีลักษณะเป็นรอยหยักลึกเข้าไปในเนื้อของ เหล็กกล้าไร้สนิม และสังเกตเห็นการรวมตัวของอลูมิเนียม(สีดำ) มีลักษณะคล้ายเส้นสีดำไหลเข้าไป ในเนื้อของเหล็กกล้าไร้สนิมเนื่องมาจากการหมุน และอัดอลูมิเนียมที่มีสภาวะคล้ายของเหลวให้ ไหลแทรกตัว และแพร่เข้าไปรวมกับเหล็กจากการอัดของบ่าเครื่องมือ(Shoulder) จนกลายเป็น สารประกอบ Fe₃AI ที่มีคุณสมบัติด้านความแข็งแรงสูง (Plam, M., 2005; 1286-1295)

ในตำแหน่งที่ II เป็นบริเวณกึ่งกลางของความหนาของรอยเชื่อม ณ บริเวณอินเทอร์เฟสจะ พบว่าลักษณะของผิวชิ้นงานเหล็กถูกเกลียวของหัวกวนหมุนเสียคสีจนทำให้เกิคเป็นรอยหยักพืน ปลาแต่มีขนาคเล็กกว่าด้านบนของแนวเชื่อม(ตำแหน่ง I) เนื่องจากบริเวณตรงกลางความหนาของ รอยเชื่อมอยู่ห่างจากบ่าเครื่องมือมากกว่า คาดว่าน่าจะเกิดความร้อนขึ้นน้อยกว่าด้านบนที่สัมผัสกับ บ่าเครื่องมือจึงทำให้บริเวณดังกล่าวมีการเสียรูปของผิวหน้าเนื้อเหล็กค่อนข้างย้อย รวมถึงอัคเนื้อ อลูมิเนียมที่อยู่ในสภาวะกึ่งของเหลวไหลเข้าไปแพร่กระจายรวมตัวกับเนื้อเหล็ก ได้น้อยกว่าด้านบน เช่นกัน โดยสามารถวัดค่าความหนา(ลึกสุดเข้าไปในเนื้อเหล็ก) ของชั้นสารประกอบได้ประมาณ 11.8 ไมครอน และเป็นชั้นความหนาที่สุดในตำแหน่งที่ II เกิดขึ้นที่บริเวณปลายพืนเกลียวที่กินลึก เข้าไปในเนื้อเหล็ก ดังแสดงในรูปที่ 4.26 (ข)

