

*Corresponding author.
Email address: krisni@kku.ac.th

doi: 10.14456/easr.2023.29

Engineering and Applied Science Research 2023;50(3):262-269 Research Article

 Engineering and Applied Science Research

 https://www.tci-thaijo.org/index.php/easr/index

 Published by the Faculty of Engineering, Khon Kaen University, Thailand

A self-adaptive differential evolution for the technician routing and scheduling problem

Voravee Punyakum1), Krisanarach Nitisiri*2), Kanchana Sethanan2) and Dusit Singpommat1)

1)Faculty of Technical Education, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand
2)Research Unit on System Modelling for Industry, Department of Industrial Engineering, Faculty of Engineering,

Khon Kaen University, Khon Kaen 40002, Thailand

Received 13 December 2022

Revised 16 April 2023

Accepted 21 April 2023

Abstract

This paper presents two approaches for solving the Technician Routing and Scheduling Problem (TRSP). The first approach is an

integer programming method, and the second is a Self-Adaptive Differential Evolution (SADE) algorithm. The TRSP involves

scheduling jobs for service teams who have different skill sets. These jobs have time constraints and can only be completed by

technicians with the necessary skills. The goal of the TRSP is to minimize the operating cost, which includes travel, late service

penalties, technician overtime, and subcontracting costs. To evaluate the effectiveness of the proposed SADE and integer programming

approaches, we conducted small-scale numerical experiments. We also compared the performance of SADE to that of the conventional

Differential Evolution (DE) algorithm on medium and large-scale problems. The results indicate that SADE produces significantly

higher quality solutions compared to DE.

Keywords: Technician scheduling, Vehicle routing, Differential evolution

1. Introduction

 The optimal use of the available manpower is one of the primary business problems for service organizations, due to limited

manpower resources, a rising service portfolio and customized requirements requested by customers [1]. For decades, related routing,

scheduling, and rostering problems have been investigated to assist businesses in making the most efficient use of their manpower [2].

Companies' services frequently include difficult jobs that necessitate the participation of several personnel with a variety of skills.

Furthermore, services are frequently offered at customers' locations, necessitating technician travel. To satisfy the requirements for this

type of problem, businesses organizes service teams to simplify the planning of job schedules and service teams routing to customer

locations [3]. As a result, the service team loses a portion of its daily working hours to travel to different locations. Hence, a routing

problem arises in addition to the job assignment and scheduling problem [4]. The Technician Routing and Scheduling Problem (TRSP)

is an operational issue that involves planning the routes and schedules for mobile service technicians. The TRSP combines elements

of both the Workforce Scheduling and Routing Problem (WSRP) and the Vehicle Routing Problem (VRP). Essentially, the TRSP is a

generalized version of the WSRP that takes into account additional factors from the VRP [5]. Examples of TRSP can be found in the

installation and maintenance sector [6-9].

 To solve the TRSP, metaheuristic methods are widely utilized because of their ability to handle problems more intensively and

with more robust methodologies. Metaheuristics have been developed in the last decade to find a near-optimal solution for larger, more

practical problems [10]. For example, Kovacs et al. [11] researched service TRSPs in which each team's routes were determined in

such a way that travel expenses were minimized while time windows and task skill criteria were met. The purpose is to minimize the

total routing and outsourcing costs solved by Adaptive large neighborhood search (ALNS). Next year, Pillac et al. [12] utilized the

Adaptive Large Neighborhood Search (ALNS) method to solve the Technician Routing and Scheduling Problem (TRSP). In their

approach, the task compatibility constraint included the availability of necessary spare parts and tools. This allowed technicians to

complete tasks independently, without the need to form teams based on specific skill sets. By using the ALNS approach, Pillac et al.

were able to find solutions to the TRSP that were efficient and effective. Pinheiro et al. [13] investigated WSRP, taking into account

the need for desired skills, labor availability, and the objective of lowering operating costs, such as transportation and staffing. A

variable neighborhood search (VNS) strategy was used to find the solution. Later, Çakırgil et al. [2] looked at the WSRP via the lens

of an electricity distribution firm case study. The formation of a team, technical skills, and technician multi-skills were all taken into

account. The goal of this study was to consider two objectives: completing high-priority jobs as quickly as possible and minimizing

operating costs, including travel and outsourcing expenses. These objectives were used to guide the process of routing and scheduling

technicians in order to achieve the best possible outcomes. By focusing on these two objectives, the researchers aimed to optimize the

efficiency and effectiveness of the technician routing and scheduling process. A multi-objective VNS strategy was utilized to find the

solution. In the same year, Pekel [14] proposed an improved particle swarm optimization (IPSO) to solve multi-period TRSP. The

