Sutasinee Kityakarn 2009: (Photo)Electrochemical Studies of Nanoporous TiO₂ and Ce-doped TiO₂ Film Electrodes Prepared by the Sol-Gel Method. Doctor of Philosophy (Chemistry), Major Field: Chemistry, Department of Chemistry. Thesis Advisor: Associate Professor Attera Worayingyong, Ph.D. 207 pages.

Nanoporous undoped TiO₂ and Ce-doped TiO₂ film electrodes were successfully prepared by a sol-gel method using high water content (a high ratio of water to alkoxide precursor of 200:1). Mixture phases of anatase and rutile were investigated by x-ray diffraction (XRD). Extended x-ray absorption fine structure (EXAFS) technique was also used to determine the mixture phases of anatase and rutile in undoped TiO₂ and Ce-doped TiO₂ powder together with the position of Ce ions in the TiO₂ structure. Results from scanning electron microscopic technique (SEM) showed that the undoped TiO₂ and Ce-doped TiO₂ electrodes were relatively compact films whereas a commercial TiO₂-P25 formed an agglomerated fine particle electrode. Electrochemical properties and photo-electrochemical properties of TiO₂ electrodes were studied by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The Ce-doped TiO₂ electrode showed a higher current in the dark compared with the undoped TiO₂ electrode due to a higher number of hydrated Ti(III) sites resulting from Ce(III) on the surface. Under irradiation, the overall impedance of the undoped TiO₂ showed a smaller value than that of the Ce doped-TiO₂ electrode, which meant that the undoped TiO₂ had higher conductivity due to fewer grain boundaries of the mixture phases of anatase and rutile. The EIS results were simulated using a transmission line model for porous film electrodes. Charge transfer processes and recombination reactions were taken into account for the simulation of irradiated EIS results. The enhancement of photocurrents depended on anodic potential, photon flux and electrolyte solution. The limitation of the overall reaction resulted from the charge transfer and recombination reactions.

		/	/
Student's signature	Thesis Advisor's signature		