TABLE OF CONTENTS

Page

TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
ABBREVIATIONS
INTRODUCTION
LITERATURE REVIEW
METHODS OF CALCULATIONS
Density functional theory (DFT)
SCREEP method
(The Surface Charge Represent of the Electrostatic Embedding
Potential)
Models and methodologies
ZSM-5 system
FAU system
RESULTS AND DISCUSSION
Mechanism of Beckmann rearrangement in zeolite catalyst
Brønsted acidic site of ZSM-5 zeolite
Adsorption complexes of formaldehyde oxime
Mechanism of the Beckmann rearrangement
Discussion
The influence of the framework to structures and energetic profiles
of the vapor phase of the Beckmann rearrangement on different
types of zeolite
1,2 H shift step
Rearrangement step
Tautomerization step
Discussion

i

TABLE OF CONTENTS (cont'd)

Page

Influence of the framework and substituted group effects to	
structures and energetic profiles	51
1,2 H shift step	51
Rearrangement step	56
Tautomerization step	60
Discussion	66
CONCLUSION	68
LITERATURE CITED	70
APPENDIX	83

LIST OF TABLES

Table	
1	Zeolite structures and dimensional parameters
2	Optimized geometries and adsorption energy, ΔE_{ads} (in kcal/mol) for N-complexes and O-complexes in the bare clusters and embedded cluster at B3LYP/6-31G(d,p) level of theory. (Distances are in pm. and angles in degrees.)
3	Optimized geometries and adsorption energy, ΔE_{ads} (in kcal/mol) for 1,2 H-shift transition state in the 10T bare cluster and embedded cluster at B3LYP/6-31G(d,p) level of theory. (Distances are in pm. and angles in degrees.).
4	Optimized geometries and adsorption energy, ΔE_{ads} (in kcal/mol) for rearrangement step in the 10T bare cluster and embedded cluster at B3LYP/6-31G(d,p) level of theory. (Distances are in pm. and angles in degrees.)
5	Optimized geometries and adsorption energy, ΔE_{ads} (in kcal/mol) for tautomerization step in the 10T bare cluster and embedded cluster at B3LYP/6-31G(d,p) level of theory. (Distances are in pm. and angles in degrees.)
6	Comparison of the adsorption energy, ΔE_{ads} (in kcal/mol) along the Beckmann rearrangement of formaldehyde oxime on the10T H-ZSM-5 zeolite in bare cluster and embedded cluster models by different methods. The values in square parentheses are obtained by the bare cluster model.
7	Optimized geometries and adsorption energy, ΔE_{ads} (in kcal/mol) N- bound, 1,2 H-shift and O-bound complexes of formaldehyde oxime on the 12T bare cluster and embedded cluster at the B3LYP level of theory. The values in square parentheses are taken from the bare cluster model (Distances are in pm_ and angles in degrees)

LIST OF TABLES (cont'd)

Table		Page
8	Optimized geometries and adsorption energy, ΔE_{ads} (in kcal/mol)	
	rearrangement transition state and enol-amide complexes of	
	formaldehyde oxime on the12T bare cluster and embedded cluster at	
	the B3LYP level of theory. The values in square parentheses are	
	taken from the bare cluster model. (Distances are in pm. and angles	
	in degrees.)	42
9	Optimized geometries and adsorption energy, ΔE_{ads} (in kcal/mol) rearrangement transition state and keto-amide complexes of	
	formaldehyde oxime on the 12T bare cluster and embedded cluster	
	at the B3LYP level of theory. The values in square parentheses are	
	taken from the bare cluster model. (Distances are in pm. and angles	
	in degrees.)	43
10	Comparison of the adsorption energy, ΔE_{ads} (in kcal/mol) along the	
	Beckmann rearrangement of formaldehyde oxime on the12T H-FAU	
	zeolite in the bare cluster and embedded cluster models by different	
	methods. The values in square parentheses are taken from the bare	
	cluster model	44
11	Calculated proton affinities, PA (in kcal/mol) of corresponding	
	amides of methylated derivaties at MP4/6-311G(d,p)//MP2/6-	
	31G(d,p) level of theory	61
Appen	dix Table	
1	Optimized geometries of N-bound, 1,2 H-shift and O-bound	
	complexes of Z-acetaldehyde oxime on the 12T bare cluster and	
	embedded cluster at the B3LYP level of theory. The values in	
	square parentheses are taken from the bare cluster model. (Distances	
	are in pm. and angles in degrees.)	98