IPSO is a hybrid between particle swarm optimization (PSO) and the neighborhood operator. The results reveal that when using the

branch-and-cut algorithm, IPSO produces superior outcomes in an acceptable amount of time. Later, Punyakum et al. [15] proposed a

Engineering and Applied Science Research 2023;50(3) 263

hybrid optimization approach called the Hybrid Differential Evolution and Particle Swarm Optimization (HDEPSO) for solving multi-

visit and multi-period Workforce Scheduling and Routing Problems (WSRP). The HDEPSO combines elements of both differential

evolution (DE) and particle swarm optimization (PSO). The researchers tested the HDEPSO against both DE and PSO and found that

it produced significantly higher quality solutions. In the same year, Punyakum et al. [16] also proposed a hybrid optimization algorithm

called the Hybrid Particle Swarm and Whale Optimization Algorithm (HPSWOA) for solving dynamic WSRP with multiple visits and

periods. The HPSWOA is a combination of PSO and the whale optimization algorithm (WOA). The researchers compared the

HPSWOA to both PSO and WOA and found that it resulted in superior solutions.

 Differential Evolution (DE) is a powerful optimization algorithm that is known for its simplicity and efficiency as a global

optimization method. DE is particularly effective at finding optimal solutions because it has strong convergence properties, which

means that it can quickly find good solutions to problems. Additionally, DE can be used with parallel computing, which allows the

algorithm to analyze a designed vector population individually and reduce computational resources. This makes DE a useful tool for

solving complex optimization problems in an efficient manner [17], which can be improved further by using adaptive parameters [18]

and hybridizing strategies [15, 16]. DE is a also highly customizable algorithm that can be customized to incorporate the problem-

specific constraints of the TRSP, which involves complex interactions between workers, tasks, and equipment. DE can capture these

interactions and provide a way to model and analyze the system. Furthermore, DE can be used to optimize the allocation of resources

by minimizing costs or maximizing productivity. This is particularly useful in workforce scheduling and routing problems where

efficiency is a key consideration. TRSP is never solved with adaptive DE. This study aims to address the gap in existing approaches

by proposing two methods for solving the Technician Routing and Scheduling Problem (TRSP): a mixed integer linear programming

(MILP) and a self-adaptive differential evolution (SADE). The MILP approach is used to solve small-scale TRSP problems and to

validate the performance of the SADE method. The SADE approach is designed to be more efficient and effective at solving larger-

scale TRSP problems. By using both the MILP and SADE approaches, this study aims to provide a comprehensive solution to the

TRSP.

 The structure of this paper is as follows: The mathematical model for the Technician Routing and Scheduling Problem (TRSP) is

described in Section 2. The development of the Self-Adaptive Differential Evolution (SADE) algorithm for the TRSP is presented in

Section 3. The computational results of using the SADE algorithm on the TRSP are discussed in Section 4. Finally, the last section

includes the conclusions and suggestions for future research on the TRSP.

2. Mathematical model for TRSP

 The assumptions for the TRSP are as follows: (i) only one service team is allowed to serve a customer at a time; (ii) service teams

is constantly stocked with the tools and spare parts required for maintenance; (iii) technicians are assigned to service teams before

beginning their work; (iv) there is only one size available for transport vehicles; (v) maintenance services cannot be divided between

service teams; (vi) service teams return to the company once they have completed their assigned services. 𝑁 is set of customers and

company (depot), however company is not included in 𝑁′. The following list includes the notation used throughout the paper.

Indices

𝑖, 𝑗 : Index of customers and company (depot)

𝑘 : Index of service teams

𝑟 : Index of technician skills

Parameters

𝑁 : Set of customers and company (depot)

𝑁′ : Set of customers

𝐾 : Set of service teams

𝑅 : Set of skill types

𝑇𝑐𝑖,𝑗 : Transport cost for service teams traveling from customer 𝑖 to 𝑗 (units)

𝑇𝐷𝑐𝑖 : penalty costs for the customer's service being late (unit per minutes)

𝑂𝑆𝑐 : Subcontracting cost of customers 𝑖 (unit per minutes)

𝑂𝑇𝑐𝑘 : Overtime of service team 𝑘 (unit per minutes)

𝑒 : Starting time

𝑓 : Finish time

𝑎𝑖 : Starting time of customer 𝑖
𝑏𝑖 : Finish time of customer 𝑖
𝑡𝑖,𝑗 : Travel time from customer 𝑖 to customer 𝑗 (minutes)

𝑝𝑖 : Service time of customer 𝑖 (minutes)

𝑔𝑘,𝑟 : Proficiency of service team of skill 𝑟 (1 = basic, 2 = medium, 3 = expert)

𝑛 : Number of service teams

𝑢𝑖,𝑟 : Requirements of proficiency of service team of skill 𝑟 for customer 𝑖
ℎ𝑘 : Number of technicians of service team 𝑘

𝑤𝑖 : Number of technicians required by customer 𝑖
𝑀 : Positive large number

𝑇𝐷𝑚𝑎𝑥 : max delay time

𝑂𝑇𝑚𝑎𝑥 : max overtime

Decision Variables

𝑋𝑖,𝑗,𝑘
= 1, if service team k leaves customer 𝑖 for customer 𝑗;
= 0, otherwise.

