TABLE OF CONTENTS

TABLE OF CONTENTS	(1)
LIST OF TABLES	(3)
LIST OF FIGURES	(6)
INTRODUCTION	1
OBJECTIVES	
LITERATURE REVIEWS	4
IMF Product and Food Spoilage	4
Preservation of IMF foods	6
Essential oil	8
Gas chromatography system for analyzing	14
Active packaging (AP)	16
Plastic film and absorbent material use in AP systems	19
Modeling of microbial growth response	24
Product survey	24
Texture profile of cake	26
MATERIALS AND METHODS	27
Materials	
Methods	30
Survey of types of IMF products in modern market from	
the retailers in Bangkok to identify products for preservation	
by active packaging	30
Study effectiveness of using cinnamon and clove oil as antifungal	
in IMF product by using active packaging technique	35
Developing the active packaging system for preservation of the	
selected IMF products with modified atmosphere conditions	43
Appling the active packaging technique developed to preserve	
the IMF products under normal air condition	54

(1)

TABLE OF CONTENTS (Continued)

RESULTS AND DISCUSSION

Survey of types of IMF products in modern market from	
the retailers in Bangkok to identify products for preservation	
by active packaging	62
Study effectiveness of using cinnamon and clove oil as antifungal	
agents in IMF product by using active packaging technique	91
Developing the active packaging system for preservation of the	
selected IMF products with modified atmosphere conditions	109
Appling the active packaging technique developed to preserve	
the IMF products under normal air condition	157
CONCLUSION	190
RECOMMENDATION FOR FUTURE WORK	
LITERATURE CITED	194
APPENDIX	209

(2)

Page

LIST OF TABLES

Page Table 1 Microorganisms of potential significance for IMF products 5 2 Basic properties of various polyethylene films 20 3 Locations used in this survey 31 Microorganism used in this test and their sources 4 37 5 39 Ingredients of trial fruitcakes 6 CRD designs and concentration of compound 46 7 Full factorial experimental designs for growth of Aspergillus flavus 52 8 The 3-level-4-factor response surface analysis for concentration of 57 cinnamaldehyde in the dessicator headspace 9 IMF Product available in the modern markets in Bangkok in the year 2003 64 10 Pass-failed screening of IMF products 80 11 90 Comparison of potentiality of IMF products from product survey 12 Comparison of ingredients of premix fruitcakes and commercial 101 fruitcakes 13 Comparison of colony colour, conidia of Aspergillus sp. found on premix cake, and commercial fruitcake, and Aspergillus flavus 105 identified from the environment 14 Mean hedonic ratings of attributes of fruitcake at 300 µl and 700 µl 109 by Western person and Thai person 15 Mean radial growth rate (mm/h) of Aspergillus flavus in MEA agar with different concentration of *p*-cymene, linalool, 127 cinnamaldehyde, and eugenol 16 129 Microbial analysis of the premix fruitcake (PMC₅) 17 130 Microbial analysis of the rice fruitcake (RF)

(3)

LIST OF TABLES (Continued)

Table		Page
18	Texture profile analysis of the premix fruitcake	136
19	Texture profile analysis of the rice fruitcake	137
20	Hedonic scores of premix fruitcake (PMC ₅) and rice fruitcake	
	(RF)	139
21	ANOVA analysis for growth of Aspergillus flavus model	146
22	Variance analysis of the second-order regression model on growth	
	rate of Aspergillus flavus	146
23	Estimated regression model of relationship between response	
	variables (growth rate of Aspergillus flavus) and independent	
	variables (x_1, x_2, x_3, x_4)	147
24	Predicted and experimental growth rate of Aspergillus flavus	151
25	Estimated regression model of relationship between response	
	variables(concentration of cinnamaldehyde in the headspace) and	
	independent variables (x_1, x_2, x_3, x_4)	162
26	ANOVA analysis for the concentration of cinnamaldehyde in the	
	headspace	163
27	Variance analysis of the second-order regression model on	
	concentration of cinnamaldehyde in the headspace	164
28	Predicted and experimental concentration at optimum conditions	
	(700 ml jar)	171
29	Concentration of cinnamaldehyde in the headspace and at the	
	surface of rice butter cake, total yeast and mould and total bacteria	
	of the rice butter cake kept at 30 °C for a month.	174
30	Hedonic scores of the rice butter cake kept at 30 °C for a month	175
31	Concentration of cinnamaldehyde in the headspace and at the	
	surface of rice butter cake, total yeast and mould and total bacteria	
	of the	176

(4)

LIST OF TABLES (Continued)

Table		Page
32	Hedonic scores of the rice butter cake kept at room temperature	
	for a month Texture profile analysis of the rice fruitcake	177
33	Predicted and experimental concentration of cinnamaldehyde	
	in fruitcake	178