LIST OF TABLES (cont'd)

Appendix Table		
2	Optimized geometries of rearrangement transition state and enol- amide complexes of Z-acetaldehyde oxime on the 12T bare cluster and embedded cluster at the B3LYP level of theory. The values in square parentheses are taken from the bare cluster model. (Distances are in pm. and angles in degrees.)	99
3	Optimized geometries of tautomerization transition state and keto- amide complexes of Z-acetaldehyde oxime on the 12T bare cluster and embedded cluster at the B3LYP level of theory. The values in square parentheses are taken from the bare cluster model. (Distances are in pm. and angles in degrees.)	100
4	Optimized geometries of N-bound, 1,2 H-shift and O-bound complexes of E-acetaldehyde oxime on the 12T bare cluster and embedded cluster at the B3LYP level of theory. The values in square parentheses are taken from the bare cluster model. (Distances are in pm. and angles in degrees.)	101
5	Optimized geometries of rearrangement transition state and enol- amide complexes of E-acetaldehyde oxime on the 12T bare cluster and embedded cluster at the B3LYP level of theory. The values in square parentheses are taken from the bare cluster model. (Distances are in pm. and angles in degrees.)	102
6	Optimized geometries of tautomerization transition state and keto- amide complexes of E-acetaldehyde oxime on the 12T bare cluster and embedded cluster at the B3LYP level of theory. The values in square parentheses are taken from the bare cluster model. (Distances are in pm. and angles in degrees.)	103

LIST OF TABLES (cont'd)

Appendix Table Page 7 Optimized geometries of N-bound, 1,2 H-shift and O-bound complexes of acetone oxime on the 12T bare cluster and embedded cluster at the B3LYP level of theory. The values in square parentheses are taken from the bare cluster model. (Distances are in pm. and angles in degrees.)..... 104 8 Optimized geometries of rearrangement transition state and enolamide complexes of acetone oxime on the 12T bare cluster and embedded cluster at the B3LYP level of theory. The values in square parentheses are taken from the bare cluster model. (Distances are in pm. and angles in degrees.)..... 105 9 Optimized geometries of tautomerization transition state and ketoamide complexes of acetone oxime on the 12T bare cluster and embedded cluster at the B3LYP level of theory. The values in square parentheses are taken from the bare cluster model. (Distances are in pm. and angles in degrees.)..... 106

LIST OF FIGURES

Figure		Page
1	The illustrative models used in ab initio calculation: (a) the bare	
	cluster model representing the active region of H-ZSM-5 zeolite, (b)	
	the embedded cluster model which is imitation of the electrostatic	
	potential from zeolite framework by point charges which surround	
	on the bare cluster model and (c) the periodic model of H-ZSM-5,	
	where the highlighted box is a supercell which is used in the	
	periodic calculation	4
2	The embedded cluster models created from SCREEP approach	15
3	Presentation of the 10T bare cluster model of H-ZSM-5 zeolite	16
4	Presentation of the 12T bare cluster model of H-FAU zeolite	17
5	Optimized structures of 10T cluster and embedded cluster of H-	
	ZSM-5 zeolite at B3LYP/6-31G(d,p) level of theory. (The values in	
	parentheses are taken from the bare cluster.)	18
6	Optimized adsorption complexes on the 10T cluster and embedded	
	cluster of H-ZSM-5 zeolite at B3LYP/6-31G(d,p) level of theory.	
	(a) N-bound complexes. (b) O-bound complexes (The values in	
	parentheses are taken from the bare cluster.)	21
7	Optimized complexes on 10T H-ZSM-5 zeolite at B3LYP/	
	6-31G(d,p) level of theory. (a) 1,2 H-shift transition state	
	complexes. (b) Beckmann rearrangement transition state complexes.	
	(The values in parentheses are taken from the bare	
	cluster.)	28
8	Optimized complexes on 10T H-ZSM-5 zeolite at B3LYP/	_0
	6-31G(d,p) level of theory. (a) enol-amide acid complexes. (b)	
	tautomerization transition state complexes. (The values in	
	parentheses are taken from the bare cluster.)	29