𝑌𝑖,𝑘
= 1, if service team k services customer 𝑖;
= 0, otherwise.

264 Engineering and Applied Science Research 2023;50(3)

𝑂𝑆𝑖
= 1, when customer 𝑖 requests subcontracting;

= 0, otherwise.

𝑇𝐷𝑖 : Amount of maintenance late time for customer 𝑖
𝑂𝑇𝑘 : Overtime of service team 𝑘

𝑠𝑖,𝑘 : Starting time to service customer 𝑖 by service team 𝑘

Objective function:

𝑚𝑖𝑛∑∑∑𝑋𝑖,𝑗,𝑘 ∙ 𝑇𝑐𝑖,𝑗
𝑘∈𝐾𝑗∈𝑁𝑖∈𝑁

+∑𝑇𝐷𝑖 ∙ 𝑇𝐷𝑐𝑖
𝑖∈𝑁

+∑𝑂𝑇𝑘 ∙ 𝑂𝑇𝑐𝑘 +∑𝑂𝑆𝑖 ∙ 𝑂𝑆𝑐

𝑖∈𝑁

∙ 𝑝𝑖

(1)

Subject to:

∑𝑌𝑖,𝑘 + 𝑂𝑆𝑖
𝑘∈𝐾

= 1 ∀ 𝑖 ∈ 𝑁′ (2)

∑ 𝑋𝑖,𝑗,𝑘
𝑗∈𝑁′

= 𝑌𝑖,𝑘 ∀ 𝑖 ∈ 𝑁
′, 𝑖 ≠ 𝑗 (3)

∑(𝑋𝑖,𝑗,𝑘
𝑗∈𝑁

− 𝑋𝑗,𝑖,𝑘) = 0 ∀ 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (4)

(𝑠𝑖,𝑘 + 𝑝𝑖 + 𝑡𝑖,𝑗) ∙ 𝑌𝑖,𝑘 −𝑀(1 − 𝑋𝑖,𝑗,𝑘) ≤ 𝑠𝑗,𝑘 ∀ 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁′, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (5)

𝑠𝑖,𝑘 ≥ 𝑎𝑖 ∙ 𝑌𝑖,𝑘 ∀ 𝑖 ∈ 𝑁′, 𝑘 ∈ 𝐾 (6)

𝑠𝑖,𝑘 − (𝑏𝑖 − 𝑝𝑖) ∙ 𝑌𝑖,𝑘 ≤ 𝑇𝐷𝑖 ∀ 𝑖 ∈ 𝑁′, 𝑘 ∈ 𝐾 (7)

𝑇𝐷𝑖 ≤ 𝑇𝐷𝑚𝑎𝑥 ∀ 𝑖 ∈ 𝑁′ (8)

𝑠𝑗,𝑘 ≥ (𝑒 + 𝑡𝑖,𝑗) ∙ 𝑋𝑖,𝑗,𝑘 ∀𝑗 ∈ 𝑁′, 𝑘 ∈ 𝐾, 𝑖 = 1 (9)

𝑠𝑖,𝑘 − 𝑂𝑇𝑖,𝑘 + (𝑡𝑖,𝑗 + 𝑝𝑖) ∙ 𝑋𝑖,𝑗,𝑘 ≤ 𝑓 ∀ 𝑖 ∈ 𝑁′, 𝑘 ∈ 𝐾, 𝑗 = 1 (10)

∑𝑂𝑇𝑖,𝑘
𝑖∈𝑁′

≤ 𝑂𝑇𝑚𝑎𝑥 𝑘 ∈ 𝐾𝑞 (11)

∑ ∑𝑋𝑖,𝑗,𝑘
𝑘∈𝐾𝑗=𝑁′

≤ 𝑛 𝑖 = 1 (12)

𝑤𝑖 ∙ 𝑌𝑖,𝑘 ≤ ℎ𝑘 ∀𝑖 ∈ 𝑁′, 𝑘 ∈ 𝐾 (13)

𝑢𝑖,𝑟 ∙ 𝑌𝑖,𝑘 ≤ 𝑔𝑘,𝑟 ∀𝑖 ∈ 𝑁′, 𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅 (14)

𝑋𝑖,𝑗,𝑘 = {0, 1} ∀𝑖, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾 (15)

𝑌𝑖,𝑘 = {0, 1} ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾 (16)

𝑂𝑆𝑖 = {0, 1} ∀𝑖 ∈ 𝑁 (17)

 The objective of this problem is to minimize the operating cost of routing and scheduling technicians to service customers, which

includes the travel cost of service teams, the penalty cost for delay services, the technician overtime cost, and the subcontracting cost.

