TABLE OF CONTENTS

Page

TABLE OF CONTENTS	i
LIST OF TABLES	ii
LIST OF FIGURES	iii
LIST OF ABBREVIATIONS	vii
INTRODUCTION	1
LITERATURE REVIEWS	4
MATERIALS AND METHODS	34
Materials	34
Methods	36
RESULTS AND DISCUSSION	44
CONCLUSIONS	81
LITERATURE CITED	82
APPENDIX	86

LIST OF TABLES

Table Page 1 Several common accelerators used in sulfur vulcanization 11 2 The level of sulfur and the ratio of accelerator to sulfur 15 3 Formulations of rubber compound with various vulcanization systems 37 4 Formulations of rubber compound with various types and amount of fillers 38 5 Curing characteristics of rubber compounds with different vulcanization systems 45 6 Mechanical properties of vulcanizates with different vulcanization 46 systems 7 Mechanical properties of vulcanizates with different vulcanization 51 systems after thermal exposure 8 Mechanical properties of vulcanizates with different vulcanization systems before and after immersion in water and cow's urine 55 9 59 Physical properties of natural zeolite and other fillers 10 Chemical composition of natural zeolite and other fillers 60 11 Cure characteristics of the rubber compounds 62 12 Mechanical properties of vulcanizates with various filler loading after thermal exposure 69 13 Mechanical properties of vulcanizates with various filler loading 73 before and after immersion in water and cow's urine 14 79 Percentage change in hardness and thickness of the rubber mats after installation in cow's corral for 2 months

Appendix Table

1 Global consumption of zeolites (2000)	88
---	----

LIST OF FIGURES

Figure

Page

1	The structure of cis-1,4 polyisoprene	4		
2	Network formation			
3	Oscillating disk rheometer			
4	Rheometer curve			
5	General reaction scheme for accelerated sulfur vulcanization	13		
6	The reaction of sulfur vulcanization			
7	Different crosslink structures			
8	Chemical function on carbon black surface	22		
9	(a) chemical function on silica surface, and (b) type of silanol groups	24		
10	Structure of synthetic zeolite A	29		
11	The tetrahedra linked together to create a three-dimensional structure	30		
12	The structure of mordenite	31		
13	Structure of Natural Rubber	34		
14	Structure of 2,2,4-Trimethyl-1,2-dihydroquinoline polymer (TMQ)	35		
15	Structure of N-cyclohexyl-2-benzothiazole Sulphenamide (CBS)	35		
16	Hardness Tester	39		
17	Abrasion Tester	40		
18	Device for Compression Set Test under constant deflection	40		
19	Universal Testing Machine	41		
20	Oven	42		
21	Hardness of vulcanizates with different vulcanization systems	47		
22	Volume loss of vulcanizates with different vulcanization systems	48		
23	Compression set of vulcanizates with different vulcanization systems	49		
24	Tear strength of vulcanizates with different vulcanization systems	50		
25	Percentage change in hardness of vulcanizates with different			
	vulcanization systems after thermal exposure	51		

LIST OF FIGURES (Continued)

Figure Page 26 Percentage change in abrasion of vulcanizates with different vulcanization systems after thermal exposure 52 27 Percentage change in compression set of vulcanizates with different 52 vulcanization systems after thermal exposure 28 Percentage change in tear strength of vulcanizates with different 53 vulcanization systems after thermal exposure 29 Percentage change in hardness of vulcanizates with different vulcanization systems after immersion in fluid 56 30 Percentage change in abrasion loss of vulcanizates with different vulcanization systems after immersion in fluid 56 31 Percentage change in compression set of vulcanizates with different 57 vulcanization systems after immersion in fluid 32 Percentage change in tear strength of vulcanizates with different 57 vulcanization systems after immersion in fluid 33 Ion exchange between silanol groups and zinc stearate on silica surface 61 34 Effect of filler loading on hardness of natural zeolite-, CaCO₃- and **RHA-filled** vulcanizates 63 35 Effect of filler loading on abrasion resistance of natural zeolite-, CaCO₃- and RHA-filled vulcanizates 64 36 Effect of filler loading on tear strength of natural zeolite-, CaCO₃- and **RHA-filled** vulcanizates 65 37 Effect of filler loading on compression set of natural zeolite, CaCO₃and RHA-filled vulcanizates 66 38 Percentage change in hardness of natural zeolite-, CaCO₃- and RHA- filled vulcanizates after thermal exposure 70

iv

LIST OF FIGURES (Continued)

Figure Page 39 Percentage change in abrasion of natural zeolite-, CaCO₃- and 70 RHA- filled vulcanizates after thermal exposure 40 Percentage change in compression set of natural zeolite-, CaCO₃- and 71 RHA- filled vulcanizates after thermal exposure 41 Percentage change in tear strength of natural zeolite-, CaCO₃- and RHA- filled vulcanizates after thermal exposure 71 42 Percentage change in hardness of natural zeolite-, CaCO₃- and RHA- filled vulcanizates after immersion in water 75 43 Percentage change in abrasion of natural zeolite-, CaCO₃- and RHA- filled vulcanizates after immersion in water 75 44 Percentage change in compression set of natural zeolite-, CaCO₃- and RHA- filled vulcanizates after immersion in water 76 45 Percentage change in tear strength of natural zeolite-, CaCO₃- and RHA- filled vulcanizates after immersion in water 76 46 Percentage change in hardness of natural zeolite-, CaCO₃- and RHA- filled vulcanizates after immersion in cow's urine 77 47 Percentage change in abrasion of natural zeolite-, CaCO₃- and 77 RHA- filled vulcanizates after immersion in cow's urine 48 Percentage change in compression set of natural zeolite-, CaCO₃- and 78 RHA- filled vulcanizates after immersion in cow's urine 49 Percentage change in tear strength of natural zeolite-, CaCO₃- and 78 RHA- filled vulcanizates after immersion in cow's urine

Appendix Figure

1	Representative utilizations of zeolite	87
2	World Consumption of Synthetic and Natural Zeolites in 2004	87

LIST OF FIGURES (Continued)

Appendix Figure

Page

3	Report on Surface area of various fillers	89
4	Report on Particle size of various fillers	90
5	Report on Pore volume of natural zeolite	91
6	Report on Pore volume of CaCO ₃	92
7	Report on Pore volume of RHA	93

LIST OF ABBREVIATIONS

BET	=	Brunauer-Emmett-Teller
CBS	=	N-Cyclohexylbenzothiazole-2-sulfenamide
CV	=	conventional vulcanization
EV	=	efficient vulcanization
MDR	=	Moving-Die Rheometer
MPa	=	mega pascal
NR	=	natural rubber
phr	=	parts per hundred of rubber (resin)
RHA	=	rice husk ash
rpm	=	rounds per minute
TMQ	=	2,2,4-trimethyl-1,2-dihydroquinoline
XRF	=	X-ray fluorescence spectrometry