Figure	
9	Optimized the keto-amide complex on 10T H-ZSM-5 zeolite at
	B3LYP/6-31G(d,p) level of theory. (The values in parentheses are taken from the bare cluster.)
10	Energetic profile along the pathway Beckmann rearrangement of formaldehyde oxime adsorbed on 10T H-ZSM-5 zeolite at MP2/6-311G(d,p)//B3LYP level of theory. The energetic changes for the
	embedded cluster (solid line) and the bare cluster (dash line) complexes are in kcal/mol
11	Optimized complexes on the12T FAU zeolite at B3LYP/ 6-31G(d,p) level of theory. (a) N-bound complex. (b) 1,2 H-shift transition state complexes. (The values in parentheses are taken from the bare cluster.)
12	Optimized complexes on the 12T FAU zeolite at B3LYP/ 6-31G(d,p) level of theory. (a) O-bound complex. (b) Beckmann rearrangement transition state complexes. (The values in parentheses are taken from the bare cluster.)
13	Optimized complexes on the12T FAU zeolite at B3LYP/ 6-31G(d,p) level of theory. (a) Enol-Amide complexes. (b) tautomerization transition state complexes. (The values in parentheses are taken from the bare cluster.)
14	Optimized enol-amide complexe on the 12T H-FAU zeolite at B3LYP/6-31G(d,p) level of theory. (The values in parentheses are taken from the bare cluster.)

viii

Figure	
15	Energetic profile along the pathway Beckmann rearrangement of formaldehyde oxime adsorbed on the 12T H-FAU zeolite at MP2/6- 311G(d,p)//B3LYP level of theory. The energetic changes for the embedded cluster (solid line) and the bare cluster (dash line) complexes are in kcal/mol
16	Energetic profile along the pathway Beckmann rearrangement of formaldehyde oxime adsorbed on zeolites at MP2/6-311G(d,p) //B3LYP level of theory. The energetic changes for the embedded cluster model of 10T of H-ZSM-5 zeolite (solid line) and the embedded cluster model of 12T of H-FAU zeolite (dot line) complexes are in kcal/mol.
17	Optimized geometrical parameters of the corresponding N-bound complexes of (a) H ₂ C=NOH, (b) Z-MeHC=NOH, (c) E-MeHC=NOH, and (d) Me ₂ C=NOH molecules on the 12T cluster and embedded cluster of H-FAU zeolite at the B3LYP/6-31G(d,p) level of theory
18	Optimized geometrical parameters of the corresponding O-bound complexes of (a) $H_2C=NOH$, (b) Z-MeHC=NOH, (c) E-MeHC=NOH, and (d) Me ₂ C=NOH molecules on the 12T cluster and embedded cluster of H-FAU zeolite at the B3LYP/6-31G(d,p) level of theory.
19	Optimized geometrical parameters of the corresponding 1,2 H-shift transition state structure of (a) H ₂ C=NOH, (b) Z-MeHC=NOH, (c) E-MeHC=NOH, and (d) Me ₂ C=NOH molecules on the 12T cluster and embedded cluster of H-FAU zeolite at the B3LYP/6-31G(d,p) level of theory.