Constraint (2) ensures that each customer must be serviced either by a service team or by a subcontractor. Constraint (3) ensures that

customer 𝑖 is serviced by technician team 𝑘. Constraint (4) ensures that, after service completion, the team transport vehicles had to

leave the customer. Constraint (5) ensures that the starting time for servicing customer 𝑗 is the finish time of customer 𝑖 plus the travel

time of service team 𝑘. Constraint (6) ensures that a service team must start servicing a customer only when the customer is ready.

Constraint (7) allows for the possibility of a delay in service if a service team cannot finish the service in time. Constraint (8) limits the

amount of delay allowed for a service. Constraint (9) designates the start service time for a service team. Constraint (10) allows for

service team overtime if they arrive at the depot late. Constraint (11) limits the amount of overtime allowed for each service team.

Constraint (12) ensure that the number of service teams leaving company (𝑖 = 1) does not exceed the number of service groups available.

Constraint (13) ensures that each service team has sufficient personnel to service a customer. Constraint (14) ensures that the

proficiency of skill types of each service team is sufficient to service a customer. Constraints (15) to (17) are basic restrictions on the

binary variables.

Engineering and Applied Science Research 2023;50(3) 265

3. Metaheuristic approach for solving TRSP problem

 The Self-Adaptive Differential Evolution (SADE) is a metaheuristic algorithm that was designed to improve upon the original

Differential Evolution (DE) algorithm [17]. SADE includes a self-adaptive parameter control method that allows it to adapt to the

specific characteristics of the problem it is being applied to. SADE consists of five main processes: initialization, mutation,

recombination, selection, and self-adaptive control parameter. Initialization involves generating the initial solution, which serves as the

starting point for the optimization process. Mutation involves making small changes to the initial solution in order to explore new

regions of the search space. Recombination combines the mutated solutions with the original solution in order to create a new,

potentially better solution. Selection involves comparing the new solution to the original solution and choosing the one that is better.

Finally, the self-adaptive control parameter process adjusts the parameters of the algorithm in order to improve its performance. The

TRSP problem is considered to be NP-hard and highly complicated problem [12]. Since the optimal solution cannot be obtained using

an optimization program for the largescale problems due to the vast number of variables in the TRSP problem, The SADE was proposed

to solve the problem as follows:

3.1 Initialization

 The initial step of the proposed algorithm involves creating an initial population of vectors, each of which represents a potential

solution to the Technician Routing and Scheduling Problem (TRSP). The size of the population is predetermined. Each vector consists

of two parts: a customer vector and a service team vector. The dimension of the customer vector, which is produced at random, is equal

to the total number of customers. The vector is then sorted in ascending order using the Rank Order Value method (ROV) to determine

the sequence of customers that will be visited by each service team. The service team vector is also randomly generated and has a

dimension equal to the number of service teams. This vector is used to prioritize which service team will service each customer. Once

the initial population has been created, the algorithm proceeds to the next steps, which involve mutating, recombining, and selecting

the best solutions in order to improve upon the initial population. Figure 1 illustrates an example of vector construction. In this example,

there are five customers and two service teams. The customer vector is initially represented as: 0.52, 0.84, 0.65, 0.12, 0.26. The

corresponding customer IDs are 1, 2, 3, 4, and 5, respectively. After sorting the customer vector in ascending order, we obtain the

following: 0.12, 0.26, 0.52, 0.65, 0.84. Therefore, the customer IDs are now arranged in the following order: 4, 5, 1, 3, 2. The customers

are assigned by rank of the customer ID to the service team by the close vector’s value. If the first service team's skill and the number

of service team members do not match the customer, the customer will be assigned to the next service team, and so on until all customers

have been assigned to their service teams. The customers who cannot be serviced by the service teams will be outsourced to third-party

service providers. Then, the fitness value (operating cost) will be calculated. The operating cost includes travel cost, penalty cost for

late services, technician overtime cost and subcontracting cost.

Figure 1 Example of vector construction

3.2 Mutation operation

 In the Differential Evolution (DE) method, the vector number (NV) refers to the number of vectors employed during the iterative

process. These NV vectors are randomly generated as the initial solutions. The second step in the DE process is the mutation operation.