LIST OF FIGURES

Figure		Page
1	Varieties of 136 IMF products surveyed which were available in the	
	modern market in Thailand	62
2	Days for initiation of colony growth under MAP conditions with	-
	cinnamon oil at 2,000 µl: O ₂ (<0.05%-10%) and two CO ₂ (a) 20% or	
	(b) 40%	92
3	Days for initiation of colony growth under MAP conditions with	
	clove oil at 2,000 μ l: O ₂ (<0.05%-10%) and two CO ₂ (a) 20% or (b)	
	40%	93
4	Days for initiation of colony growth under MAP conditions with	
	combination of clove and cinnamon oil at 2,000 μ l:O ₂ (<0.05%-10%)	
	and two CO ₂ (a) 20% or (b) 40%	94
5	Days for initiation of colony growth with varying added volumes of	
	mixtures of cinnamon and clove essential oils.	97
6	Growth curves of Aspergillus flavus incubated with 4,000 μ L of	
	combinations of cinnamon oil and clove oil in various ratios	98
7	Comparison of water activity of fruitcake	99
8	Comparison of moisture content of fruitcake	100
9	Water activity of fruitcakes during storage	103
10	Moisture content of fruitcakes during storage	103
11	Growth of Aspergillus flavus on (a) commercial fruitcake (CMC ₂)	
	and (b) Variety fruitcake mix (PMC ₅) with modified atmosphere	
	condition	106
12	Growth of Aspergillus flavus on commercial fruitcake (a) and variety	
	fruitcake mix (b) with normal air condition.	107
13	Evolution of <i>p</i> -cymene concentration in the headspace	111
14	Evolution of linalool concentration in the headspace	113
15	Evolution of cinnamaldehyde concentration in the headspace	115

LIST OF FIGURES (Continued)

Figure

Page

16	Evolution of eugenol concentration in the headspace	117
17	Evolution of <i>p</i> -cymene concentration in the fruitcake	119
18	Evolution of linalool concentration in the fruitcake	121
19	Evolution of cinnamaldehyde concentration in the fruitcake	123
20	Evolution of eugenol concentration in the fruitcake	125
21	Water activity of premix fruitcake (PMC ₅) at 20 °C, 68%RH and 30	
	°C, 75%RH	134
22	Water activity of rice fruitcake (RF) at 20 °C, 68%RH and 30 °C,	
	75%RH	135
23	Moisture content of premix fruitcake (PMC5) at 20 °C, 68%RH and	
	30 °C, 75%RH	135
24	Moisture content of rice fruitcake (RF) at 20 °C, 68%RH and 30 °C,	
	75%RH	136
25	pH of premix fruitcake (PMC ₅) at 20 °C, 68%RH and 30 °C, 75%RH	137
26	pH of rice fruitcake (RF) at 20 °C, 68%RH and 30 °C, 75%RH	137
27	Main compound of premix fruitcake extract	141
28	Main compound of premix rice extract	141
29	Growth of Aspergillus flavus on premix fruitcake incubated at	
	temperature 20 °C and water activities at 0.80 (a) and 0.85 (b)	145
30	Growth of Aspergillus flavus on premix fruitcake incubated at	
	temperature 25 °C and water activities at 0.80 (a) and 0.85 (b)	146
31	Growth of Aspergillus flavus on premix fruitcake incubated at	
	temperature 30 °C and water activities at 0.80 (a) and 0.85 (b)	147
32	Growth of Aspergillus flavus on premix fruitcake incubated at	
	temperature 37 °C and water activities at 0.80 (a) and 0.85 (b)	148

LIST OF FIGURES (Continued)

Figure		Page
33	Contour plot (a) and response surface plot (b) of growth rate of	
	Aspergillus flavus on premix fruitcake by volume of oil (μ l) and time	
	(days) at 30 °C	153
34	Contour plot (a) and response surface plot (b) of growth rate of	
	Aspergillus flavus on premix fruitcake by volume of oil (μ l) and	
	water activity (a _w) at 30 °C	154
35	Concentrations of <i>p</i> -cymene in headspace with various temperatures	
	and times at 50 (a),100 (b), 200 (c), and 300 (c) µl.	158
36	Concentrations of linalool in headspace with various temperatures	
	and times at 50 µl (a), 100 µl(b), 200 µl(c), and 300 µl (d)	160
37	Concentrations of cinnamaldehyde in headspace with various	
	temperatures and times at 50 μ l (a), 100 μ l(b), 200 μ l(c), and 300 μ l	
	(d)	162
38	Concentrations of eugenol in headspace with various temperatures	
	and times at 50 µl (a), 100 µl(b), 200 µl(c), and 300 µl (d)	164
39	Contour plot (a) and response surface (b) of cinnamaldehyde	
	headspace concentration for the volume of oil (μ l) and temperature	
	(°C) at 800 ml volume of desiccators	170
40	Contour plot (a) and response surface (b) of cinnamaldehyde	
	headspace concentration for the volume of oil (μ l) and time (min) at	
	800 ml volume of desiccators	171
41	Contour plot (a) and response surface (b)of cinnamaldehyde	
	headspace concentration for the volume of oil (μ l) and temperature	
	(°C) at 2,200 ml volume of desiccators	172

(8)

LIST OF FIGURES (Continued)

Figure		Page
42	Contour plot (a) and response surface (b)of cinnamaldehyde	
	headspace concentration for the volume of oil (μl) and time (min) at	
	2,200 ml volume of desiccators	173
43	Contour plot (a) and response surface (b) of cinnamaldehyde	
	headspace concentration for the volume of oil (μ l) and temperature	
	(°C) at 3,800 ml volume of desiccators	174
44	Contour plot (a) and response surface (b) of cinnamaldehyde	
	headspace concentration for the volume of oil (μ l) and time (min) at	
	3,800 ml volume of desiccators	175
45	Temperature at the sensory laboratory, Walailak University in January	
	2006.	188
46	Relative humidity at the sensory laboratory, Walailak University in	
	January 2006.	189