Figure		Page
20	Optimized geometrical parameters of the corresponding rearrangement transition state structure of (a) H ₂ C=NOH, (b) Z- MeHC=NOH, (c) E-MeHC=NOH, and (d) Me ₂ C=NOH molecules on the 12T cluster and embedded cluster of H-FAU zeolite at the B3LYP/6-31G(d,p) level of theory	58
21	Optimized geometrical parameters of the corresponding enol-P complex of (a) H ₂ C=NOH, (b) Z-MeHC=NOH, (c) E-MeHC=NOH, and (d) Me ₂ C=NOH molecules on the 12T cluster and embedded cluster of H-FAU zeolite at the B3LYP/6-31G(d,p) level of theory	59
22	Optimized geometrical parameters of the corresponding tautomerization transition state structure complex of (a) H ₂ C=NOH, (b) Z-MeHC=NOH, (c) E-MeHC=NOH, and (d) Me ₂ C=NOH molecules on the 12T cluster and embedded cluster of H-FAU zeolite at the B3LYP/6-31G(d,p) level of theory.	62
23	Optimized geometrical parameters of the corresponding keto-P complex of (a) H ₂ C=NOH, (b) Z-MeHC=NOH, (c) E-MeHC=NOH, and (d) Me ₂ C=NOH molecules on the 12T cluster and embedded cluster of H-FAU zeolite at the B3LYP/6-31G(d,p) level of theory	63
24	Energetic profile along the pathway Beckmann rearrangement of four oxime molecules on 12T H-FAU zeolite at the MP2/6- 311G(d,p)//B3LYP level of theory: (a) H ₂ C=NOH, (b) Z- MeHC=NOH systems, respectively. The energetic changes for the embedded cluster (solid line) and the bare cluster (dash line) complexes are in kcal/mol.	64

Figure		Page
25	Energetic profile along the pathway Beckmann rearrangement of	
	four oxime molecules on 12T H-FAU zeolite at the MP2/6-	
	311G(d,p)//B3LYP level of theory: (a) E-MeHC=NOH, and (b)	
	Me ₂ C=NOH systems, respectively. The energetic changes for the	
	embedded cluster (solid line) and the bare cluster (dash line)	
	complexes are in kcal/mol. dash line) complexes are in kcal/mol	65
26 Schematic energy profiles of Beckmann rearrangement on th		
	embedded cluster model of FAU zeolite showing 1,2 H-shift,	
	rearrangement and tautomerization steps of methylated derivatives.	
	Values at the MP2/6-311G(d,p) //B3LYP level of theory. The	
	energetic changes are in kcal/mol	66
Append	lix Figure	
1	Methodology for creating charges represented zeolite framework by	
	SCREEP method	84

xi

LIST OF ABBREVIATION

B3LYP	=	Becke's three parameter hybrid functional using the LYP
		correlation functional
BR	=	Beckmann rearrangement
DFT	=	Density functional theory
FAU	=	Faujasite
FT-IR	=	Fourier Transform Infrared spectroscopy
GGA	=	Generalized gradient approximation
HF	=	Hartree Fock
H-ZSM-5	=	Proton-exchanged zeolite ZSM-5
H-FAU	=	Proton-exchanged zeolite FAU
LDA	=	Local density approximation
MAS-NMR	=	Magic-angle spinning Nuclear Magnetic Resonance
MP2	=	The second order Møller-Plesset perturbation theory
MOR	=	Mordenite
NMR	=	Nuclear Magnetic Resonance
SCREEP	=	Surface Charge Representation of the Electrostatic
		Embedding Potential
Т	=	Tetrahedral
ZSM-5	=	Zeolite Scony Mobile-structure 5
6-31G(d,p)	=	Pople valence double zeta plus d and p polarization
		functions for heavy atom and hydrogen atoms
6-311G(d,p)	=	Pople valence triple zeta plus d and p polarization functions
		for heavy atom and hydrogen atoms