Eq. (18) is used to create a mutant vector by combining three vectors at random. The scaling factor 𝐹 is an adaptive parameter, range

from [0, 2]. The mutant vector is 𝑉𝑖,𝐺+1, and the random vectors are 𝑋𝑟1,𝐺 , 𝑋𝑟2,𝐺 and 𝑋𝑟3,𝐺.

Customer Vector

Customer ID

Service Team Vector

Assign order to

Service Team

Assign Priority to

Service Team

1 2 3 4 5

0.52 0.84 0.65 0.12 0.26

Sort in Ascending

0.12 0.26 0.52 0.65 0.84

4 5 1 3 2

1 2

0.43 0.24

0.12 0.26 0.52 0.65 0.84

4 5 1 3 2

Priority Calculate

by Close Value

2 2 1 1 1

1 1 2 2 2

266 Engineering and Applied Science Research 2023;50(3)

𝑉𝑖,𝐺+1 = 𝑋𝑟1,𝐺 + 𝐹(𝑋𝑟2,𝐺 + 𝑋𝑟3,𝐺) (18)

3.3 Recombination operation

 The recombination process involves taking solutions from the previous iteration and combining them in some way to create new

solutions for the current iteration. The trial vector (𝑈𝑖,𝐺+1) can be constructed using Eq. (19). The value of each position in the vector

is determined based on a uniform random number (𝑅𝑎𝑛𝑑) and the crossover rate (𝐶𝑅). If Rand is less than or equal to 𝐶𝑅, the value at

that position is replaced with the value from the mutant vector (𝑉𝑗𝑖,𝐺+1). If Rand is greater than 𝐶𝑅, the value at that position is taken

from the target vector (𝑋𝑗𝑖,𝐺). This process is repeated for each position in the vector.

𝑈𝑗𝑖,𝐺+1 = {
𝑉𝑗𝑖,𝐺+1 𝑖𝑓(𝑅𝑎𝑛𝑑𝑗,𝐺[0,1] ≤ 𝐶𝑅)

𝑋𝑗𝑖,𝐺 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (19)

3.4 Selection operation

 DE's selection process is similar to tournament selection in a genetic algorithm, which is a method for selection of individuals from

a set of population. During each iteration of the process, the target vector (𝑋𝑖,𝐺) is compared to the trial vector (𝑈𝑖,𝐺+1). The vector that

has the lowest objective value is chosen to move on to the next iteration (𝑋𝑖,𝐺+1). The selection formula is represented by Eq. (20).

𝑋𝑖,𝐺+1 = {
𝑈𝑖,𝐺+1 𝑖𝑓(𝑓(𝑈𝑖,𝐺+1) < 𝑓(𝑋𝑖,𝐺))

𝑋𝑖,𝐺 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (20)

3.5 Self-adaptive control parameter

 By using adaptive parameters approach, the solution obtained from the DE algorithm can be improved. The SADE algorithm's

adaptive part can adjust the scaling factor (𝐹) and the crossover rate values (𝐶𝑅) throughout the mutation and recombination processes.

Jia et al. [19] proposed a self-adaptive parameter control technique for the DE algorithm, which adjusts the values of 𝐶𝑅𝑖,𝐺 and 𝐹𝑖,𝐺

based on individual fitness data. This study adopts this self-adaptive approach, which is shown in Eq. (21) and Eq. (22). The

probabilities (𝜏) in these equations determine the adjustment of the factors 𝐹𝑖,𝐺 and 𝐶𝑅𝑖,𝐺 during the mutation and recombination

processes. 𝑓𝑎𝑣𝑔 and 𝑓𝑚𝑖𝑛 represent the average fitness and the minimum fitness of the current population, respectively.

𝐹𝑖,𝐺+1 =

{

 0.1 + (𝐹𝑖,𝐺 − 0.1) ×

𝑓(𝑋𝑖,𝐺+1) − 𝑓𝑚𝑖𝑛
𝑓𝑎𝑣𝑔 − 𝑓𝑚𝑖𝑛

 𝑖𝑓(𝑅𝑎𝑛𝑑𝑖1,𝐺[0,1] < 𝜏 𝑎𝑛𝑑 𝑓(𝑋𝑖,𝐺+1) < 𝑓𝑎𝑣𝑔)

𝑅𝑎𝑛𝑑𝑖2,𝐺[0.1,1] 𝑖𝑓(𝑅𝑎𝑛𝑑𝑖1,𝐺[0,1] < 𝜏 𝑎𝑛𝑑 𝑓(𝑋𝑖,𝐺+1) ≥ 𝑓𝑎𝑣𝑔)

𝐹𝑖,𝑔 𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒

 (21)

𝐶𝑅𝑖,𝐺+1 =

{

 𝐶𝑅𝑖,𝐺 ×

𝑓(𝑋𝑖,𝐺+1 − 𝑓𝑚𝑖𝑛)