ส่วนตำแหน่งที่ III ของบริเวณอินเทอร์เฟส หรือตำแหน่งที่อยู่ด้านล่างสุดของรอยต่อจะพบ การเสียรูปของผิวหน้าเหล็กด้วยเช่นกัน แต่จะมีเพียงเล็กน้อย และน้อยกว่าทั้งสองตำแหน่งที่กล่าว มา กาดว่าน่าจะเกิดจากการที่ตำแหน่งนี้อยู่ห่างจากแหล่งที่มีความร้อนมากที่สุด จนทำให้การแพร่ รวมตัวของเหล็กและอลูมิเนียมเกิดขึ้นได้น้อยดังจะเห็นได้จากรูปที่ 4.26 (ค) จะมีเส้นใยการไหลตัว ของผิวหน้าเนื้อเหล็กน้อยมาก การอัดเนื้ออลูมิเนียมที่อยู่ในสภาวะของแข็งที่อ่อนตัวเนื่องจาก บริเวณดังกล่าวสามารถทำการวัดก่าอุณหภูมิของชิ้นงานอลูมิเนียมได้สูงสุด 560 องศาเซลเซียสซึ่ง เมื่อเทียบกับเฟสไดอะแกรมของอลูมิเนียมพบว่า ณ อุณหภูมิดังกล่าวอลูมิเนียมมีสถานะเป็น สารละลายของแข็งชนิด แอลฟ่า (α) ระหว่างเหล็กกับอลูมิเนียม ดังนั้นในสภาวะดังกล่าวกาดว่า อลูมิเนียมมีความอ่อนตัวน้อยกว่าด้านบน จึงทำให้เกิดการแพร่ไหลตัวเข้าไปในเนื้อเหล็กกล้าได้ไม่ ดีพอจึงทำให้ได้ก่ากวามหนาของชั้นสารประกอบเหล็กกับอลูมิเนียมเพียง 6.88 ไมกรอนซึ่งเป็นก่า ชั้นความหนาสูงสุดในตำแหน่งที่ III แสดงตามรูปที่ 4.26 (ก) การวิเคราะห์ธาตุต่าง ๆ ที่รวมดัวกันเป็นสารประกอบในโครงสร้างจุลภาคของงานเชื่อม แสดงบริเวณอินเทอร์เฟสของเหล็กกล้าไร้สนิม กับอลูมิเนียมปรากฏสารประกอบเชิงโลหะเกิดขึ้น บริเวณอินเทอร์เฟส มีความหนาประมาณ 19, 11 และ 6 ไมครอนตามลำดับจากด้านบนสู่ด้านของ รอยเชื่อม ชั้นของสารประกอบดังกล่าวมืองค์ประกอบของ Fe58.72-Al16.89 %โดยอะตอม จาก ส่วนผสมทางเคมีของสารประกอบดังกล่าวเมื่อเปรียบเทียบกับเฟสไดอะแกรมของเหล็กกับ อลูมิเนียมจะแสดงเป็นสารประกอบ Fe+Fe₃Al จากการศึกษาพบว่าสารประกอบดังกล่าวมี คุณสมบัติทางกลสามารถต้านทานแรงดึงสูง จึงคาดว่าเป็นสาเหตุทำให้บริเวณอินเทอร์เฟสของ เหล็กกับอลูมิเนียมสามารถต้านทานแรงดึงสูง จึงคาดว่าเป็นสาเหตุทำให้บริเวณอินเทอร์เฟสของ โดยมีองค์ประกอบของ Fe58.72-Al16.89 %โดยอะตอม ดังรูป

รูปที่ 4.27 แสดงสารประกอบบริเวณอินเทอร์เฟส

จากการวิเคราะห์ด้วยการกระจายพลังงานบริเวณรอยเชื่อมพบว่าบริเวณที่เป็นเนื้อของ อลูมิเนียมแสดงปริมาณธาตุอลูมิเนียมสูงมากประมาณ 98.81 % โดยอะตอม และชิ้นงานด้าน เหล็กกล้าไร้สนิมแสดงปริมาณธาตุของเหล็ก โครเมียม และนิกเกิล 70.24 %, 19.56 % และ 7.57 % โดยอะตอม ตามลำดับ ส่วนบริเวณที่เป็นอินเทอร์เฟส จะมีองค์ประกอบของ Fe58.72-A116.89 % โดยอะตอม

รูปที่ 4.26 แสดงลักษณะ โครงสร้างจุลภาคและการกระจายพลังงานบริเวณต่าง ๆ ของงานเชื่อม จากการวิเคราะห์ด้วยวิธีการกระจายพลังงาน (EDS) พบว่าบริเวณด้านบนสุดของรอยเชื่อมเกิด การแพร่รวมตัวของเหล็กและอลูมิเนียมเป็นบริเวณกว้างมีความหนาของชั้นสารประกอบประมาณ 19 ใมครอน เนื่องจากบริเวณดังกล่าวเป็นจุดที่อยู่ใกล้กับแหล่งเกิดความร้อนสูงจากการหมุนอัดของ หัวกวน และบ่าเครื่องมือจนทำให้เกิดการเสียรูปของผิวหน้าเหล็กจนสามารถอัดเนื้ออลูมิเนียมที่อยู่ ในสภาวะกึ่งของเหลวให้ไหลเข้าไปแทรกตัวแพร่กระจายในเนื้อของเหล็กได้สารประกอบที่มีความ แข็งแรงสูงต้านทานแรงดึงได้ดีที่บริเวณอินเทอร์เฟสของชิ้นงาน แสดงว่าก่าตัวแปรการเชื่อมที่มี ความสอดกล้องเหมาะสมจะทำให้ได้โครงสร้างที่มีความแข็งแรงสามารถต้านทานต่อการฉีกขาด ของชิ้นงานบริเวณอินเทอร์เฟสได้เป็นอย่างดี