𝑓𝑎𝑣𝑔 − 𝑓𝑚𝑖𝑛
 𝑖𝑓(𝑅𝑎𝑛𝑑𝑖3,𝐺[0,1] < 𝜏 𝑎𝑛𝑑 𝑓(𝑋𝑖,𝐺+1) < 𝑓𝑎𝑣𝑔)

𝑅𝑎𝑛𝑑𝑖4,𝐺[0,1] 𝑖𝑓(𝑅𝑎𝑛𝑑𝑖3,𝐺[0,1] < 𝜏 𝑎𝑛𝑑 𝑓(𝑋𝑖,𝐺+1) ≥ 𝑓𝑎𝑣𝑔)

𝐶𝑅𝑖,𝐺 𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒

 (22)

 To summarize the overall processes of the SADE algorithm, the algorithm begins by defining the initial solution sections for TRSP,

such as the encoding and decoding vectors. A customer vector and a service team vector make up each vector. The objective is to

minimize the operating cost. SADE is then employed with five processes: initialization (Section 3.1), mutation (Section 3.2),

recombination (Section 3.3) and selection (Section 3.4) and self-adaptive feature (Section 3.5). The overall procedure for the SADE

algorithm is illustrated in Figure 2.

Procedure: Self-adaptive differential evolution (SADE)

Input: data of TRSP, parameters of SADE (𝐶𝑅, 𝐹, 𝜏, NV)

Output: Operating cost

Begin:

Population Initialization;

While exit condition not met do

for n = 1 to NV

 Decoding and Evaluation;

 Mutation Operation;

 Recombination Operation;

 Selection operation;

 Self-adaptive control parameter;

end

 end

end

Figure 2 Overall SADE algorithm procedure.

4. Computational experiments

Engineering and Applied Science Research 2023;50(3) 267

 The purpose of this study is to evaluate the efficiency and effectiveness of the SADE in TRSP. As part of the self-adaptive process

for 𝐹 and 𝐶𝑅, DE parameters were set as self-adaptive control parameters with a probability of 𝜏 = 0.1. The control parameters of

traditional DE used for comparison were F=0.5, CR=0.9, population size = 100 and max iterations = 1500, as referenced from Jia et

al. [19]. The proposed algorithms were implemented using Python and tested on a 2.38 GHz personal computer with 8 GB of RAM.

The mathematical formulation was solved using Lingo program on the same setting. To provide an example, 10 instances were created

(Table 1) with different average service times, numbers of customers, and numbers of service teams. The size of test problem is

categorized as follows: Instance 1-4, 5-7, and 8-10 are small, medium, and large problem, respectively. The data used in Instance 11 is

based on real case data. The penalty cost for each customer was determined by a range of values from 15 to 25. The service time for

each customer was set at 90 minutes, and the time window for service was between 30 and 360 minutes. The overtime cost for the

service team was also determined by a range of values from 6 to 10. The service teams began working at the start of the day and

continued until 480 minutes had passed. The delay time must be less than 30 minutes. The maximum amount of overtime hours was

limited to 120 minutes. The outsourcing service cost 20 units for each minute of service time.

Table 1 Test problem

Instance No. of Customers No. of Service teams Avg. Service Time

1 10 4 60

2 14 4 83

3 17 4 80

4 20 4 80

5 25 7 76

6 30 7 75

7 35 7 75

8 45 12 74

9 55 12 72

10 65 12 78

11 63 10 73

 Table 2 shows the distance between the depot and the customers. The service team is required to have 2 specific skills in order to

fulfill the customer's needs. The operating costs for instance 1 are shown in Table 3.

 The technician routing and scheduling problems were formulated as mixed integer programming models. The results for solving

the small size problems using Lingo program are shown in Table 4.

Table 2 Distance matrix (km)

Customer 1 2 3 4 5 6 7 8 9 10 11

1 - 19 21 16 18 15 19 16 18 20 17

2 19 - 2 4 3 4 5 5 7 7 10

3 21 2 - 5 4 6 5 6 7 7 11

4 16 4 5 - 2 1 4 2 4 6 7

5 18 3 4 2 - 3 2 3 4 4 7

6 15 4 6 1 3 - 4 2 5 6 7

7 19 5 5 4 2 4 - 3 2 2 6

8 16 5 6 2 3 2 3 - 3 4 5

9 18 7 7 4 4 5 2 3 - 2 4

10 20 7 7 6 4 6 2 4 2 - 5

11 17 10 11 7 7 7 6 5 4 5 -

Table 3 Instance 1 results

Instance 1 Results

Operating cost 454

Travel cost 424

Penalty cost 30

Overtime cost 0

Subcontracting costs 0

Service teams used Teams 2 and 3

Sequences of customers -

Service team 2 1-10-2-4-3-5-7-1

Service team 3 1-11-8-9-6-1

Table 4 The operating costs of Lingo's solutions

Instance Operating cost Computational time [min]

1 454 2.29

2 1,000 4.47

3 1,112 52.42

4 3,561* 1,440
*Best solution found within limited computational time

268 Engineering and Applied Science Research 2023;50(3)

 The test instances 1 to 3 were successfully solved to find an optimal solution. The operating cost and computational time for each

problem were generated and presented. For instance 1 through 4, the computational time increased significantly as the problem size

increased, due to the complexity of the problem. In instance 4, the problem could not be solved in the limited time, the best operating

cost found within 1440 minutes (24 hours) is 3,561. The TRSP problem was particularly difficult and complex for instances 5 through

11, as it involved a large number of variables. Additionally, the company only accepts computations that take less than 360 minutes (6

hours), which restricts the order in which each service team can visit a customer. The time used to obtain instances 5 to 11 by solving

the mixed integer programming model (MILP) cannot be accepted. In order to satisfy the consumers requirement and to address both

small and large problems, this study suggests that the metaheuristic (in this case, SADE) should be used to determines the order of

customers that each service team should visit.

 The performance of traditional DE and SADE was evaluated using 11 instances, the same as the MILP test. The results of DE and

SADE for TRSP are displayed in Table 5. The computational experiments were conducted using a total of 10 runs to compare the best

and average operating costs of each solution for each instance. For instances 1 and 2, DE and SADE found that the best operating cost

was equal to the optimal solution. However, for instance 3, SADE produced the same result as the optimal solution, but DE did not.

For instance 4, the optimal solution cannot be solved in the limited 1440 minutes and the best operating cost obtained from Lingo was

used instead. For the rest of the test instances 4 to 11, the results show that SADE found the better solution compared to DE.

Table 5 Comparison of the best and average operating cost of each solution for each instance

Inst.

Solution by

LINGO
 Solution by DE Solution by SADE

Best

solution

CPU

time

[min]

 Avg. Std.
Best

solution

CPU

time

[sec]

 Avg. Std.
Best

solution

CPU

time

[sec]

1 454 2.29 458.6 9.34 454 4.31 454.8 1.67 454 3.00

2 1,000 4.47 1,015.9 12.53 1,000 17.38 1,004.5 7.35 1,000 6.15

3 1,112 52.42 1,155.3 35.61 1,117 36.10 1,144.7 18.59 1,112 45.91

4 3,561 1,440 3,828.6 223.40 3,510 47.11 3,583.0 191.11 3,217 55.21

5 - - 2,332.1 190.79 2,003 50.74 2,049.8 72.92 1,916 28.18

6 - - 4,033.3 288.06 3,631 57.92 3,148.8 201.07 2,886 86.41

7 - - 9,220.5 609.37 7,678 54.30 8,212.2 530.90 7,176 118.42

8 - - 8,879.9 471.38 8,029 234.40 7,486.4 414.14 6,896 72.55

9 - - 16,838.0 767.41 15,343 298.93 15,135.1 732.80 13,783 304.16

10 - - 32,112.6 672.07 31,222 279.13 30,186.8 706.74 28,699 330.15

11 - - 34,099.80 637.60 32,943 296.48 33,003.87 726.01 30,894 260.55

 The solutions obtained from SADE were compared with those from traditional DE using a t-test. Table 6 shows a p-value of less

than 0.05, indicating that SADE is significantly different from traditional DE. The objective value of SADE was reduced by 7.16%

compared to traditional DE. SADE outperformed traditional DE, providing better overall solutions and significantly reducing the

company's operating costs, including the travel cost, penalty for late services cost, overtime cost, and subcontracting cost.

Table 6 Results of t-test

Sample N Mean St. Dev SE Mean %Diff p-value

DE 11 9,721 11,880 3,582 7.16 0.013

SADE 11 8,912 11,037 3,328

5. Conclusions

 One of the main business challenges of a service organization is making the best use of the available technicians. Additionally,

services are frequently provided at customers' locations, requiring the technicians to travel to different locations. This research proposed

a mixed integer programming formulation and a Self-Adaptive Differential Evolution (SADE) algorithm to identify an efficient route

for sequencing customers to be serviced by each service teams an enhanced version of the Differential Evolution (DE) algorithm. It

uses an adaptive auto-tuning method to adjust the parameters of the mutation and recombination operators during the optimization

process. Numerical experiments were conducted to evaluate the efficiency and effectiveness of SADE in TRSP. According to the

experimental results, SADE outperformed DE by about 7.16%. On average, SADE improved the results across all problem instances.

These findings indicate that the proposed approach is effective and practical for use in the installation and maintenance sector.

 In the future, it would be useful to extend the proposed SADE approach to include more constraints, such as multi-visit, multi-

period, and team building in a real-world setting, as well as dynamic customers, a job splitting constraint, and multiple depots. In

addition, further research could be conducted to develop approaches for addressing multiple objectives in the TRSP.

6. Acknowledgements

 This work was supported by the Research Unit on System Modeling for Industry (Grant No. SMI.KKU 63003), Khon Kaen

University, Thailand and Rajamangala University of Technology Krungthep, Thailand. The authors would also like to thank Mr. Ian

Thomas for English language editing of the manuscript.

7. References

[1] Anoshkina Y, Meisel F. Technician teaming and routing with service-, cost-and fairness-objectives. Comput Ind Eng.

2019;135:868-80.

Engineering and Applied Science Research 2023;50(3) 269

[2] Çakırgil S, Yücel E, Kuyzu G. An integrated solution approach for multi-objective, multi-skill workforce scheduling and routing

problems. Comput Oper Res. 2020;118:104908.

[3] Castillo-Salazar JA, Landa-Silva D, Qu R. Workforce scheduling and routing problems: literature survey and computational

study. Ann Oper Res. 2016;239:39-67.

[4] Pereira DL, Alves JC, de Oliveira Moreira MC. A multiperiod workforce scheduling and routing problem with dependent tasks.

Comput Oper Res. 2020;118:104930.

[5] Zamorano E, Stolletz R. Branch-and-price approaches for the multiperiod technician routing and scheduling problem. Eur J Oper

Res. 2017;257(1):55-68.

[6] Cordeau JF, Laporte G, Pasin F, Ropke S. Scheduling technicians and tasks in a telecommunications company. J Sched.

2010;13:393-409.

[7] Irawan CA, Ouelhadj D, Jones D, Stålhane M, Sperstad IB. Optimisation of maintenance routing and scheduling for offshore

wind farms. Eur J Oper Res. 2017;256(1):76-89.

[8] Pillac V, Guéret C, Medaglia AL. A fast reoptimization approach for the dynamic technician routing and scheduling problem.

In: Amodeo L, Talbi EG, Yalaoui F, editors. Recent Developments in Metaheuristics. Cham: Springer; 2018. p. 347-67.

[9] Mathlouthi I, Gendreau M, Potvin JY. A metaheuristic based on tabu search for solving a technician routing and scheduling

problem. Comput Oper Res. 2021;125:105079.

[10] Sethanan K, Jamrus T. Hybrid differential evolution algorithm and genetic operator for multi-trip vehicle routing problem with

backhauls and heterogeneous fleet in the beverage logistics industry. Comput Ind Eng. 2020;146:106571.

[11] Kovacs AA, Parragh SN, Doerner KF, Hartl RF. Adaptive large neighborhood search for service technician routing and

scheduling problems. J Sched. 2012;15:579-600.

[12] Pillac V, Gueret C, Medaglia AL. A parallel matheuristic for the technician routing and scheduling problem. Optim Lett.

2013;7:1525-35.

[13] Pinheiro RL, Landa-Silva D, Atkin J. A variable neighbourhood search for the workforce scheduling and routing problem. In:

Pillay N, Engelbrecht A, Abraham A, du Plessis M, Snášel V, Muda A, editors. Advances in Nature and Biologically Inspired

Computing. Advances in Intelligent Systems and Computing. Cham: Springer; 2016. p. 247-59.

[14] Pekel E. Solving technician routing and scheduling problem using improved particle swarm optimization. Soft Comput.

2020;24:19007-15.

[15] Punyakum V, Sethanan K, Nitisiri K, Pitakaso R, Gen M. Hybrid differential evolution and particle swarm optimization for

multi-visit and multi-period workforce scheduling and routing problems. Comput Electron Agric. 2022;197:106929.

[16] Punyakum V, Sethanan K, Nitisiri K, Pitakaso R. Hybrid particle swarm and whale optimization algorithm for multi-visit and

multi-period dynamic workforce scheduling and routing problems. Mathematics. 2022;10(19):3663.

[17] Storn R, Price K. Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J Glob

Optim. 1997;11:341-59.

[18] Chen CA, Chiang TC. Adaptive differential evolution: a visual comparison. 2015 IEEE Congress on Evolutionary Computation

(CEC); 2015 May 25-28; Sendai, Japan. USA: IEEE; 2015. p. 401-8.

[19] Jia L, Gong W, Wu H. An improved self-adaptive control parameter of differential evolution for global optimization. In: Cai Z,

Li Z, Kang Z, Liu Y, editors. Computational Intelligence and Intelligent Systems. Berlin: Springer; 2009. p. 215-24.

